
 

      
   
 





 

 
 

Probability and Measure in Public Health 
 
 

Lem Moyé 
  

 
  



 
 
 
Other books by Lem Moyé 
 

• Statistical Reasoning in Medicine: The Intuitive P–Value Primer.  
• Difference Equations with Public Health Applications (with Asha S. Kapadia). 
• Multiple Analyses in Clinical Trials: Fundamentals for Investigators 
• Finding Your Way in Science: How You Can Combine Character, Compassion, and 

Productivity in Your Research Career 
• Probability and Statistical Inference: Applications, Computations, and Solutions (with 

Asha S. Kapadia and Wenyaw Chan) 
• Statistical Monitoring of Clinical Research: Fundamentals for Investigators  
• Statistical Reasoning in Medicine: The Intuitive P–Value Primer. 2nd Edition 
• Face to Face with Katrina Survivors: A First Responder’s Tribute 
• Elementary Bayesian Biostatistics 
• Saving Grace – A Novel 
• Weighing the Evidence: Duality, Set, and Measure Theory in Clinical Research 
• Catching Cold: Vol .1 Breakthrough – A Pre-COVID Novel 
• Finding Your Way in Science: How You Can Combine Character, Compassion, and 

Productivity in Your Research Career- 2nd Edition 
• Catching Cold: Vol 2. Redemption  

                                                 
 



 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

To Dixie and the DELTS  
 
  
  
  

                                                 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 
 

 
 
 
 
 
 
 
 
 
 

 
 

Acknowledgments 
 
My grandmother descended from the few North Carolina Cherokee who chose not to take the 
Nunadautsun’t in the 18th century overland to the Oklahoma reservations. At the feet of her 
rocker, her grandchildren learned that life would be harder, yet better if we served as caretakers, 
both looking after – and being looked after – by others.  

This philosophy infused the many classes where I taught probability in one format or 
another for over thirty years at the University of Texas School of Public Health in Houston. 
Every student for whom I have prepared those innumerable lectures deserves a measure of credit 
for this treatise. Teaching is a phenomenal way to learn.  

During this time, my colleagues at the school taught and reminded me that public health 
did not reside wholly in the purview of probability. Demography, epidemiology, health care 
economics, environmental and behavioral sciences, as well as the frightening yet fascinating 
disease process were also core components of public health. 

A special thanks to Purdue University Emeritus Professors Louis J. Cote, Burgess Davis, 
and KCS Pillai. During a critical time in my development, each went out of his way to ensure 
that I took all of the time that I actually required in order to absorb challenging theoretical 
concepts in probability. If not for them, I could not write this. 

 If probability was to maintain its relevance in public health, it must work within and 
support the interconnections of these fields. My thanks goes to Robert Hardy, Asha Kapadia, 
Barry Davis, Ralph Frankowski, Mort Hawkins, Fred Annegers, Rick Shekelle, Darwin 
Labarthe, Wenyaw Chan, Palmer Beasley, Guy Parcel, and Eric Boerwinkle for their 
steadfastness.   

My work in cell therapy exposed me to new applications and problems in probability.  
While many of these ideas produce nothing of tangible value, they sharpened my critical 
thinking and articulation of mathematical ideas, while driving my conviction that probability was 
essential for clinical research and for public health deeper. My enduring thanks go to Robert 
Simari and the Cardiovascular Cell Therapy Research Network (CCTRN), NIH, as well as all of 
the physician scientists with and for whom I worked. They reminded me that the application of 
probability to public health while relevant also needed to be comprehensible while providing 
new perspectives of palpable value.   

Three colleagues, Hulin Wu, Dejian Lai, and Hongzian Zhu encouraged me to give full 
treatment to the theoretical aspects of probability. Hongzian and I have several important 
discussions about the potential applications of measure theory.  



 vi Acknowledgements 
 

One of my project managers, Shelly Sayre, raised probing questions about this work 
leading to its unique design. Her ideas, as always were both unanticipated and illuminating. All 
failings in their execution belong to me.  

Finally, my dearest thanks go to Dixie, my wife, on whose personality, character, love, 
and common sense I have come to rely, and to my daughters Flora Ardon and Bella Scalise who, 
in their own irresistible manners and movements help to shape the new world for which we 
hunger. 



vii 
 

 
 
 

 
 
 
 
 
 

Preface 
 
 September 19th, 1979  
  On my 27th birthday, I sat in a probability class at Purdue University. The windows in 
the old wooden classroom were open, the blazing colors of the campus trees announcing the 
arrival of another vibrant Midwest fall.  

 Behind me, I saw five years of medical school and internship. I held a new license to 
practice medicine in Indiana. During that grinding time I had watched as, year after year, 
classmates and friends choose their career specialties. General surgery. Pediatrics. Internal 
medicine with a view to cardiology. Family practice. Ophthalmology. 

 And I had selected a path in ─ probability and statistics? 
After patiently listening to my decision, my earnest medical friends and colleagues 

wrangled with me over this startling choice. Why, they asked, abandon medicine, a field that was 
so full of scientific promise?  

“Have you really endured five years of medical training to not use what you have 
learned?” they asked, 

Then, the waves of our career choices carried us to our respective postgraduate training 
centers.  

I chose a path that was not only iconoclastic but, to my knowledge at the time, solitary 
and completely untried.*  

It was likely unworkable, and probably a dead end.  
Yet, I was compelled to walk it.  
So, with my fellow physicians starting their first post internship year of residency in far 

off venues, here I sat in a probability class with students five years younger.  
And that fall morning, my first in graduate school, as I glanced from the professor’s 

discussion on the nature of sample spaces through the wide open window into a blue sky 
populated with cotton ball clouds, one thought resonated. 

 I had come home.  
I have always enjoyed probability. Enjoyed learning about it, working through its 

innumerable exercises, gaining experience, always gathering the kindle that would ignite some 
illumination. Even as I fought my way through measure theoretic probability theory (without 

                                                 
  
* As of this date, I specifically know of only two other physicians who also had chosen to obtain a PhD in 
mathematics or statistics. 
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having taken the prerequisite analyses course!) I enjoyed its direction and was strengthened by 
my early futile exertions that at first yielded so little fruit.  

This treatise is powered by several motivations, but the principal, most powerful one is 
that I cherish this field. 

 
Navigating this book 
A second reason for this treatise is to incisively utilize some of the technological advances that 
have come with information management.  

Technology has not yet substantially influenced the utility of modern day texts. I believe 
that a principal limiting feature of traditional texts is the fixed sequence of pages. There is 
typically only one path through a book ─ especially a math book – starts at the beginning and 
work your way to the end. Just as we read words sequentially, so we too read pages.  

But not here, where it is hyperlinks and not page sequences that serve as bridges between 
sections.  

In this the third decade of the twenty-first century, we are accustomed to navigating the 
web through these links. Here, we use them to move from section to section. And these different 
“linked sequences” generate many different paths through the material; each set of connections 
represents a different learning track. To a great extent, hyperlink sequences personalize the 
learning experience, permitting this text to meet the needs of different audiences. This is 
discussed in detail in here. 
 
Measure theory 
Another one of my motivations for developing yet one more work in this field is the belief that 
the measure theoretic component of probability could be better integrated into the subject matter.  

First, I must confess that you can learn much from this book while wholly avoiding the 
sections devoted to the measure theoretic treatment of probability.  However, measure theory has 
great value. This is true even for the most elementary reader – if presented appropriately.  

When I was in graduate school, I felt ambushed by measure theory. It was presented as its 
own field, separate and apart from traditional probability. It did not appear value added. After all, 
my fellow students and I had become comfortable with many computations in probability 
involving both discrete and continuous distributions and was able to compute some very 
complicated probabilities. The Riemann integral had been good enough so far!  From this 
perspective, "measure theory" seemed like an unnecessary, disorienting, demanding affair.  

After completing its introduction I did not feel like I was any better at computing 
probabilities, only better at computing integrals that I would never use (e.g., functions which 
uncountably many discontinuities). I was more confused than ever despite my attempts to learn 
it. 

This negative if not harmful experience of mine and many biostatistical colleagues was 
spawned by the assumption that two years of calculus and real analysis was required as a 
prerequisite to understand the basics of measure theory. This heavy mathematical preamble 
fosters the sense that measure theory is a distant and obscure way to look at the notion of 
integration and summation when it is not.  

The thesis of this treatise is that one needn’t be a specialists in real and complex analysis 
to learn and use measure theory, any more than one need have a doctorate in electrical 
engineering to flip a light switch.  

The concept of measure theory is at its heart simple, and can be understood by 
introductory students if explained using plain language and simple examples. This is what I have 
attempted in several of the tracts of this text.   
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Therefore this treatise will introduce measure theory without requiring a preceding 
course in real analysis. It is not my goal to supplant analysis – only to implement its basics in 
order to demonstrate that students can understand the concepts of measure theory sufficient for 
its application to health care probability calculation. 
 
History and Probability 
Finally, in order to indulge my penchant for history, I have included hyperlinked essays on many 
of the early giants of probability. I do this because sometimes taking a break from the intense 
mathematics is needed (of course, there are already ample distractions on our personal devices).  
 But, it is also true that, as one reviews these brief biographies, it becomes clear that the 
early probability giants were not giants at all but mere mortals like you and I. They had their 
share of family, financial, and political issues like we do.  One lost the use of his writing arm, but 
during this time, produced half of the papers of his career. Another had been left to swing from a 
door for hours at a time, day after day as a child. Another, who became the force behind integral 
calculus, respected his father so much that, when he was in his twenties and considered changing 
his field from religious studies to mathematics, asked his father’s permission. Yet another 
interrupted his studies to work as a railroad conductor, writing mathematical papers in his spare 
time. 

These “giants” in probability struggled, got distracted, were deflected, and made 
mistakes. 

Just as we do. 
And they all needed help. Some found the right teacher. Other had their teachers raise 

money for them. Yet another met an influential friend while in the army. There is no doubt that 
they were intelligent, but that was not enough. Only when the environment was right, and they 
had adequate support did the intelligence gain traction and lead to the content that we all admire. 
Without that support, the result was sometimes lethal. 

What was true for them is also true for us.  
Finally, although I have done my best to purge this text of errors, my best is never good 

enough. If you find them, please let me know, and I will correct them and can quickly issue a 
new version. Such is the result of my own fallibility and the resilience and power of electronic 
documents.  

  
             
 

  Lem Moyé     
Chandler, AZ 
August, 2022 

Probability@PrincipalEvidence.com 
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Introduction 
 
My answer to the omnipresent question all authors of probability texts must face, “Why do we 
need yet one more book on probability?” is that this is not a traditional book. 

Typically a book is a set of sequential chapters that flows logically and that all readers are 
directed to follow.  

This book uses hypertexting to concatenate different mathematical developments in a 
way that makes sense to the reader, permitting them to put together a sequence at their level that 
will guide their mathematical development.    Hypertexting permits student-specific 
resequencing of chapters.   

For example, one such path covers the discrete probability distributions on an elementary 
level. Another path lies through more intense discussions.  Each path begins with sections that 
serve as prerequisites, and ends with links that function well as sequels, enabling the reader to 
trace out their own path of exposure through this material.  

Other hyperlinks allow the reader to refer to important prerequisites and refresher 
material, for example, the Poisson based death process provides links back to the binomial 
probability generating function for review.  

The implication is that Probability, Measure, and Public Health is written to be a wholly 
electronic experience. My advice is to stay away from printed copies – they will only confuse 
you if you try to read more than a couple of contiguous sequences. This treatise was not written 
to be perused in the standard “just turn the page” format.   
 
Measure theory 
The eBook format with its hyperlinks permits measure theory to be more completely integrated 
into the body of probability.  

The observation that, while the topic of measure theory is so intimidating, its concepts at 
their heart are so simple, speak to our inability to teach this topic effectively.  Measure theory 
can be understood by introductory students if explained using plain language and simple 
examples. This is what I have attempted in several of the tracts of this text.   

This treatise will introduce measure theory without requiring a preceding course in real 
analysis. It is not my goal to supplant analysis but instead to only include sections on analysis in 
so far as they support the goal of learning measure theory. 

  In order to demonstrate some practical applications of measure theory, I have provided 
several examples of how measure theory can be used in public health disciplines e.g., 
environmental sciences, nephrology, ophthalmology, and clinical trial methodology.  

I have devoted a section of this treatise to some of the technical details of measure theory 
(e.g., the monotone convergence and Lebesgue dominated convergence theorems). These are 
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provided to demonstrate the veracity of the theory. However, one can use measure theory 
without having proved these theorems for themselves just as one can compute and manipulate 
the normal distribution without themselves having proved the central limit theorem.  

Thus, instead of the usual measure theoretic didactic (theory centric with limited 
applications),  I have constructed and connected multiple sections into tracks, blending measure 
theory into the discussions of probability. These are provided in the tract development section.  

In addition, there are other smaller but important tools that we can use to further 
interleave measure theory with the teaching of probability. One such elaboration is to use the 
term “measuring tool” interchangeably with “probability mass function” and “probability density 
function”.  

A second is to redesignate the integral sign, 
A
∫ into a symbol that simply announces our 

intention to measure the set A. We can use any tool we chose in this measure e.g., counting 
“measure”, Poisson “measure”, or uniform “measure”. Once the tool is selected, we simply have 
to know how to use it to take the measure, e.g., summation, standard Riemann integration, and 
more complicated set integration using simple functions.  

With this approach, measure can be introduced with the simplest of probability 
distributions. Bringing measure along with us as we compute more complicated probabilities 
allows it to be a constitutive tool of application, and not just a theoretical affectation and burden 
for students. 

 
History and probability 
Sections on the history of probability and brief biographies of some of the well-recognized 
contributors to our field have been included as well. They are referenced in the sections that 
discuss their contributions through hyperlinks to inform about the person behind the creation or 
advance.  
 Antepenultimately, all of this treatise’ examples are in health care. It is my goal to update 
these as more become available. Such is the advantage of electronic publishing. 
 
An admonition 
One warning that I consistently have given my students over the years remains as true today as it 
was two generations ago.  
 In order to compute a probability, one must first be sure that they understand the event.  

Calculating annihilation probabilities for lymphocyte NK cells is impossible without 
some understanding of immunology.  Computing the likely rate of spread of an infectious 
disease is impossible without an understanding of Koch’s postulates and basic epidemiology.  

If you are going to have to kill some of your own brain cells solving a probability 
problem, then kill them in the process of understanding the nature of the event whose probability 
you are working to solve. The solution is so much easier once you clearly view the problem. 
Without that perspective, the exercise is a waste of your time.  
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Track Development 
 
Since every reader can assemble their own sequence of sections from those provided here, this 
work offers a different experience for each reader. In addition, since both elementary as well as 
advanced topics in probability are covered in detail, this work can be used by the student with no 
background in probability as well as by advanced graduate students.  

The only price we pay for this is that this treatise should not be printed. This book is 
constructed to be studied and critiqued only as the digital version.  

A review of the table of contents reveals the extent of topic coverage. There are a 
plethora of sections in this text. Historical, mathematical background, measure theoretic, basic 
probability, advanced probability, asymptotics, and tail events.  Consider these as building 
blocks.  However the sequence of topics to be covered is wholly up to the reader. Examples 
follow. 
 
Non Calculus Introductory Track 
For example, if one has no background in calculus or probability but wishes to obtain a 
probability overview, then they can take the following path.  

 
Why Probability 

             From Whence Did This Come 
Probability and the Renaissance 
Elementary Set Theory 
Definitions and Basic Rules  

  
The Random Event 
Sigma Notation 
Factorials 
Counting Events - Combinatorics 
Basics of Bernoulli Trials.  
Basics of the Binomial Distribution 
Basics of the Poisson Distribution 
The Continuous Probability Function 
Basics of Normal Measure 
 

More advanced tracks 
With the exception of the non-calculus introductory track, measure theory suffuses these 
writings; however the approach taken here offers this theory at different levels, making measure 
theory available to all available levels of students.  
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This is accomplished by introducing measure theory early on in a simple, almost 
nonmathematical way, then gradually moving it into the basic language of probability. In this 
way, the reader’s intuition grows naturally while moving forward from simpler to more 
complicated probability distributions. 
 
Measure introductory track  
The following track best serves students with one or two semesters of calculus. It begins with 
background. 

 
Why Probability 

             From Whence Did This Come 
Probability and the Renaissance 
The Random Event 
Elementary Set Theory 

 
It then includes the basics of measure theory 
 

An Introduction to the Concept of Measure 
Sequences of Sets 
Sequences of Functions 
Set Functions in Measure Theory 
Measurable Functions 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 

 
With this now as background, the reader can move on to more advanced treatment of standard 
probability topics 
 

Basic Properties of Probability 
Counting Events 
Bayes Theorem 
Bernoulli Distribution – In Depth Discussion 
Moment and Probability Generating Functions 
Advanced Binomial Distribution 
Hypergeometric Measure 
Geometric an Negative binomial measures 
General Poisson Process 
Immigration-Emigration Modeling 

 Emigration-Death Process 
 Immigration-Death Process 

The Continuous Probability Function 
Uniform and Beta Measure 
Survival Measure: Exponential, Gamma, and Related Measures 
Cauchy, Laplace, and Double Exponential  
Compounding 
Ordering Random Variables 
Normal Measure 
Asymptotics 
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Tail Event Measure 
 

Physician-epidemiology track 
This track replaces some of the background history (which is always available to the reader) with 
the physician centric components plus advanced Poisson process development. 
 

The Random Event 
Elementary Set Theory 
Basic Properties of Probability 
Counting Events 
Bayes Theorem 
Physicians and Conditional Probability 
Assessing Diagnostic Tests 
Bernoulli Distribution – In Depth Discussion 
Moment and Probability Generating Functions 
Advanced Binomial Distribution 
Probability, Incidence, and Prevalence 
Hypergeometric Measure 
Geometric an Negative binomial measures 
General Poisson Process 
Immigration-Emigration Modeling 
Contagion 
Death Process 
The Emigration-Death Process 
Emigration-Death Process 

 Immigration-Death Process 
The Continuous Probability Function 
Survival Measure: Exponential, Gamma, and Related Measures 
  

Measure-centric probability 
Alternatively, a sequence to introduce the student to a measure theoretic treatment of different 
probability distributions would be 

Why Probability 
             From Whence Did This Come 

Probability and the Renaissance 
The Random Event 
Elementary Set Theory 
An Introduction to the Concept of Measure 
Functions in Measure Theory 
Sequences of Sets 
Sequences of Functions 
Functions in Measure Theory 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 

  
 



xxviii    Tract Development 
 
These students then should review the Properties of Real Numbers  before proceeding.  
 

Basic Properties of the Lebesgue-Stieltjes Integral 
Monotone Convergence Theorem 
Some Classic Measure Theory Results  

 Asymptotics 
Tail Event Measure 

 
Then measure based probability treatment of classic distributions 

Basic Properties of Probability 
Counting Events 
Bayes Theorem  
Bernoulli Distribution – In Depth Discussion 
Moment and Probability Generating Functions 
Advanced Binomial Distribution 
Geometric an Negative binomial measures 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Ordering Random Variables 
Normal Measure 
Tail Event Measure 
Asymptotics 
 
 

Mathematics review sections 
There are many review sections that are available, listed in both the table of contents and here. 
 

Sigma Notation 
Factorials Permutations and Combinations 
Binomial Theorem  
Vandermond’s Inequality 
Pascal’s Triangle 
Properties of Real Numbers 
The Concept of the Limit 
Convergent Series 
Cauchy Sequences 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
The Mean Value Theorem 
Polar Coordinates 
Exponential Limit 
Integration of Exponential Families 
Integration by Parts 
Gamma Function 
Fubini’s Theorem 
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These review components are listed as prerequisites for the relevant sections of this book. Thus 
before reading a section, e.g., the contagion process, the reader will have a list of hyperlinked 
sequences to review so that they can retain their orientation in the original sequence. Also, 
throughout the sequences, relevant probability links are provided, e.g., a review of how to 
compute the probability of the union of events.  

In addition, embedded in the discussions are useful intermediate results that are germane 
to the issue at hand, e.g., the skewness of the binomial distribution, or the asymptotic relationship 
between the Poisson and the binomial distribution.  

Finally, if the reader has no background in probability but has to master several 
distributions, they may begin with the easier discussion and go to the more difficult discussion. 
Such a track would look like.  
 
Why Probability 
From Whence Did This Come 
Probability and the Renaissance 
The Random Event 
Elementary Set Theory 
An Introduction to the Concept of Measure 
Basic Properties of Probability 
Conditional Probability 
Basics of Bernoulli Trials.  
Bernoulli Distribution – In Depth Discussion 
Basics of the Binomial Distribution 
Advanced Binomial Distribution 
Hypergeometric Measure 
Basics of the Poisson Distribution 
General Poisson Process 
Basics of Normal Measure 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
 

 
If the reader has ideas for other sequences, please let me know as 
probability@principalevidence.com, and I will include them in the next eBook version.  

mailto:probability@principalevidence.com
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Why Probability? 
 
 
Prerequisite: None 
 
Do we really need probability? 
Critical questions and the search for their solutions propel us through life.  
 From its distant beginnings tens of thousands of years ago up to the present, our species 
asks and answers questions interminably, its cadence generated by the developing sophistication 
of our minds.  

They encompass the questions posed by a member of a primitive culture (“Where will 
our next meal come from? Will we be attacked? Will our children survive?” ), questions of 
agriculture (“Will pestilence destroy our crop this year?  Will there be enough rain? Will the fire 
in that other village come here?”), modern national security (“When will the terrorists next 
attack? Will COVID-19 affect my community? Are our children safe at school?”). 

While societies  are buffeted by this sea of questions, there are no fewer personal 
questions. (“Will I graduate? Can I find a good job? Will I survive this car accident?”). The 
consuming capability of emotional questions (“Will he ever leave me? Does she really love me? 
Will my death be long and painful? Will my daughter survive?”) are no less demanding.  Our 
survival may or may not depend on the presence of questions, but questions are its constant 
companion, and the characters of our lives are shaped by your and my search for their answers. 

From thousands of years ago to the present day, many believe the answers to questions 
are found wholly in the supernatural. In time, society learned to appreciate its own role in 
shaping its destiny.  “The answers lie not in the stars, Brutus, but in ourselves,” Shakespeare’s 
character Cassius reminded 16th century audiences in Julius Caesar. 

Yet, whatever the source of the final truth, we are unwilling (and many times cannot 
afford) to wait until the answer is self-evident. We seek an early view to the future so that we can 
influence that future (e.g., companies which to abandon the development of a new drug that will 
not be very effective).  

The goal is accurate predictions. Accurate predictions redirect our actions, thereby 
changing the future and perhaps ourselves. Whether it is a general trying to predict the 
movement of her enemy, or a gambler discerning the next card he’ll be dealt in blackjack, the 
goal is the same, to change the course of the future. 

 Ultimately, we desire to shape (and not be shaped by) events that could have been 
predicted.  



2  Why Probability? 
 
 
Probability and Determinism 
Critical questions beg us to apply our best tools to their answers. While determinism can have 
clear religious overtones (e.g., Calvinists who believe that God predetermines each and every 
one of our actions, completely removing the roles of both randomness and our own free will in 
our lives), technology and the advancement of science have grown their own deterministic 
taproots.  

Consider the number of patient arrivals to an emergency department. This process has 
been studied intently; a common probability model implemented for predictions is the Poisson 
distribution. This distribution is used to assess resource questions, e.g., how busy the emergency 
department will be (and do I need to increase staff?), or the impact of the opening of a rival 
emergency department across town.  Helpful predictions have been made in these settings by 
assuming what the Poisson model requires about the random, independent arrivals of patients 
within a given time interval.  

Yet no patient believes that their arrival is random. For each of us, our ED arrival was 
fixed by a collection of events and circumstances that we picked our way through. We don’t see 
these as random, but as impacted by our own nonrandom decisions and actions.    

The trap here is believing that a prediction problem must be deterministic or random.  
However, this choice was never the agreement. Nature gives us problems to solve that are 

unlabeled. It is we who label them as residing in the deterministic domain, probability, or 
stochastic systems.* In fact, these problems have features of both. They are simply problems. 

Sometimes the role of probability is an issue of education. Consider hurricanes. For 
hundreds of years, hurricanes were considered acts of God. When records began to be kept of 
them each year, it was quite natural to consider them as random events and to apply probability 
models to them. In fact, Poisson and negative binomial probability distributions (or measures) 
have been helpfully applied to predict the expected number of hurricanes for a region in a month 
or in a season.  

However, we have also learned that physics plays a role in hurricane development and 
movement. We now understand that these complex systems are governed not so much by chance, 
but by air-fluid interface dynamics, changes in atmospheric waves, wind shear, air pressure 
gradients, and ocean temperature dynamics.  

In the near future, hurricane birth and movement will be examined in even greater detail, 
allowing mathematical models to determine with more refined precision when a hurricane will 
occur, the location of its birth,  what part of the ocean it will churn, and where it will die.  

With each passing decade, there is less of probability and more of physical science in 
determining the life cycle of hurricanes.  
 
Probability in Health Care Research 
We need probability because we operate in a universe in which the same experiment leads to 
different outcomes. Whether one is observing if mice die (or not) in three days, or whether a 
patient is hospitalized or not in six months, or whether an individual’s LDL cholesterol level will 
produce a heart attack, each subject’s outcome is uncertain.  

Different mice, and different patients will have different outcomes from the same 
experiment. We have come to understand this as natural or biologic variability, but how do we 
manage the ensuing chaos? If one individual’s mouse’s outcomes from an experiment is 
uncertain, than how do we describe the uncertain outcomes of each of hundreds of the 
scampering rodents?   

The answer lies in the knowledge that repeated experiments —if they have certain 
properties — produce not disarray but predictable regularity; they can  be summarized with 

                                                 
* Stochastic means probabilitistic in time, e.g., “Will the Uber driver arrive in five minutes?” 
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precision. The chaotic subject-to-subject findings are not inchoate in the aggregate but have a 
regularity that is governed by the rules of probability.   

However, accepting this regularity comes with a price. We give up the notion of knowing 
what will happen tomorrow in order to embrace the possibility of learning what events will occur 
and at what frequency in the universe of tomorrows. For example, we may be able to predict how 
many women in our town will have a stroke tomorrow, but can say little about the fate of the 
woman standing next to us.  
 Probability is based on the random experiment, i.e., a well-designed experiment with an 
uncertain outcome (e.g., observing which patients with New York Heart Association Class III 
patients are hospitalized over a six month period). We compute the relative frequency (which is 
the probability) of this occurrence. With this, and the number of NYHA Class III patients,  we 
can compute for example (using simple rules of unions, intersections, and the property of 
independence),  the likelihood that one of these patients, or at least one, or between three and 
five of these patients are hospitalized in six months.  

Many complex events can be constructed from the simplest one, and we don’t have to 
wait to observe the complicated event; we can compute the frequency of its relative occurrence 
directly.  Probability provides the structure for this understanding of the long term behavior of 
complex systems that at their heart have random occurrences.   

Thus, while we have different laws to govern how to compute probabilities of simple 
events (e.g., binomial laws, geometric models, Poisson laws, etc.), the underlying process is 
always the same. Identify a simple event whose probability can be easily identified. Then, 
construct a more useful event, matching the introduction of research complexity step by step 
with mathematical  representations and manipulations of those events, until we have in the end 
both the complex clinical event and the mathematical formulation (however, complicated that 
might be) of that event.  

And, once we have the probability of the complex event, we can see what value (e.g., an 
arrival rate, or a mean) it requires and on which it depends. We then estimate that parameter 
from the data (this is estimation theory that produces for example means, or incidence rates, or 
hazard ratios) and then learn if the research effort changes that parameter, and thereby changes 
the probability distribution of the event.*  

 
Are there other models? 
If we are to be honest, the answer must be “Yes”, even though we do not know what those 
models are. 

The three competing models with which we have experience are religious determinism, 
science determinism, and random models. Based on their cultural values, societies oscillate 
between these models in predicting important events.  

However, we limit ourselves if we think that these are the important critical explanations 
out there. While we know much, most we do not know.  In science, the vastness of the unknown 
dwarfs the known, and we must always be prepared for new perspectives that first upset, then 
bypass our current reasoning paradigms.  

It is wise to temper our enthusiasm for any of these models by the observation that we do 
not know all that we need to circumscribe the universe of all possible answers.  

 
Next sections to select 
From Whence it Came – An Early History of Probability 
Probability and the Renaissance 

                                                 
* This is the current role of statistical hypothesis testing, which will not be the subject of this book. 
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From Whence Did This Come? An Early 
History 

 
 
Prerequisite: None 
 
It is hard to imagine life without the concept of random uncertainty. Its presence is the only core 
requirement for the concept of probability to take root, because, at its very essence,  probability 
is simply the use of mathematics to manage randomness. And, as we will see, when the concept 
of randomness is squeezed out by a culture, then probability–like fire without oxygen–dies.  
  
Ancient Use of Chance 
No one knows where or when the notion of chance first arose.[1] It may have begun thousands 
of years ago with the use of the heel bones of sheep and other animals, known as astragali. These 
astragali are common products of ancient world archaeological digs, appearing far more 
frequently than one would expect based on solely a reasonable need of the people. Some believe 
that these astragali were the primary mechanism through which chosen people obtained the 
opinions of their gods.  

In fact, for thousands of years, people threw dice to determine their fate. Whether they 
believed that this mechanism put them in contact with the gods, or removed man as the 
determining factor in the prediction, cultures relied on dice to learn of the future.  

In Asia Minor, oracles cast or rolled five astragali; each possible result or configuration 
was associated with the name of a god, and carried with it the sought-after advice. For example, 
the outcome  (1,3,3,4,4) signified Zeus and was encouraging, while the dreaded occurrence 
(4,4,4,6,6)  evoked the frightening child-eating god Cronos.* 

Over time, astragali were surpassed by dice as event generators, and  the Greeks, in their 
full flower, embraced them.† They as well as the following Romans loved to gamble, and while 
rules for their games have long been lost, many can be traced forward to the Middle Ages. Yet 
not all were western games, as evidenced by the Crusaders arriving home with knowledge of 
eastern games, e.g., one which was very much like the modern day “craps”.  
 
Randomness without probability 
                                                 
* We will see later that there are 65 such possible combinations or 7,776 combinations, ample room for varied advice 
from the gods.   
† Loaded dice have also been found from antiquity. Thus, while developing an understanding of the true nature of 
random events and their description would take centuries, cheating was more easily mastered. 
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Yet while gambling blossomed, probability, or the development of an organized logical thought 
process based on the concept of randomness to predict outcomes, did not flower. There is no 
record of early ruminations of the behavior of random occurrences, not even the most coarse 
attempt to provide structure for the types of events that may be produced from a simple game in 
the western world.*  

One might have expected the Greeks with their love of philosophy to inaugurate this field 
given their fondness for gambling. However, while Greek philosophers commonly discussed 
randomness and were comfortable with its role in their lives, they had no cultural interest in 
attempting to quantify it in any useful fashion. Even the opportunity to learn about probability in 
hopes of “beating the odds” and winning their bets was not a sufficient inducement to push them 
into developing a probability calculus.  In fact, Plato wrote that arguments derived from chance 
are “imposters and…apt to be deceptive.”[2] 

However, with the Greeks’ downfall, there arose a culture that not only shunned attempts 
to measure randomness, it would banish the entire concept.  
 
Descent 
“We say that those causes that are said to be by chance are not nonexistent but are hidden, and 
we attribute them to the will of the true God.” 

St Augustine 
 

The Romans were on the march, pushing aside philosophical discussions of random 
events and ending the high time of Greek mathematics.† After his rise to power in Egypt, 
Ptolemy VII banished all scholars and scientists who were not loyal to him, forcing many of 
these Alexandrians to flee to more remote areas. Syracuse fell in 212 B.C., followed by Carthage 
in 202 B.C., Greece in 146 B.C, and Mesopotamia in 64 B.C.  

Upon the assassination of Julius Caesar in 44 B.C., his grandnephew Augustus rose to 
rule the Western Roman Empire. After the defeat of Mark Anthony, Caesar Augustus now 
became ruler of the Eastern empire as well, moving on to conquer Egypt upon the suicides of 
Anthony and Cleopatra. The final fall of Egypt heralded a calmer era, leading to a brief 
resurgence of mathematics by Diophantus and Pappas. 

However, the Roman empire was soon beset by its own set of problems.  
Christianity began as a sect within Palestinian Judaism. Initially tolerated by the Roman 

state, this fervent religion spread throughout the Roman world. By the second and third centuries 
A.D. unruly mobs of Christians, Jews, and Egyptians clashed, producing widespread bloodshed. 

 Themselves singled out as a principal cause for internal unrest, Christians endured 
withering persecutions at the hands of the Romans. However, the emperor Constantine, after 
divining a sign during battle, converted to the controversial doctrine himself, and under Emperor 
Theodosius's rule, Christianity became the official religion of the entire empire.  

However, good as this was for Christians, their ascendency heralded the deceleration of 
mathematical development as scholars were compelled to turn from mathematics and academic 
pursuits to issues of theology.  

Faith was the main topic of study now, as physical science and mathematics were 
ridiculed, the Bible now being the source of all knowledge.  In behavior that would recur through 
the centuries, both learning and the science of scholarship were debased. Associated with 
paganism, libraries and temples were looted and their holdings destroyed.   

Meanwhile, the empire itself, beset with incessant internal civil wars and external threats, 
dividing in 330 AD into an eastern and western half, the latter portion to be overrun by peoples 
from the north.  

                                                 
* The Chinese were perhaps the earliest people to formalize odds and chance 3,000 years ago. 
   
†Developed from  http://www.saintjoe.edu/~karend/m441/DeclineAndRevival.html 
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Stagnation and the depravity 
August 24, 410 AD. Rome falls. 

After a two year siege by invaders on a desperate search for food, a Roman city elder 
opened the strong gate, removing the last obstacle that blocked the raging Visigoth army that 
now poured in.  

Defenseless, the hub of the Roman empire was sacked. All fell into chaos as property was 
demolished, cultural valuables plundered, and citizens, weakened by chronic hunger and 
sickened by measles and smallpox, were slaughtered.  

 After a seventy-two hour search for food, the invading hordes moved on. But they had 
accomplished in three days what the empire’s enemies had never dared attempt. By destroying 
Rome, the center of civilization, “the mother of the world” had been killed. 

Its destruction ushered in an unprecedented period of depravity.  
For generations, tribe after tribe stormed into the empire to gorge on its dying corpus.  

Sewer systems failed, and buildings crumbled from the removal of supporting stones by invaders 
building their own shacks. Access to education and health care disappeared. Urban living was no 
longer tenable and surviving citizens fled, leaving entire segments of the cities to packs of wild 
animals. Civilization broke apart, and lasting knowledge was obliterated.  

Deserting the cities, former citizens, many suffering from chronic starvation and disease, 
now struggled in the country to eke out an existence. Forced to provide for the first time their 
own food supply, they spent long hours behind makeshift plows on barely arable land, desperate 
to harvest food before a long and biting winter drove them inside for months of inactivity.  

Typically, twenty-five percent of a family’s children died in childbirth, and another 
twenty-five percent died by the age of twelve. Those that survived into their second decade were 
likely to do so without mother, father, or both. 

And they were never safe. 
Always under the threat of new attack with loss of life and crops, with no reliable source 

of information beyond the short horizon, anarchy and upheaval reigned as time and again small 
political problems quickly became military ones. There were only two choices. Join the 
rampaging gangs, or join the church. Many flocked to the monasteries, not to be devout but to 
simply survive.  

 
Death of randomness 
The only potential havens for knowledge were the monasteries, serving as a residual of an 
academic and intellectual climate in a savage and impulsive world. The church provided for their 
education in the monasteries, developing and supporting literate cleric.  

Elements of Latin reading and writing along with biblical study were the primary focus in 
the monasteries, and a hint of the ancient pagan Greek authors persisted through their writings. 
Old Latin manuscripts were preserved and copied, preserving them from loss. 

Left to their devices, the monasteries might have been a haven for development of a 
thought process and calculus that governed random events. In fact, arithmetic was available 
during this period, and arithmetic texts thrived because of their ideological neutrality. 

However, there were two insurmountable issues raised by randomness. The first was its 
source – gambling. This pastime’s only use in Roman civilization had been to make money, and 
those who survived the empire’s collapse  remembered that the process tended to gather the more 
unsavory aspects of urban living. Monasteries were to be a bulwark against self-indulgence and 
the material world; their keepers refused to let the gambling “wolf” enter under the sheep’s 
clothing of “the study of randomness”.  
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The second far more fundamental matter focused on the nature of randomness itself. 
Christians believed that God controlled all things. Events, no matter how big or small were the 
product of God’s direct intervention. The text of Matthew 10:30  that “And even the very hairs of 
your head are all numbered” attests to the omniscience and all controlling presence of God.  

If God managed and controlled the myriad details and innumerable events taking place 
across the universe,  each second of each minute of each hour of each day since the beginning of 
time, then there was certainly no room for randomness. There would be uncertainty, because no 
one knew God’s will. But He knew His will and acted on it. All was determined by God. 
Nothing was left to chance.* 

 In fact, the suggestion that randomness did play a role in determining events suggested 
that God was not omnipotent, a line of reasoning that set the budding probabilist  up as a heretic. 
In this inimical climate, the notion of the random event had few champions and therefore played 
little role in the monks’ intellectual pursuits. Randomness was akin to disorder and the devil. 

Meanwhile, the eastern (Byzantine) Empire, remained independent and isolated. Arab 
scholars set up the House of Wisdom which acquired and translated Greek manuscripts, placing 
them in a library for their use. It was here that the Greek philosophy and knowledge remained 
comatose but alive, awaiting the opportunity for revival.  

It would have to wait one thousand years.  
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Probability and the Renaissance 
 

 
Prerequisite: From Whence This Came 
 
Yersinia pestis  
It had been an achingly slow process, but by the mid fourteenth century, Florence, Italy had seen 
something of a resurgence in trade with the kingdoms to the east. So it was no surprise in 1348 
that newly arrived ships from Constantinople, overflowing with cargo, were seen in its ports. Nor 
was it a surprise that sailors on those ships were ill from a variety of maladies including scurvy 
and malaria. The presence of rats, some infested with fleas also was nothing new.  
 But this infestation was different. These rats moved restlessly, and on quiet nights one 
could hear them rustling and squealing as they died. 

Beginning in the east, the bacteria Yersinia pestis had followed the slow moving western 
trail of commerce, accompanying humans and their ever present companions, rats. While the rats 
generally shunned healthy people, the fleas that they carried easily jumped to them,  and through 
their bites injected volumes of bacteria into the healthy human subcutaneous tissue and blood 
stream. Multiplying by the hundreds of millions in this new fertile ground, the bacteria produced 
their toxins.  
 And killed. 
 Europe–indeed, mankind–had seen nothing like this. The contagion spread rapidly 
through the growing urban populations, injecting what pestilence always spreads through human 
communities ─ death and fear.  
 Within a few months, half the population of Florence, one of the largest Italian cities, was 
dead.  

The plague moved north and west, killing a quarter of Europe's population, driving 
people once more out of the urban communities that were struggling after hundreds of years of 
decay to recover population and an urban dynamic. 
 
Emergence 
However, unlike the consequences of the collapse of the Roman Empire at the hands of the 
Visigoths, recovery from Yesinia was not so prolonged.  

When the plague passed (as all plagues do), the survivors faced not just a new landscape 
but opportunity. They were thankful they had been able to endure. And for the first time in 
centuries, the dominating and omnipresent  church was not nearby. There was room not just for 
new life, but for new thought.  
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While many thanked God for being spared a horrible death, they had to come to grips on 
their own with the fact that many of their loved ones and relatives, neighbors and workmates 
died. This left them with not just a sadness, but a heretofore unrecognized new essence of life; 
being alive had its own sweet value, and was more than just a mere stepping stone to the 
afterlife.   
 A second difference was money.   

With people having died by the hundreds of thousands, the need for large quantities of 
fresh food declined, and good food became both more plentiful and cheaper to obtain. In 
addition, for the first time, the value of the working class increased. There were fewer workers 
now, and for the first time in their lives, this class found itself in high demand. They were free to 
relocate as they frequently did for better pay and treatment.  

And they were on the move.   
Also, though the population of Florence was cut in half by the plague, civilization did not 

collapse. Civil government continued.  There began a new interest in study, with calls going 
forth from Italy to the east to return the works of the Greeks. These tomes were returned, 
sometimes with their tireless Arab curators accompanying them.  

New discourse between peoples of different cultures began, and the study of Greek and 
Roman culture, once banned as heretical by the Church, was now offered in the rapidly 
developing universities.  Banking families such as the Medici were generous with loans that 
expanded education and business.  

And for the first time in generations, the church, supreme for almost a thousand years, 
came under attack for fiscal and moral corruption. Legal fiats to limit the power of the Pope were 
attempted, and, although the Church fought many of these off successfully, and would remain a 
central fixture in life for centuries more, it was no longer seen as the omnipotent personification 
and perfection of God on earth. 

The church was powerless before new technical innovations such as the compass that 
overturned ideas of navigation. The printing press revolutionized not just how one could 
communicate, but the meaning of communication, as now common workers had access to 
information in abundance and never before available. Almost overnight, people demanded to 
learn to read.  

Then, in the 1490’s, the announcement of the discovery of Christopher Columbus 
changed the world.   

Once more, the pundits had been wrong, about something so fundamental as the earth's 
very shape. “What else had they been wrong about?” people murmured.  

The church did react, sometimes viciously, and many free thinking heretics were 
martyred. But something fundamental had changed in the relationship of men and women and 
the Catholic Church.  

For a thousand years, the church served as the shield of the innocent from the terrors of  
post Roman barbarism. Now, new and free thinking individuals wondered if its power extended 
beyond its usefulness. Common people saw that perhaps they too could have a relationship with 
God, could in fact see something of Him, without looking through the eyes of the Catholic 
Church.  
 There was the spark of inquiry and free intelligence. The thinking world could now, once 
again, be open to the concept of the random event.  

In 1494, Fra Luca Paccioli wrote the first printed work on probability, Summa de 
arithmetica, geometria, proportioni e proportionalita* 
 
                                                 
* David 1962 
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The Best and the Worse  
After its long and forced absence during the middle ages, cards were introduced in the fourteenth 
century and immediately gave rise to a game known as Primero, an early form of poker. Board 
games such as backgammon also became popular. Gambling, banned for a thousand years, was 
back and thriving, and everyone wanted to win. 

 But how?  
 The main orchestrator of this effort was one of the most mercurial figures in the history 
of  probability, Gerolamo Cardano. 
 By his own admission, Cardano personified the best and worst of the Renaissance man. 
He was born in Pavia in 1501, but facts about his personal life are difficult to verify. He wrote an 
autobiography, but his penchant for lying raises doubts regarding much of what he says.  

Cardano, both a  formally trained physician and a gambling addict* had rich experiences 
in both winning and losing. This background led him to postulated that there must be an 
underlying structure to the unpredictable outcomes of these games, and he began to look for an 
abstract perspective on the random event.  

After much obsession, he settled on a definition that is now held as the classic definition 
of probability:  
 
Cardano's definition of probability 
Cardano articulated that if the total number of possible outcomes, all equally likely, associated 
with some action is n, and if m of those n possible outcomes result in the occurrence of some 
given event, then the probability of that event is m/n.†  
 Put another way, suppose a fair die is rolled, and there are n = 6 possible outcomes. If the 
event of interest is the outcome "the result must be a face with less than 4 spots", then the events 
{1}, {2}, {3} enumerate the outcomes that describe this event. Since there are three of them and 
they are equally likely, then, the probability of the event is 3/6, or 1/2.  

His was the first recorded instance of computing a theoretical, as opposed to an empirical, 
probability, and by first elucidating and then tapping into the most basic principle of probability, 
he propelled the field forward.  

In 1550 Cardano, inspired by the Summa, wrote a book about games of chance Liber de 
Ludo Aleae‡.  While calculations of probabilities became more noticeable during this time 
period, his advance by and large went unnoticed as the momentum was shifting from Italy to 
France.  

But, the game was now afoot.  
 
Letters 
Chevalier de Méré was a French noblemen who loved the games, and gambled frequently to 
increase his wealth. During one gambling spell, he bet that at least one 6 would appear during a 
total of four rolls (a problem that is now addressed through the use of the binomial distribution.§  
From past experience, he knew that he was more successful than not with this game of chance.  

                                                 
* One story says that, so consumed was he, that he sold all of his wife's possessions in order to get table stakes.  
  
† This would come to be seen as the classic definition of relative frequency probability, distinguished from that of 
the modern day Bayesian. 
‡ Liber de Ludo Aleae means A Book on Games of Chance 
§ This is a problem from the binomial distribution. The probability of at least one six in four rolls of a fair die begins 
with our letting  K = number of 6's thrown. Then P[ K ≥ 1] = 1 − P[ K =0 ]. We get P[ K =0 ] as  

[ ] ( )( )( )
4 44 1 50 1 1 0.482 0.482.

0 6 6
K     = = = =    

    
P  The solution is P[ K ≥ 1] = 1 - P[ K =0 ] = 1 - 0.482 = 

0.518. 
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However, after tiring of this approach, he decided to change the game.  He bet that he 
would get a total of 12 (a double 6), on twenty-four rolls of two dice.* Soon he realized that his 
old approach to the game resulted in  more money.  He asked several prominent mathematicians, 
including his friend Blasé Pascal why his new approach was not as profitable, and, in addition, 
what has become known as the problem of points. 
 

Two people, A and B, agree to play a series of fair games until one person has won 
six games. They each have wagered the same amount of money, the intention being 
that the winner will be awarded the entire pot. But suppose, for whatever reason, 
the series is prematurely terminated, at which point A has won five games and B 
three. How should the stakes be divided?† 

 
 

Pascal was intrigued by de Mere's questions and shared his thoughts with Pierre Fermat, a 
Toulouse civil servant and one of the most brilliant mathematicians in Europe. Fermat graciously 
replied, and from the now famous Pascal-Fermat correspondence came not only the solution to 
the problem of points but the foundation for more general results. 

More significantly, news of what Pascal and Fermat were working on spread quickly. 
Others were attracted, of whom the best known was the Dutch scientist and mathematician 
Christian Huygens. The delays and the indifference that plagued Cardano a century earlier were 
not going to happen again.  

Best remembered for his work in optics and astronomy, Huygens, early in his career, was 
intrigued by the problem of points. In 1657 he published De Ratiociniis in Aleae Ludo 
(Calculations in Games of Chance), a very significant work, far more comprehensive than 
anything Pascal and Fermat had done. For almost 50 years it was the standard textbook in the 
theory of probability.  

Almost all the mathematics of probability were still waiting to be discovered. But the 
foundation was there. The mathematics of probability was finally on firm footing.  
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* [ ]
1 2324 1 111set of 12 ' 0.270

1 12 12
s     = =    

    
P   

† The correct answer is that A should receive seven-eights of the total amount wagered. (Hint: suppose the contest 
was resumed, what scenarios would lead to A being the first person to win six games? 
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The Random Event 
 

Prerequisite: None 
 
The unexpected touches each of our lives.  
 
What makes an event random? 
To some individuals, random events appear to have no definite purpose, aim or direction, the 
result of an incomprehensible combination of events. Following no logical order, their 
occurrence is not the result of a cohesive series of steps, but instead are part of an unintelligible 
pattern.   

A tornado demolished a sequence of three houses on an urban block, leaves the fourth 
undamaged, and moves on to destroy the rest of the homes in the neighborhood. Cards appear 
randomly in a game of poker. A patient appears randomly at a physician’s office. Radioactive 
particles strike a Geiger counter randomly. Fire spares some horses while incinerating others. 

We are the observers watching what occurs and recording the result. We see the  arrival 
of a mother and child to an emergency department, or we watch with fear and awe as a super 
hurricane moves, stalls, and moves again, nature controlling this event. At the end of the exercise 
or experiment, an outcome is observed whose precise occurrence was unknown and 
unpredictable, and we say that it was a random event.  

But are they really random? 
Sometimes use of the term random merely represents our ignorance of the underlying 

mechanism. For example, it one were given the sequence of digits 592653, some would say that 
this is a random pattern of digits, while others might recognize this as the sequence of digits in π 
= 3.141592653…..  The sequence of digits for pi is interminable, and does not repeat. Without a 
discernible pattern, the digit sequence is unpredictable, exhibiting some of the characteristics of a 
random sequence. However, they are generated by a discernible and reproducible mechanism, 
failing this test of randomness.* 

There are other complications embedded in the concept of randomness. Consider the 
mother and child arriving to the emergency department (ED). To the observer in the ED who had 
no foreknowledge of what compelled the subjects to visit the ED, their arrival at 10:03AM, 
following no knowable pattern, appeared random. However, to this mother (who first noticed her 
child’s illness, then consulted with family and an older, befriended  neighbor, then made a 
conscious decision to go to the doctor) her activity was purposeful and determined.   

These actions from the mother’s perspective are not random at all, but the consequence of 
her conscious thought and deliberate action. The same could be said of the gentlemen arriving to 

                                                 
* Such a sequence is described with the sobriquet “pseudorandom”. 
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the ED with the worst chest pain of his life, or the daughter bringing her father in because he 
suddenly lost control of the right side of his body. From the perspective of each of these subjects 
there was nothing uncertain about their arrivals at all.  

So, is randomness, like beauty, in the eye of the beholder? Is randomness an inherent 
property, or simply a reflection of our inability to know all? 
 
Religion and randomness 
Discordians, who believe that both order and disorder are illusions imposed on the universe by 
humans, have a strong belief in randomness and unpredictability. Alternatively, Hindu and 
Buddhist philosophies state that any event is the result of previous events (karma), and as such, 
there is no such thing as a random event or a first event.  

The development of probability was delayed approximately one thousand  years in part 
because there was no longer room for the random event in modern culture, all events being 
determined either by man or God. Martin Luther, considered by many to be the founder of 
Protestantism, believed that, based on his interpretation of the Bible, not only were there no 
random events, but that there essentially was no free will either. If indeed purpose governs the 
universe, then randomness is impossible. * 

However, not all Christians believe in the absence of free will. For example, C. S. Lewis, 
a 20th-century Christian philosopher wrote: "God willed the free will of men and angels in spite 
of His knowledge that it could lead in some cases to sin and thence to suffering: i.e., He thought 
freedom worth creating even at that price." He later went on to say that God "gave [humans] free 
will. He gave them free will because a world of mere automata could never love..." 
 
Random models in a purpose driven universe? 
However, even if we grant for a moment that purpose governs the universe, that, as Einstein said 
“God does not throw dice with the world,” then random laws still have a role. Consider the 
emergency department example above. Each patient, each arrival, was determined purposeful, 
yet models based on random processes, e.g., the binomial model, the Poisson model, and the 
negative binomial model continue to function well in describing the overall system.  

We learn about the overall process by studying these random models. We can understand 
measures of central tendency and dispersion (means and variances), and we can compute the 
likelihood of events. Even though each arrival is nonrandom, the characteristics of these arrivals 
in their ensemble resemble a random process; so much so that models based wholly on 
probability can describe them.  

That is not to say the individual arrivals or results are random; in fact, none of them are. 
However, the entire system can adequately be characterized by a random process, even though 
the process itself would be seen as wholly deterministic if only our knowledge about it was 
infinite.  

A fine example of this is managing the arrival of airplanes at an airport. Clearly no plane 
arrives “randomly”; each adheres to a predetermined flight plan that describes to the minute 
when the plane takes off, the route it will follow, and when and where it will land. Yet when 
there are many such nonrandom arrivals, the ensemble is as though the system was governed by 
random arrivals, and, using the Poisson process[1] we can learn about the behavior of the entire 
system.  

In some sense randomization is the first structure that we can place on understanding a 
complicated system. For example, suppose we wanted to learn about the Bangladesh culture. We 

                                                 
* To some degree this sense is alive and well today in the ongoing debate about evolution, with those who advocate 
for God determined evolution or intelligent design contend with  evolution’s proponents who argue that evolution is 
based on random genetic variations, that are nonrandomly selected by environmental stresses. 
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know no one from Bangladesh, and cannot travel there. However, what we can do is hang a 
microphone over its largest city. Now this is certainly a woefully inefficient way to learn about 
the people of this country. We would not learn their dialects, neither would we learn of the 
cultural intricacies of its peoples.  

However, we would learn some things. For example, we would discover that that there is 
more activity during daylight hours than during the late evening, and that some days have more 
activities then other days. This is useful information in a vacuum of ignorance. We would know 
nothing of the details of every conversation, but collecting information about the sum total of the 
spoken words teaches us something of value. 

This is what the application of the random model does. We rely on the random model to 
prove some overall characteristics. The individual outcomes are not random, but the aggregate of 
events behave as though they were. The model provides illumination about some of the 
characteristics of the deterministic process, whose intricacies we do not and may never know. 

So also for the roll of die. We compute probability rules that successfully govern and 
predict the outcome of a single roll of two die. Yet, in today’s age, one can compute the exact 
outcome of any role. We need only the most modern, intricate, and fast computer, plus the 
weight, height, and balance of each die, the speed, direction, and torque of the roll, the ambient 
temperature and humidity, and the elasticity of the surface the die strike on the first and 
subsequent landings.  

Given sufficient computing power and control of the immense equations one must 
understand to manage the physics of this, one could predict each outcome. It is deterministic.  
Yet, the resultant of all of these forces while not random, resembles a random process enough so 
that 17th century gamblers and mathematicians could deduce the patterns and probabilities of 
outcomes. It is a property of the resultant or ensemble of deterministic forces that permits 
probability based models to be accurate in predicting the system’s behavior. 
 Another perspective is to simply say that in our universe, events can have different 
properties. We say that randomness or deterministic are two contradictory properties, but that 
may appear to be true simply from our limited perspective. Just as light has properties of 
particles and also those of a wave, so to can events have properties of randomness and 
determinism. 
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1. N. Bauerle, O. Engelhardt-Funke and M. Kolonko  On the Waiting Time of Arriving Aircrafts 
and the Capacity of Airports with One or Two Runways March 30, 2006. 
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Elementary Set Theory 
 
 
 

Preamble 
The functions that we work with in algebra and calculus are functions that map one single 
number (e.g., x) to another number  (i.e., x2) as in the function  y = x2. The probability function is 
different since it does not map one number to another, but instead maps a set (which is just a 
collection of objects, or events) to a number. Measure (and its subfield, probability)* relies on the 
properties of sets and operations involving sets.  

We are accustomed to the familiar operations used on numbers (addition, subtraction, 
multiplication, division); After defining sets, we need a collection of operations to manage them. 
In this section we develop some fundamental set definitions and then define a collection of 
elementary operations on sets.  

We will end with the concept of a σ-algebra which we will see is a very special and rich 
collection of sets. With this understanding of sets, we then begin to discuss how to measure 
them.   

Fortunately, the concept of sets is very easy; it is one of the simplest concepts in 
mathematics. Set operations are similarly straightforward. We will need to be careful in 
implementing then correctly, and sometimes the collection of operations applied to the sets can 
be a challenge to comprehend.  

However, comprehensive is primarily a matter of time. It we take the time, we will 
understand. 
 
Prerequisite  
None 
 
Definition of a set and its elements 
A set is simply a collection of objects. These objects can be physical, or they can be numbers. 
The set is defined by its contents. For example, we create a set A such that  
 
A = {penny, nickel, dime, quarter, half dollar, dollar piece, two dollar piece}.  
 

                                                 
* It was Andre Kolmogorov who demonstrated that the field of probability (with its 500 year old history) was not a 
field unto itself but instead was a subfield of the much larger area known as measure theory. 
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The set A is defined by its contents. It is the set of US coin denominations. 

Note the set is denoted by braces {}. Each distinct entry in the set is called an element in 
(or of) the set. We denote the element status by the symbol ∈ which means  “is a member of”. 
Thus nickel A∈  is a true statement while a ruble A∈ is false. In this case we say a ruble is not 
an element of ,A  i.e.,  a ruble .A∉   

Another set with many more element would be the set B which contains all of the whole 
(or natural) numbers i.e., 

{ }0, 1, 2, 3, 4, 5, ....B =  
   

Looking at set B, define the set { }1, 3, 5, 7, 9, ...C =  which is the set containing only the 
odd whole numbers. Since each element in C is also in B we say that C is a subset of B. Another 
common way to note this is that the  set ,C B∈  or that C is contained in B  i.e., .C B⊂  However 
B C⊄  since B  contains members or elements that C  does not. We will also define the null set 
or the empty set as the set with no elements, written as ∅  or {}. 
 
Set operations 
Numbers can be added or subtracted with ease. We need to develop the same construct for sets. 
The concepts that we will use are complements, unions, and intersections. These operations will 
allow us to combine sets with other sets in order to create new sets. We might think of these as 
set operations that map sets to other sets. Or we can think of these operations as set generators, in 
that using these operations, new sets are created from other, established sets.  
 
Complements 
To begin to familiarize ourselves with these set operations, let’s start with a set that we will call 
Ω, where  
 

{ }1, 2, 3, 4, 5, 6, 7, 8 , 9, 10Ω =  
 
Now, let’s define a subset { }1,2,3,4 .A =   We see at once that A is a subset of Ω.  

We will now define the complement of A as the elements of Ω that are not in A.  Thus we 
can write { }5,6, 7, 8 , 9,10 ,cA =  an operation that is “like”  Ω – A, if the subtraction operation 

were legal in set theory (which it is not).  Note also that ( ) .
ccA A=   

 

Unions 
We define the union of two sets as the set containing only elements that are in either one set, the 
other set, or both. Using { }1,2,3,4 ,A = let’s define the set B  as { }3,4,9,10 .B =   Thus we can 
write  
 

{ } { } { }1, 2, 3, 4 3, 4, 9,10 1, 2, 3, 4, 9,10A B∪ = ∪ =  
 

We can also find 
 

{ } { } { }1, 2, 3, 4 1, 2, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8 .cA B∪ = ∪ =  
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Note that there is no double counting. Each element that is contained in both sets is counted once 
and only once. Thus A ∪ Ω = Ω  since .A ⊂ Ω   Also, .A A A∪ =  Note that .cB B∪ = Ω  While 

.cB BΩ ∪ = Ω ∪ = Ω   
 
Intersections 
Finally, the intersection of a collection of sets is simply the elements that they have in common. 
Thus,  

 
{ } { } { }1, 2, 3, 4 3, 4, 9, 10 3, 4A B∩ = ∩ =  

 
The intersection of two sets that have no common elements is the null set, { } .= ∅   These sets 
are called disjoint sets and have important properties that will be of great use to us later.    
 
Venn diagrams 
We can see that set operations can become complicated. In order to help with visualization, Venn 
diagrams are particularly useful in visualizing the impact of these operations (Figures 1 and 2). 

For example, from Figure 1 we can see that A B∪   contains the overlap between the 
sets. Also we can see that the non-overlapping sets, A B∩  and cA B∩  are disjoint.  
 

 
 

The union operation can produce some interesting results. For example, when B is wholly 
contained in A, i.e., ,B A⊂  then A B A∪ =  and .A B B∩ =  In the case where they are disjoint, 
then we can see (Figure 2) that  { }, ;A B A B A B∪ = ∩ = ∅ . 
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The distribution law shows us how to work with three sets. 
 
Distribution Law of Sets 
( ) ( ) ( )
( ) ( ) ( )
A B C A C B C

A B C A C B C

∪ ∩ = ∩ ∪ ∩

∩ ∪ = ∪ ∩ ∪
  

These are very useful rules. The first discusses the components in A or B that are common to set 
C. The second focuses on the components that are common to sets A and B and their relationship 
to a third set. 
 
DeMorgan’s Law 
( )
( )

c c c

c c c

A B A B

A B A B

∪ = ∩

∩ = ∪
  

 
From DeMorgan’s laws we learn that the complement of a union of sets is the intersection of 
those sets’ complements, which is easy to see since a union’s complement cannot contain any 
element in any of the sets.  
 Similarly, a complement’s intersection cannot contained elements common to both. 

Since, the sets A, B, and C can themselves be unions and intersections of other sets, the 
complement, union, and intersection operations can propagate entire new and larger collections 
of sets. Essentially, these operations put us in the set generation business.  

 
Example: Smart, “Live” Playlists 
The common reaction to people exposed to set theory is that the topic is too abstract. They 
struggle with identifying a reason for using it in the real world.  

Our smart devices provide a pertinent application that requires us to use set theory, 
perhaps without our knowing it.  
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Playlists, or a list of songs of interest, is a common way that music is organized on 
portable electronic devices. These lists of songs are simply a collection of songs that are selected 
from a larger universe of songs. The user goes through the universe of songs, and then manually 
selects tracks from the universe. This is simply creating a subset of tracks from the entire large 
collections of songs. If Ω  is the entire music collection, and P  is the collection of tracks in the 
playlist, then .P ⊂ Ω    
 More recently, some music players provide a semiautomatic way of creating playlists. 
Rather than manually selecting the subset of songs, one tags each song that resides in the 
universe.  Examples of these tags are  “Artist”, “Title”, “Genre”, “Rating” (typically 1 to 5) and 
“Year”, among others.*  

In order to create the playlist, the user does not select the songs directly, but instead 
creates a “rule” based on the tags. For example, if the user wished to hear rhythm and blues 
music from the 1960’s and 1970’s with at least a three star rating they would select the rule  
 

Year >1959 
AND 

Year <1980 
AND 

Genre contains “R&B” 
AND 

Rating > 2 
 
The resultant playlist contains the required selection. 

Examining the rule, we see that it is an example of set operations which in this case is a 
collection of intersections. The “And” operates as an ∩  from our set language. 

Rules can be quite sophisticated, e.g., “Artist does not contain ‘MaxJaw Willie’” and 
“Genre contains ‘New Age’” and “Year >1980” 

With the features of set theory, the owner can create very selective and focused playlists 
without having to go through and specifically select each track that is desired.  

Other examples of set theory include database management and structured query 
language (SQL) which permit the creation of complex selection rules in patient databases.    
                                                 
* This information is commonly known as metadata.  
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Set generation and σ-algebras 
The operations of complement, union, and intersection permit us to combine sets in various 
ways. Through these combinations, we are actually generating new sets that are related to but 
different from the original sets, thereby spawning a relatively large number of  sets. The number 
of sets that we can generate depends on Ω. For example,  { }, ,A BΩ =  then we can generate sets 
as follows. 
 

 { },, , , , , , , ,
, , , , ,

c c c c

c c c c c c

A B A B A B A B A B A B
A B A B A B A B A B

∩ ∩ ∩
∩ ∪ ∪ ∪ ∪ ∅

  

 
If { }, , ,A B CΩ =  then we could generate many more sets through our familiar set operations. 

This set generation feature is central to our use of sets in measure theory in general, and 
probability in particular. For us the result of this set generation is a particular family of subsets of 
a set on which we will rely and ultimately measure.   

We will call the collection of sets that can be generated through this particular use of 
elementary set operations a sigma algebra or σ-algebra. A σ-algebra is nothing more than a 
collection of subsets of the set Ω (we will designate that collection of subsets as Σ  ) that follows 
certain rules of inclusion.  

The precise definition of σ-algebra Σ  of subsets Ω is the following collection of subsets;  
 

a) The null set is a member of  ,Σ ∅∈Σ  
b) If the set A∈Σ ,then .cA ∈Σ  

c) If a countable number of sets A1, A2, A3, … An,… are contained in ,Σ  then 
1

i
i

A
∞

=
∈Σ



. 

 
A σ-algebra is a collection of sets, generated from the subsets of  a set Ω. So, to create a σ-
algebra, we start with a collection of sets, then generate from that collection the null set, and 
every possible combinations of unions, and complements.  
 However, this definition implies that intersections of sets are members of Σ  as well. 
Assume A and B are contained in Σ .  Then Ac and Bc, must be contained in .Σ .   But their  union 

c cA B∪  must also be in Σ ,  as must their complement ( ) ,
cc cA B∪ which by DeMorgan’s law is 

.A B∩    So, defining a σ-algebra in terms of unions and complements also implies that this σ-
algebra must contain their intersections as well.  
 
Example: Consider a collection of the viral assay test results of five patients. Each have their 
unique test results  T1, T2, T3, T4, T5. The original set of them is simply { }51 2 3 4, , , , .T T T T T We can 
construct the σ-algebra Σ   as  
 

{ } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { } { } { }

1 2 3 4 5 1 2 3 4 5 1 2

3 4 5 1 2 1 3 1 4 1 5

2 3 2 4 2 5 1 2 3

, , , , , , , , , , , , ,

, , , , , , ,

, , , ,...

c c

c c c

T T T T T T T T T T T T

T T T T T T T T T T T

T T T T T T T T T

∅

∪ ∪ ∪ ∪

∪ ∪ ∪ ∪ ∪
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and on and on, continuing to build this collection of sets up through the unions, intersections and 
complements. From a set with five elements, by containing all unions, intersections, and 
complements of set elements, the resulting collection of subsets can be very rich. It all depends 
on the elements in the original set.  

One useful way to consider the role of σ-algebras would be in painting. Suppose one had 
a gallon of red paint. Then the combinations of colors generated from it is very small; essentially 
no color (corresponding to the null set) or the color red.  

Thus, the “σ-algebra” consists of only two elements. However, suppose you now add 
black, blue, and yellow gallons of paint. 

The σ-algebra of all four colors is still all of the combinations of colors that can be 
generated by combining them, but because the original set is larger, the collection of subsets is 
very rich. The oranges, crimsons, purples, grays, teals, pinks, apricots, lavenders, boysenberries, 
etc. are all members of a huge mixture of new colors produced by combinations of the original 
set. Since the original set was richer, the σ-algebra has exploded.   
 This σ-algebra construct will be useful for us, because it will be the set of events from 
which we generate measure and probability. The greater and more diverse the original set of 
outcomes, the richer the algebra of events is on which we can construct probabilities.  
 
The elementary track proceeds to 
Sigma Notation 
Factorials 
The Probability of Unions of Events 
Counting Events - Combinatorics 
Basics of Bernoulli Trials.  
Basics of the Binomial Distribution 
Basics of the Poisson Distribution 
The Continuous Probability Function 
Basics of Normal Measure 
 
The more advanced track moves on to  
Sequences of Sets 
Sequences of Functions 
Set Functions in Measure Theory 
Simple Functions in Public Health 
Measure and its Properties 
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Sequences of Sets 
 
Prerequisites 
Elementary Set Theory 
Properties of Real Numbers 
 
 
For us to understand and work with measure theory and tail events, it would be best to appreciate 
the properties of not just sets, but sequences of sets. In general, this comprehension is only 
challenging if you do not have intuition about the nature of this new environment.  However, 
obtaining this important experience is straightforward.  We will begin simply, building from the 
ground up, letting the intuition develop as we work example after example. 

A sequence of sets is an infinite collection of sets that is indexed by the integers, e.g., 
1 2 3, , ,... ...nA A A A  These sets can have not just different numbers of members (for example, set 1A  

could contain seven members, and set 2A  can obtain 23 members) but also dramatically different 
members themselves.  Our goal is to develop a collection of tools and concepts that can help us 
characterize their behavior.  

 
Convergence of a Set 
What does convergence of a set mean? The convergence property of sets is related to the 
commonality of their elements throughout the infinite sequence. We have talked about sequences 
of real  numbers converging using the “epsilon argument” of Cauchy as described previously, 
i.e., the sequence of real numbers nx   converges to x if all but finitely many nx  get as close as we 
would like to x; we simply have to go far enough out in the sequence for this to be the case.  

This approach suggests that we might consider a working definition of convergence of 
sets as all but finitely many sets contain the same elements; however we will see that this is only 
a portion of the complete solution.   

Let’s begin with a simple example. Consider the sequence of sets nA   
{ } { } { } { }2 , 2,2 , 2,2,2 , 2,2,2,2 ...  

 
Does this continuing sequence of sets converge? Certainly, no two sets in the sequence are the 
same, but this poses no difficulty since the convergence of sets is about the convergence of their 
elements, denoted as ω, irrespective of the number of elements.  The element ω=2 is common to 
all of these sets, so in a rather informal sense we might begin with saying that {2} is the limit of 

.nA   
Now consider the sequence of sets nB   
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{ } { } { } { }2 , 0,2 , 0,2,0 , 0,2,0,2 ...  

 
In this sequence, there are two elements. Does it make sense for us to think about the sequence of 
sets nB  converging when there is more than one common element, and that these two elements 
are all not common in all sets (for example, there is no element 0 in 1B )? 

We need a way to consider the commonality of set elements that becomes apparent only 
after inspecting set elements sufficiently far enough out in the sequence.  To help with this 
commonality concept, we can begin with    

1
n

n

X
∞

=


 

 
where nX  is a sequence of sets. Let’s call this the “superintersection”. It is a set whose members 

ω  are in each and every one of the infinite number of sets.  In our example, since 
1

n
n

A
∞

=


 is the 

set of elements common to all ,nA  we can write { }
1

2n
n

A
∞

=
=



 since all sets have the element 2. 

Similarly, { }
1

2 .n
n

B
∞

=
=



 as well (note that { }
1

0,2n
n

B
∞

=
≠



 since the first set 1B  did not contain the 

element 0).  
We could also develop the superset   
 

1
n

n

X
∞

=


 

 
which would provide for us the set that includes  members of any of the sequence of  sets .nX   

This we can call the “superunion”. We would therefore write 
1

2n
n

A
∞

=

=


 and  { }
1

0, 2 .n
n

B
∞

=

=


 Thus, 

the superunion of the sequence of sets nA  contains all elements of this infinite sequence of sets 
and the superunion of nB  contains any elements that occur in the sequence .nB   

As another example, define the sequence of sets 1 1,nC
n n

 − =   
  

 i.e., the open interval 

from 1
n

−  to 1
n

. Thus the sequence begins ( ) 1 1 1 1 1 11, 1 , , , , , , ....
2 2 3 3 4 4

     − − − −     
     

  i.e., sets whose 

interval lengths decrease in size. In this case ( )
1

1,1 ,n
n

C
∞

=

= −


 since there is at least one of the 

members of this set in the sequence .nC  Similarly { }
1

0n
n

C
∞

=

=


 since only the element 0 is 

contained in each and every member of the sets. 
 
 One relationship we notice at once for any sequence nX   

1 1

.n n
n n

X X
∞ ∞

= =

⊆
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In general superintersections are smaller than superunions. This follows since elements in 
1

n
n

X
∞

=


 

must be in 
1

.n
n

X
∞

=


However, elements that are in 
1

n
n

X
∞

=


need not be in 
1

n
n

X
∞

=


(such as the element 0 

from set 1B ). Thus, it follows that  
1 1

n n
n n

X X
∞ ∞

= =

=
 

 when all of the sets in the sequence have exactly 

the same elements. 
 Sometimes the superintersection is just the null set. Consider for example the sequence of 
sets { }.nD n=  Each set has one and only one element. In this case, the superunion of nD  is all of 
the natural numbers while the superintersection is the null set since there are no common 

elements to the entire sequence. Thus 
1

{1,2,3... ...},n
n

D n
∞

=

=


while 
1

.n
n

D
∞

=

= ∅


 

 Finally, consider the sequence of sets 12, 3 .nE
n

  = −   
 It is the sequence of intervals 

close on the left 1 2 3 42, 2 , 2, 2 , 2, 2 , 2, 2
2 3 4 5

       
             

 each interval getting slightly longer. Here, the 

superunion 
1

n
n

E
∞

=


 = [ )2, 3  while the superintersection 
1

n
n

E
∞

=

=


  12, 2
2

 
 

. 

 
Liminfs and Limsups of sets 
Now, let’s take this one step further and combine the concept of unions of intersections,  

1

.
n m n

∞ ∞

= >


  

This is related to the “superunion of the superintersections”, but notice that the index of the 
superintersections does not always begin with zero, but with m n>  as n increases. Can this 
concept help us?  

Begin with our first set sequence nA  and write 
1

.n
n m n

A
∞ ∞

= >


This superunion of 

superintersections can appear to be overwhelming but is easily considered when taken as a two-
step process. The first is to create a sequence not of sets but of intersections of sets, and then take 
the union of these sets. Recall that nA  equal to sets whose members are only twos  i.e.,   
{ } { } { } { }2 , 2,2 , 2,2,2 , 2,2,2,2 ...Then 

1

2

3

1: 2

2 : 2

3: 2

...

n
m

n
m

n
m

m A

m A

m A

∞

=

∞

=

∞

=

≥ =

≥ =

≥ =







 

Thus these intersections are always 2. Taking the superunion of these intersections, we see that 
the intersections contain only one element, and we simply take the union of them to write

{ }
1

2 .n
n m n

A
∞ ∞

= >

=


   

Now, let’s reverse the superunion and superintersection to write  
1

.n
n m n

A
∞ ∞

= >


 Again, using 

nA  and breaking this complicated procedure down into a two-step process, we compute 
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{ }

{ }

{ }

1

1

1

1: 2

2 : 2

3: 2

...

n
m

n
m

n
m

m A

m A

m A

∞

=

∞

=

∞

=

≥ =

≥ =

≥ =







 

 

The intersection of these sets or { }
1

2 .n
n m n

A
∞ ∞

= >

=


 In this case, the { }
1 1

2 .n n
n m n n m n

A A
∞ ∞ ∞ ∞

= > = >

= =
 

 

These two sequence of operations, 
1

n
n m n

A
∞ ∞

= >


and 
1

n
n m n

A
∞ ∞

= >


 although the reverse of each 

other, each develops a sense of commonality of the members of the nA  family of sets by looking 

in different directions. 
1

n
n m n

A
∞ ∞

= >


starts by examining what all of the sets have in common (a 

relatively small collection of members most times) and builds that up by including all members 

of this sequence of intersections. The 
1

n
n m n

A
∞ ∞

= >


 looks at all members of all sets in the sequence 

and then “builds down” to find the common intersection.  In the case of the set sequence nA , the 
two approaches produce the same set.  

Let’s try this same process with the sequence of sets nB  where we had 

{ } { } { } { }2 , 0,2 , 0,2,0 , 0,2,0,2 ...  We compute  
1

n
n m n

B
∞ ∞

= >


and 
1

:n
n m n

B
∞ ∞

= >


   

 

{ } { }

{ } { }

{ } { }

1 1

2 2

3 3

1: 2 0,2

2 : 0,2 0,2

3: 0,2 0,2

...

n n
m m

n n
m m

n n
m m

m B B

m B B

m B B

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

≥ = =

≥ = =

≥ = =

 

 

 

 

 

The superunion of these superintersection is the set { }0,2  and we conclude that { }
1

0,2 .n
n m n

B
∞ ∞

= >

=


 

The superintersection of the superunions is also { }0,2 , and thus { }
1 1

0,2 .n n
n m n n m n

B B
∞ ∞ ∞ ∞

= > = >

= =
 

 

Notice that the fact that { } { }1 22 0,2B B= ≠ =  did not disturb the equality.  
 

For 1 1,nC
n n

 − =   
  

, we write  
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{ }

{ }

{ }

1 1

2 2

3 3

1 11: 0 ,
2 2

1 12 : 0 ,
3 3

1 13: 0 ,
4 4

...

n n
m m

n n
m m

n n
m m

m C C

m C C

m C C

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

  ≥ = = −  
  
  ≥ = = −  
  

  ≥ = = −  
  

 

 

 

 

The superunion of the superintersections is { }0  and the superintersections of these superunions is 

also { }0 so again we write  { }
1 1

0 .n n
n m n n m n

C C
∞ ∞ ∞ ∞

= > = >

= =
 

 

 
Now if { },nD n= we can see that  

 

{ }

{ }

{ }

1 1

2 2

3 3

1: 1, 2, 3, 4, 5,...

2 : 2, 3, 4, 5,...

3 : 3, 4, 5,...

...

n n
m m

n n
m m

n n
m m

m D D

m D D

m D D

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

≥ = ∅ =

≥ = ∅ =

≥ = ∅ =

 

 

 

 

We see that  
1

.n
n m n

D
∞ ∞

= >

= ∅


 However, what is the superintersection of these superunions of the set 

sequence ?nD   There is no finite member of the set that is in all of the unions. Thus, 

1

.n
n m n

D
∞ ∞

= >

= ∞


 Here, 
1 1

.n n
n m n n m n

D D
∞ ∞ ∞ ∞

= > = >

≠
 

 

We should pause here to note that 
1

n
n m n

D
∞ ∞

= >


only picked up elements of the nD  sequence 

that occurred infinitely often. Since no single positive integer met this criteria, its value became 
.∞   

 Typically, the 
1

n
n m n

X
∞ ∞

= >


 is called the limit infimum of liminf. It starts with a relatively 

small number of sets (the superintersection) and then builds them up. The 
1

n
n m n

X
∞ ∞

= >


 is called the 

limit supremum or limsup (starting with a relatively large set, the superunion, and building 
down). As we saw with the nD  sequence example, the limsup nX  is the subset of nX  that occur 
infinitely often.  

 We will say the limit of a sequence of sets exists when 
1 1

.n n
n m n n m n

X X
∞ ∞ ∞ ∞

= > = >

=
 

 We can write 

this more formally by writing that in this  case 
  

{ } { } { }lim liminf limsup .n n nn n m n n m n
X X X

→∞ →∞ ≥ →∞ >
= =   

 
 The following reviews our findings for these four sets 
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{ } { } { } { } { } { }
{ } { } { } { } { } { }

{ } { }

{ } { }

2 , 2,2 , 2,2,2 , 2,2,2,2 ... lim 2

2 , 0,2 , 0,2,0 , 0,2,0,2 ... lim 2

1 1, lim 0

lim none

n nn

n nn

n nn

n n
n

A A

B B

C C
n n

D n D

→∞

→∞

→∞

→∞

= =

= =

 − = =  
  

=

 

This definition of set limit focuses on the commonality of the set members. The set sequence nD  
has no commonality at all, and therefore has no limit (we can say that the sequence of these sets 
diverges). However there is commonality (in fact, we could say, overwhelming commonality) of 
members in the sets , ,n n nA B C   
 What does “overwhelming” mean? Consider the sequence of sets { }even1 ,n nE =  where the 
single member of nE  alternates between 0 and 1. Then, carrying our analysis we find 
 
  

{ }

{ }

{ }

1 1

2 2

3 3

1: 0,1

2 : 0,1

3: 0,1

...

n n
m m

n n
m m

n n
m m

m E E

m E E

m E E

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

≥ = ∅ =

≥ = ∅ =

≥ = ∅ =

 

 

 

 

Note here that { } { }liminf limsup .n nn m n n m n
E E

→∞ ≥ →∞ >
≠ However the set sequence nE  contains both an infinite 

number of 0's  and an infinite number of 1's. Thus, according to our definition, the occurrence of 
members infinitely often is not sufficient for the limit to exist.  
 Well, if an infinite occurrence of events is not what it takes, then what does matter? This 
is revealed by an examination of the sequence { }1001 .n nF >= This set sequence consist of the set 
{0} for 100,n ≤  and the set {1} for 100.n >  We write 
 

{ }

{ }

{ }

{ }

1 1

2 2

101 101

102 102

1: 0,1

2 : 0,1

101: 1 1

102 : 1 1

...

n n
m m

n n
m m

n n
m m

n n
m m

m F F

m F F

m F F

m F F

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

≥ = ∅ =

≥ = ∅ =

≥ = =

≥ = =

 

 

 

 

 

 
In this case both { }liminf limsup 1 lim .n n nn m n n nm n

F F F
→∞ > →∞ →∞>

= = =  This was the result because the because the 

superintersection in the limsup remove those ω elements that appeared in the first 100 sets of .nF  
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Some reflection reveals that it doesn’t matter whether { }1001 ,n nF >= of { }10001 ,n nF >= or 

{ }10,000,0001 .n nF >=  
As long as there were only finitely many of the 0’s, and all but finitely many of the 1’s, 

the limsup would be one. Similarly for the liminf. The null set result for the intersection drops 
away after the set changes from 0’s to 1’s, and the final superunion produces only the set { }1 .  
Just as a property of the limsup nX  is it must occur infinitely often, a property of the liminf nX  
is that it occurs all but finitely many times. Thus, the lim nn

X
→∞

 exists when the subset of the 

elements of nX  sequence that occurs infinitely often is identical to the set of elements that occur 
all but finitely many times.  

 Consider the sequence of sets odd even
1 1, 1 1,1 1n n nG
n n

    = + − −    
    

. This sequence of sets is 

subject to two forces. The first is that the length of the interval increases as n increases. The 
second is that  the interval is either on the negative side of the reals or the positive ones, 
alternating as n is either odd or even. The analysis of the limiting behavior of this sequence 
follows: 
 

( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

1 1

2 2

3 3

1: 1, 0 0, 1

2 : 1, 0 0, 1

3: 1, 0 0, 1

...

n n
m m

n n
m m

n n
m m

m G G

m G G

m G G

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

≥ = ∅ = − ∪

≥ = ∅ = − ∪

≥ = ∅ = − ∪

 

 

 

 

 

Continuing, we see that the liminf = 
1

n
n m n

G
∞ ∞

= >

= ∅


 while the limsup = ( ) ( ){ }
1

1, 0 0, 1 .n
n m n

G
∞ ∞

= >

= − ∪


 

Thus the limit does not exist. However, it is easy to convince ourselves that 

( ){ }1lim , 1 0,1 ,
n n→∞

   =  
  

 and ( ){ }1lim 1, 1,0 .
n n→∞

  − − = −  
  

 

 
We can now say in words what it means for a sequence of sets to converge. By saying that the 

sequence of sets { }nA  converges we have demonstrated that 
1 1

lim .n n n
nn m n n m n

A A A A
∞ ∞ ∞ ∞

→∞= > = >

= = =
 

 In 

words, the limit exists if each member of A must be all but finitely many ,nA  and that each 
member of set  cA  must be in only finitely many of the .nA  
 
Example: Medical Text 
Consider for example the text in all medical discharge diagnoses from 1950 to 2015. This 
constitutes a very large collection of medical records, and lets believe for a moment that this is 
an infinite collection of medical records. Let each record be a set of words.  

Do these medical records have a limit, and what would that mean?  A first impression 
suggest that they do have a limit. For example, the articles “a” “an”, and “the” are in all of them 
(or at least all but finitely many of them). How about the complement of these three “words.” 
Again, an impression says that other words that describe particular diagnoses e.g., “esophagitis”, 
“osteomyelitis”, “ myocardial infarction” may be in a great many of these medical records, but 
only in finitely many of them. So a set limit here represents common language.  
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█ 
 Another example of set limits is the sequence of sets that is forever increasing, 

i.e., 1 2 3 ...H H H⊂ ⊂ ⊂  Such a set is easy to imagine (Figure 1.) 
 

 
 

 
 

 
 
 
Our computations follow: 
 

1
1 1

2
2 2

3
3 3

1:

2 :

3:

...

m m
m m

m m
m m

m m
m m

m H H H H

m H H H H

m H H H H

∞ ∞

∞
= =

∞ ∞

∞
= =

∞ ∞

∞
= =

≥ = =

≥ = =

≥ = =

 

 

 

 

 
 

1 1

limn n n
nn m n n m n

H H H H
∞ ∞ ∞ ∞

∞
→∞= > = >

= = =
 

 

 
As another example, consider the sequence of sets defined as  

1 1, .
1nJ

n n
 =  + 

 Does this set has a limit?  
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To answer this question, lets first look at this sequence to get a sense of its character. The 

sequence is 1 1 1 1 1 1 1,1 , , , , , , ...
2 3 2 4 3 4 5

       
             

 The union of these sets is [ )0,1 .  Since these sets are 

mutually exclusive, 
1

.n
n

J
∞

=

= ∅


 Let’s examine liminf nn m n
J

→∞ >
 and limsup .nn m n

J
→∞ >

 Lets begin our analysis. 

 

[ )
1 1

2 2

3 3

1: 0,1

12 : 0,
2
13: 0,
3

...

m m
m m

m m
m m

m m
m m

m J J

m J J

m H J

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

≥ = ∅ =

 ≥ = ∅ =  
 ≥ = ∅ =  

 

 

 

 

Here liminf ,nn m n
J

→∞ >
= ∅ and [ ]limsup 0 .nn m n

J
→∞ >

=  Thus the sequence nJ  has no limit.  

 Consider the sequence ,1 .
1n

nK
n

 =  + 
 What are the characteristics of this sequence? Does 

it have a limit?   

 The sequence is 1 2 3 4,1 , ,1 , ,1 , ,1 .
2 3 4 5

       
              

 The intervals gets smaller and smaller and 

always has an upper bound as 1. Does it make sense that lim 1?nn
K

→∞
=  Lets conduct the analysis 

 

[ ]

[ ]

[ ]

1 1

2 2

3 3

11: 1 ,1
2
22 : 1 ,1
3
33: 1 ,1
4

...

m m
m m

m m
m m

m m
m m

m K K

m K K

m K K

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

 ≥ = =   
 ≥ = =   
 ≥ = =   

 

 

 

 

Here [ ]liminf 1 ,nn m n
K

→∞ >
= and [ ]limsup 1nn m n

K
→∞ >

= , and we discover that our intuition was correct.  

As another example, consider the sequence of sets 1 , .
1 1n

nL
n n

 =  + + 
 Does this sequence of sets 

converge?  

 The sets begin as follows: 1 1 1 2 1 3 1 4, , , , , , , ...
2 2 3 3 4 4 5 5nL        =               

 The limit of the lower 

bound of the set is zero and the limit of the upper bound of the set is 1. What are the limit 
properties of ?nL   
 

[ ]

[ ]

[ ]

1 1

2 2

3 3

11: 0,1
2
1 22 : , 0,1
3 3
1 33: , 0,1
4 4

...

m m
m m

m m
m m

m m
m m

m L L

m L L

m L L

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

 ≥ = =  
 ≥ = =  
 ≥ = =  
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Here [ ]liminf 0,1 ,nn m n
L

→∞ >
= and [ ]limsup 0,1nn m n

L
→∞ >

= and we can write [ ]lim 0,1 .nn
L

→∞
=   
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Basic Properties of Probability  
 
 
Introduction 
Here, we define probability as a set function that generates the relative frequency of the set, and 
provide our first simple examples of probability computations. Once we define probability, we 
will demonstrate the difference between the sample space and the much larger event space, or 
collection of sets on which the probability function will operate. We will also begin to see how 
operations on sets such as complements, unions and intersections translate to the mathematical 
combinations of probabilities.  
 
Prerequisite sections 
The Random Event  
Elementary Set Theory 
 
Probability as relative frequency 
We define the probability of event A as P[ A ] as the relative frequency*  of the event  A 
 

[ ] number of outcomes in event
number of alloutcomes

AA =P  

 
One simply computes the number of all possible outcomes, placing this number in the 
denominator. We then select the number of events† in the denominator that meet the criteria of 
the event whose probability we wish to find, placing this second number in the numerator, 
permitting us to compute the proportion. This serves nicely as a first working definition of 
probability. The concept of probability from its first modern inception has been one of assessing 

                                                 
* This is the source of the sobriquet “relativist” for practitioners of this classic use of probability. 
 
† We could also say that we place the size of these events in the denominator and numerator and compute the 
proportion. Describing these collections by their size and not merely their number is the essence of measure theory’s 
application to probability. In this case the measure of the events is simply the number of events. Measure most times 
is conceptually quite easy. 
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the relative frequency of an event* and is related to one of the most basic concepts in 
epidemiology – proportions.  
 
Example: Demography 
An epidemiologist is interested in characterizing the demographics of  120 patients in her sample 
of subjects. She has and the breakdown of patients is available (Table 1). 
 

 
 
Table 1 tabulates the race, ethnicity and gender in the sample of 120 patients.  If we are to 
compute the probability of being Asian, then, using our definition of probability from the 
previous section , we simply count the total number of patients available in the study (N = 120). 
This is our denominator. The numerator contains the total number of Asians in the study = 15 + 

10 = 25. The probability of Asian is simply [ ] 25Asian 0.208.
120

= =P   Similarly, we can compute 

the probability of being a female in this sample as [ ] 45Female 0.375.
120

= =P   

█ 
Our intuition serves us nicely here.  From these computations we can observe that 

probability must be between 0 and 1. Secondly, there are many probabilities that we can compute 
from the rich structure of Table 1, for example, the probability of being  an African American, or 
of being an Hispanic female. The probabilities of all of the subsets of demography in the table 
are available to us directly; we simply count events in the numerator, and divide by 120.  

We can also handle a complication of this approach easily as well. Suppose we wanted to 
know the probability of an individual being Caucasian if we already knew they were female.  
Here the denominator is not 120 because there are fewer females than this. If we wanted the 
probability of being Caucasian, we would compute  69

120
 However, if we want the probability of 

being Caucasian among only the females, we write  † 

  
Notational structure of probability        
Further examination of  Table 1 reveals some simplifications that should be available. For 
example, if we compute the probability of being female as  45 0.375

120
=   can we just compute 

the probability of being male as  1 0.375 0.625?− =  Must we always return to Table 1 to count 
up events and then compute the probability?  

By adding some structure to our probability computations we will see that we can 
simplify our counting burden considerably. In fact, while we may already have some sense of 
                                                 
* This is the traditional definition of probability. There is an alternative branch of probability, termed subjective 
probability that has been developed by the Bayesian community. This will be a topic of later discussion. 
 
† This second probability is known as a conditional probability because it is “conditioned” on being a female. 

19 .
45
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how to compute probabilities of events from Table 1,  let’s explore this concept of a general 
structure first.  

Applying our new experience in set theory, we can first consider a universe or sample 
space of all available outcomes. For Table 1, we have 120 subjects. Let’s also consider this an 
experiment where we select an individual from this population of 120 subjects, note that 
individual's race, ethnicity and gender, and then return that individual to the sample. The overall 
set Ω, which we will now call the sample space  Ω contains 120 elements, each describing an 
individual. 

From Table 1, we are interested in characterizing individuals by gender, race and 
ethnicity. This will generate subsets of individuals characterized by these three groups, using  the 
operations of complements, unions, and intersections to generate a σ-algebra of subsets. It is on 
this σ-algebra* that we may build our probability function.   

A straightforward examination demonstrates how rich this event space or σ-algebra is. 
For example, based on Table 1, we can derive the following events.  
 
All subjects   All Caucasians 
All African-Americans All Asians 
All Hispanics   All Females 
All Males   All Non-African American Hispanics 
All Caucasian females All Asian males 
Etc. 
 
Clearly this is a fraction of the many events that may be enumerated. However, notice that there 
are events (e.g., the relative frequency of all subjects less than fifty years old) that we cannot 
compute, since there is no information in Table 1 about subjects’ ages†. However, by confining 
ourselves to this rich σ-algebra we can “build” our probability function. This is the structure we 
need to compute probability. The role of elementary set theory in probability  is to organize the 
sets into an event space or σ-algebra on which we can compute probabilities.  

We can now return to Table 1 to compute some additional probabilities.  For example, 
the probability that a patient is a Caucasian male or an Asian male, we might intuitively see as 
 

50 15 10 75 0.625.
120 120

+ +
= =

 
 

 
We may have intuitively known to compute 50 + 15 +  10 = 75 in the numerator.  However, now 
we can see that being either a Caucasian or Asian male requires us to consider four categories, 1) 
Caucasian Hispanic male, 2) Caucasian non-Hispanic male, 3) Asian Hispanic male, and 4) 
Asian nonHispanic male. Using our established set operations, Males are unions of these sets. 
However, each set is disjoint, there are no non-null set intersections to consider, and we simply 
need add the set content by the properties of disjoint unions.  
 

                                                 
* There are commonly more than one σ-algebras from sets of observations. For example, suppose that Table 1did not 
categorize individuals by gender, race, and ethnicity, but by age (young vs. old), weight (thin, normal, or obese), and 
height (short, normal, tall). Then the 120 individuals would be divided not by subsets defined by gender, race, and 
ethnicity, but by these three new categorizations. This example reveals that, just as a σ-algebra can be a rich 
collection of subsets, there are multiple σ-algebra that can be produced from each sample size, Ω depending on the 
characteristics that are available to be inspected. 
† We called this an unmeasurable function. 
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Complements   
One final useful feature in constructing events of interest is the use of complements. Any 
element that is not in the set A is in the complement of A . As we have seen, the complement of a 
set is its opposite, or Ac, termed “A complement” or “Not A.”  

We will now see that the use of complements, unions, and intersections of sets that 
generated the event space will permit us to more easily compute probabilities.  Let’s start with 
some obvious properties.  
 
Properties of Probability 

[ ]
[ ]
[ ]

1. 1.

2. 0.

3. 0 for any .A A

Ω =

∅ =

≥ ⊂ Ω

P

P

P
   

 
These properties come from the theory of measure, and are covered in our introduction to the 
properties of measure. However the implications are easy to appreciate. These properties 
together imply that probability maps sets to the [ ]0,1  interval.  Property 3 follows from the 
simple observation that, if the null set has probability zero, then any non-null subset A of Ω must 
also have probability at least as large as the null set. Our rule or measure is to compute 
probability as a relative frequency satisfies each of these three rules.  In general, 

1 .cA A      = −P P   
 The next rule has profound implications for computing probabilities of more complex 
events 
 

[ ] [ ] [ ]4. when .A B A B A B∪ = + ∩ = ∅P P P  
 
This last one requires some discussion. 
 
Disjoint sets 
Two sets A and B that contain no common elements, i.e., A B∩ = ∅   are considered to be 
disjoint; the absence of any overlapping elements between the sets eases the computation of the 
probability of their union – we simply add probabilities.  

Property 4 above is the basis of computing probabilities for nondisjoint sets. 
 When sets A and B are not disjoint we must include  one additional term;  
 

.A B A B A B              ∪ = + − ∩P P P P  

Note that this  simplifies to Property 4 when A and B are disjoint. In fact this statement is a 
direct consequence of  Property  4. 

We can also show another useful feature of probability that is intuitive and easy to prove. 
 
If A  and B  are sets in Ω  and ,A B⊂  then  

[ ] [ ].A B≤P P *  
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Other Relationships between Sets 
Probability is a set function. How we compute the probability is based on the definition of the 
probability (relative frequency here, or Poisson measure, or counting measure) and the properties 
of sets, i.e., the events the sets represent.  

Disjointedness is the property of events. Events are disjoint or not. Disjoint events permit 
us to sum probabilities directly. Non disjoint events ( i.e., A B∩ ≠ ∅  ) require that we subtract 
the probability of a third, related event, namely the probability of the intersection. How we 
manage these nondisjoint intersections depends on the relationships between the sets.  
 
Independence 
One of the most useful properties of events is the notion of independence. Events can be 
independent or dependent. The status of independence or dependence defines the relationship 
between sets.  

Two events are independent if the occurrence of one event tells us nothing about the 
occurrence of the other. Dependent events are events where the occurrence of one event changes 
our assessment of the likelihood of the other, allowing us to adjust the probability of the second 
event in light of the observation that the first event occurred. As we might expect, while 
dependent relationships are the most informative, their probabilities are more complicated to 
compute.  

The descriptors “independence” or “dependence” are properties not of events, but of 
event relationships. We don’t ask if the occurrence of osteoarthritis is “independent.” But we can 
ask if the occurrence of osteoarthritis is independent of the subject’s weight. The independence / 
dependence property is the descriptor of the event’s relationship. 
 The fundamental feature of independence events is that the occurrence of one does not 
affect the occurrence of the other. Specifically an observer who notes the occurrence of one 
event learns nothing about the occurrence of the second event.  
 Consider the thought process of a doctor who is examining a patient suffering from a 
bowel disorder that his physician believes may be ulcerative colitis. During the examination, the 
doctor may notice and record the patient’s height. However, the observation that the patient is six 
feet tall does not influence the likelihood that the patient is suffering from ulcerative colitis. 
Height simply does not inform the diagnostic process.  
 We say that the two events of ulcerative colitis and height are independent of each 
another [1]. Independent events are denoted by the “ ”, and we denote the independence of 
events A and B as    
 Computing probabilities of independent events is straightforward. If .A B⊥ then 

.A B A B          ∩ =P P P  For independent events, the probabilities multiply. † 
 
                                                                                                                                                             
* This follows since, if ,A B⊂  we can write ( ) ( )cB A B A B= ∩ ∪ ∩  Since A B∩  and cA B∩  are 

disjoint, and (because ),A A B A B= ∩ ⊂  then [ ] [ ] ,cB A A B = + ∩ P P P  or 

[ ] [ ] ,cA B A B = − ∩ P P P  producing [ ] [ ].A B≤P P   
 
 
†Researchers take advantage of this property when they draw random samples of subjects from a larger population. 
Allowing each subject to have the same probability of being selected from the sample all but ensures that the sample 
subjects’ measurements are independent of each other. Thus, identifying probabilities of joint events reduces to 
simply multiplying probabilities of the individual events. This work is the foundation on which the formulas for 
commonly used statistical estimators (e.g., means, variances, and incidence rates) are formulated.   

⊥

.A B⊥
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Dependence 
The computation of the probability of two events’ joint occurrence is relatively simple if they are 
disjoint or independent. However, matters become much more interesting, and somewhat 
complex, when it comes to dependent events. 
 Suppose we wanted to compute from Table 1 the probability of being both Hispanic and 
female. If we made the assumption that these two events were independent,  we would find the 
probability of being Hispanic, then the probability of being female, and simply multiply these 
two probabilities together.  

Let’s try it. The probability of being Hispanic is 32 15 47 0.392.
120 120

+
= =  The probability of 

being female as .45 0.375
120

=  Assuming these events are independent, we would compute the 

probability of Hispanic females as (0.392)(0.375) = 0.147. 
 However, looking at Table 1, we see another way to compute the relative frequency of 

Hispanic females =   15 0.125 0.147!
120

= ≠   

What has happened is that our assumption of independence that lead us to multiply 
probabilities was incorrect. The probabilities are not independent, but dependent.  

The dependence property implies that knowledge of the occurrence of one trait informs 
us about the likelihood of the other’s occurrence. However, in order to utilize this property, the 
nature of the relationship must be clarified. Specifically, the scientist must know exactly how to 
update her assessment of the occurrence of one event when another dependent event has been 
generated. This updated assessment is the conditional probability.  
 
Introduction to conditional probability 
We may specifically denote the probability of an event A when the event B has occurred as 

[ ]| .A BP   This probability may be computed as  

[ ] [ ]
[ ]

|
A B

A B
B
∩

=
P

P
P

 

 
This formula may appear mysterious, but is actually quite intuitive when viewed graphically 
(Figure 1). 
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In Figure 1, we begin with an event A and then superimpose event B with an area of 
overlap.  
 We can understand the conditional probability formula by first recognizing that the event 
A B∩  resides wholly in B (Panel C). We may think of the event A given B by beginning with the 
occurrence of event B, then measuring the relative size (i.e., the probability) of  A B∩  when 
compared to the size of B, asking what fraction of the time that event A also occurs, or 

.
A B

B
  

  

∩P
P

 We can use the same reasoning to see that .|
A B

B A
A

       

∩
=

P
P

P
 Note that, since 

|A B  P is the relative probability of the set A B∩  to the set B, this conditional probability’s 
value cannot be deduced from simply knowing the probability of B (sometimes referred to as the 
marginal probability of B) is large or is small. The [ ]|A BP  can be large when the [ ]BP  is small, 
and of course the reverse is true. 
 Consider the data from Table 1. The probability of being a Caucasian female is 
19 0.158.
120

=  However the probability that a subject is Caucasian given that they are a female is  

19 19120 0.4245 45120
= =

 
 

 
The conditional probability is large although the marginal probability of being Caucasian is 
relatively small.* Put another way, Caucasians are more common among females in this sample. 

It is commonly useful to write rewrite [ ] [ ]
[ ]

| ,
A B

A B
B
∩

=
P

P
P

 that  

[ ] [ ] [ ]| .A B B A B∩ =P P P  
   

This is helpful when we already have the conditional and marginal probabilities, but need to 
compute the joint probability. While there is interest in [ ],A B∩P  our ultimate goal may be to 
compute yet another conditional probability, [ ]| ,B AP  as the following example demonstrates 

                                                 
* A corollary of this observation is that one must always be careful when describing probability results to be clear 
what the sample space is, i.e., is the probability a marginal probability or a conditional one.  
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Of course, if events A and B are independent, then  
 

 .|
A B A B

A B A
B B

                      

∩
= = =

P P P
P P

P P
  

This concept of conditional probability will be is covered in greater depth shortly.  
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Probability and the Measurement of 
Disease Occurrence  

 
 
 
The definition of probability as relative frequency is well ingrained in the investigation of 
disease. However, in public health, this concept is not particularly useful unless it can be linked 
to the way in which public health scientists describe the occurrence of disease.  A brief 
introduction to the measurement of disease occurrence follows. 
 
Prerequisites  
None  
 
The Dynamics of disease 
Events that we have discussed thus far have been fixed characteristics in time. For example, the 
likelihood that a subject in a population is Asian or is a woman has been based on the assumption 
that the individual’s property or characteristic remains the same. However, disease is different, 
and one important differentiation is its dynamism. 
 A population may have no cases of a given illness. When disease arrives it can be 
heralded by the arrival of a microorganism, or a change in the expression of a person’s genotype, 
or a new environmental exposure.  However, although the disease is now resident in the 
population, it is not static. The arrival of new cases from the population, or continued exposure 
to a toxin, or the spread of contagion through the population from population members 
themselves can increase the number of cases. Advanced epidemiologic models quantitate this.  

However, disease cases can also decline. Afflicted individuals can leave the population 
for another county, state, or country. They can also die. Others may recover on their own, or be 
successfully treated and cured.  

These influences that increase or that depress cases commonly operate 
contemporaneously. Therefore one can only learn the direction of the disease’s presence by 
being cognizant of the effects of all of these influences.  

Probability is useful if we can construct the most helpful event spaces and σ-algebras  
that capture this dynamism. This is an ongoing challenge in epidemiology and biostatistics. 
Doing so in the presence of a dynamic disease is challenging.  We begin with the most basic 
concepts.  
 
Quotients, Proportions, Rates, and Ratios. 
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While raw changes in the numbers of patients with disease can be useful, the computations are 
most helpful if they are compared to or are relative to another quantity. For example comparing 
the number of deaths due to COVID-19 infection across countries does provide some 
information, but since country populations differ widely, perhaps it is a greater interest to divide 
the number of cases by the population to obtain a per subject or per capita assessment of deaths.  

A quotient is the most globally descriptive of these concepts, although not all quotients 
are informative. For example, the number of COVID-19 deaths divided by new car sales is a 
quotient of little value.  
 
Proportions 
A proportion is a relative frequency. Its numerator is subjects who have a specific characteristic 
among all other subjects. Thus the quotient of subjects with the characteristic divided by all 
subjects provides a proportion of subjects with the characteristic. We have already utilized this 
concept in our basic definition of probability as relative frequency. 

The key to checking if a quotient is a proportion is to determine if every member of the 
quotient’s numerator is also a member of its denominator. Should this test fail, the use of this 
quotient as a probability is very suspect.   
 
Rates 
Rates in epidemiology are proportions that are anchored to a particular time interval. Is the 
number of deaths in a particular period of time (e.g., a day, or a week, or a month) divided by the 
number of individuals in the population during that period of time. The case fatality rate is the 
number of death over a particular period of time divided by the number of people who were 
diagnosed with the disease (cases).  

Note that these two rates each deal with death, but the differences in the denominators 
changes the meaning of the rate. The monthly death rate provides the likelihood that the 
individual dies given they are in the population, while the monthly case fatality rate reveals the 
likelihood that a patient dies given, not that they are in the population, but that they actually have 
the disease.  

For example, the monthly case fatality rate can be high, and the death rate low, if very 
few people in the population have the disease, but those who contract the disease are likely to die 
from it. 

.  
Ratios 
A ratio is a quotient whose numerator and denominator is each a rate. For example, the death rate 
for men can be compared to a death rate for women by computing a ratio. Prevalence ratios and 
incidence ratios are among the most common ratios in contemporary epidemiology.  
 
Prevalence, Background, and Incidence 
There are three quantities that epidemiologists most commonly follow. The first is the incidence 
rate. This is the number of new cases per population size per time.  

The second is the background rate, or the number of cases per population size that 
already reside in a community.  

The third is the prevalence, which is simply the total of all cases in a community per 
population size regardless of whether they are new or have been in the community for some 
time.   

There is commonly a profound difference between the incidence rate, and the prevalence 
rate. 
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Thus, it is important to distinguish between these rates when one is describing the 
probability of disease in a community. For example, for diabetes mellitus, the incidence rate may 
be 15 cases per 1000 per year, while the prevalence rate may be 19% (or 19 cases of diabetes for 
each 100 patients in the community. 

Disease with high and early lethality (i.e., a high case fatality rate), can have incidence 
rates similar to prevalence rates, since the high mortality rate reduces the background rate to 
zero.  
 
Counting Events 
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The Emigration-Death Process 
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Probabilities of Unions 
 

We wish to demonstrate 
 
 [ ] [ ] [ ] [ ].A B A B A B∪ = + − ∩P P P P    

Our plan is to write this formula as the union of disjoint sets.  Using our background in set 
theory, we begin by recognizing that another way to write the set A is 
 

( ).cA B A A B∪ = ∪ ∩  
 

which is seen from the Venn diagram of Figure 1. Since the sets A and  are disjoint, we 
may write  
 
 [ ] [ ] cA B A A B ∪ = + ∩ P P P    

 
Helpful Construction 
Now from the same diagram we see that the set B can be written as  
 
 ( ) ( ).cB A B A B= ∩ ∪ ∩    

And since the sets and cA B A B∩ ∩  are disjoint, we may write 
 

 
[ ] [ ]

[ ] [ ]
or

.

c

c

B A B A B

A B B A B

 = ∩ + ∩ 
 ∩ = − ∩ 

P P P

P P P
   

Now returning to our first equation we can now write 
 

 
[ ] [ ]

[ ] [ ] [ ].

cA B A A B

A B A B

 ∪ = + ∩ 
= + − ∩

P P P

P P P
 

 

cA B∩
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Conditional Probability Bayes Theorem 
 
 
Prerequisite 
Basic Properties of Probability 
 
 
Recall from its earlier definition of dependent events  that we may write the probability of an 
event A when the event B has occurred as [ ]| .A BP   This probability may be computed as  

|
A B

A B
B

       

∩
=

P
P

P
                                  

We have motivated this definition before  through the use of figures. However, an axiomatic 
approach also has value. We may think of the event B  as the union of two separate events; 
A B∩  and .cA B∩  The concept of A  given B  must exclude cA  since A  and cA  are mutually 
exclusive. Thus we want to compare two probabilities,  A B  ∩P and .B  P  Since we know 

that [ ] [ ] ,cB A B A B = ∩ + ∩ P P P   

[ ] [ ].A B B∩ ≤P P  Thus, their ratio provides the relative size of the measures. 

 If for example 1,|A B =  P then [ ] [ ]A B B∩P = P and 0.cA B ∩ = P  Thus the event cA  
cannot occur when B  occurs. When B  occurs, the event A   must occur.  A similar line of 
reasoning for 0|A B =  P reveals that in the presence of B  only cA  can occur.  
 
Example:   
Atherosclerotic ischemic cardiovascular disease is very common in the United States and can 
lead to a heart attack (myocardial infarction), and subsequently, heart failure.  Heart failure is a 
serious consequence; regardless of modern medical therapy, approximately 50% of patients with 
heart failure die within five years of the diagnosis.  

From an observation in a cardiac clinic, we know that the probability that an individual 
has heart failure is 0.60, and the probability that they have had a heart attack is 0.33. The 
probability that, that  they will have a heart attack, given that they have had heart failure in the 
past  is 0.45. What we have been asked to compute is the probability the individual will have 
heart failure given they have suffered a heart attack.  
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Let A be the event that a patient has had a heart attack,  and  HF  be the probability that 
the patient has had heart failure. Then we must compute [ ]| .HF AP  We begin by writing 
 

 [ ] [ ]
[ ]

| .
HF A

HF A
A
∩

=
P

P
P

   

We have been provided [ ] 0.33A =P  but do not know the joint probability [ ].HF A∩P  However, 

we have been provided [ ]HFP  and [ ]| .A HFP   

This permits us to write   

 
[ ] [ ]

[ ]
[ ] [ ] [ ]

|

| .

HF A
A HF

HF

HF A A HF HF

∩
=

∩ =

P
P

P

P P P
    

 
And  
 

 
[ ] [ ]

[ ]
[ ] [ ]

[ ]
( )( )

|
|

0.45 0.60
0.82.

0.33

HF A A HF HF
HF A

A A
∩

= =

= =

P P P
P

P P   

 
Thus, in this sample, while less than fifty percent of patients who have a heart failure have had a 
heart attack  [ ]| 0.45,A HF =P  most patients with a heart attack progress to heart failure in this 
study,  [ ]| 0.82.HF A =P  The two conditional probabilities [ ]| ,A HFP  and [ ]|HF AP  differ 
substantially.* The ability to move from one conditional probability to another, essentially 
reversing the condition, is known as the inversion process and has an interesting history.   
 How these conditional probabilities can be so different is worth examination (Figure 1) 
Health care providers rely on conditional probability – in fact, it is implicit in the differential 
diagnostic process.                                           █ 
 
To understand, given two events A and B, the difference in magnitude between [ ]|A BP   and 

[ ]|B AP  we simply need to compare the magnitude of [ ]A B∩P   to each of the two marginal 
probabilities [ ]AP  and [ ]BP  (Figure 2). When most of the event B also includes A, [ ]|A BP  
will be large. However, that same figure (Panel 2) shows that when only a small fraction of the 
event A is also made up of event B, then [ ]|B AP  is quite small.  

                                                 
* This occurred because the relatively large probability of patients with heart failure (0.60) increased the percentage 
of patients who had heart failure among those in the heart attack population. 
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In general, we have three circumstances in which we can compute the probability of the 

joint event, A B∩  (Figure 2). We first determine if the events are either mutually exclusive, 
independent or dependent. If mutually exclusive, then [ ] 0.A B∩ =P    If the events are 
independent, then [ ] [ ] [ ].A B A B∩ =P P P   Finally, if we find the events are dependent, and we 
can compute conditional probabilities, then [ ] [ ] [ ] [ ] [ ]| | .A B A B A B A B∩ = =P P P P P   

 
Introduction to law of total probability  
We have been free to categorize events as simple or as complex as we like. Returning to Table 1, 
we can consider events as simple as a subject being African-American, or as complex as 
nonHispanic Caucasian females. Sometimes it is of value to consider two types of  events.   

Let A be the event that a subject is African-American male and H be the event that a 
subject is Hispanic male.  Then from the elaboration of all events on which we can assign 
probability (i.e., having established the σ-algebra of subsets over which we can assign 
probability), we know that subjects are either African American males or not.  A and Ac are 
clearly mutually exclusive. Since there are only two possibilities for a subject we say that they 
“exhaust the space”. Thus  

 
[ ] [ ] 1.c c c cA A A A A A A A       ∪ = + − ∩ = + =       P P P P P P  

 
We can write a similar equality for male subjects when classified as Hispanic or not.  

In order to compute the [ ]AP  from Table 1 we see that we do have a total for African 

American males and compute directly [ ] 10 0.083.
120

A = =P     

However, we might go about this computation another way. African-American males are 
either Hispanic or nonHispanic. Therefore, we can begin with the probabilities that a subject is 
an Hispanic African-American male, [ ],A H∩P  or a nonHispanic African-American male,

.cA H ∩ P  Each of these are joint probabilities that are mutually exclusive. And since they 
exhaust all of the possibilities of being an African-American male, we may write from  Table 1,  
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[ ] [ ] 2 8 0.083.
120 120

cA A H A H ∩ + ∩ = + = P = P P  

 
This calculation worked because the computation considered all Table 1-based ethnic 
considerations of African American males (Hispanic and nonHispanic).  

We might think of this as “holding African American males constant” and summing over 
the two mutually exclusive possibilities for the Hispanic event. This is the essence of the Law of 
Total Probability.   

Another way to write [ ] cA H A H ∩ + ∩ P P  is 
 

 [ ] [ ]| | c cA H H A H H   +    P P P P    

using the definition of conditional probability. Thus we have two ways of computing a marginal 
probability indirectly using the law of total probabilities. One way is through summing joint 
probabilities, the second is through summing a combination of conditional and marginal 
probabilities (Figure 2).  We will use this law of total probability extensively in discussions of 
compounding. 

 
  
Example: Diagnostic Value of Cell Phenotypes 
A major area of investigation has been cell therapy, where a patient’s own cells, when removed 
from one organ (commonly the bone marrow) and provided to another organ (e.g., the heart) can 
improve function in the destination organ. However, not all cell types are the same, and patients 
with a particular phenotype, CD34+ have been of interest.  A study shows that in patients who 
have had cell therapy and experience an improvement in cardiac function, the probability that 
they have a high level of CD34+ is 0.85. The probability that a patient who has no improvement 
has a low level of  CD34+ is 0.90. The overall (i.e., marginal) probability of improvement in 
cardiac function is 0.18.  

The health care provider is given a subject with a high level of CD34+  What is the 
probability that the subject will experience an improvement in heart function?   

Here we are asked to, given that a patient has a high level of CD34+, to predict forward to 
what will happen to their heart function. We have the results of a study to guide us. However, 
that study did not start with knowledge of levels of CD34+ and look forward to heart function, 
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but instead, started with the identification of patients with heart function, identified those who 
improved and those who did not, and looked backwards to see how many of each had elevated 
CD34+ .  This is the classic inversion problem.   

Let I be the event of heart function improvement, and C be the event that a patient has a 
high level of  CD34+  cells. We are interested in [ ]|I CP .  However, we are given [ ]| ,C IP  

| ,c cI C  P and [ ].IP  We begin by writing 

[ ] [ ]
[ ]

| .
I C

I C
C
∩

=
P

P
P

 

Now write the numerator as a function of the inverted conditional probability, using 

[ ] [ ]
[ ]

|
I C

C I
I

∩
=

P
P

P
  or [ ] [ ] [ ]| .I C C I I∩ =P P P   

The denominator [ ]CP  can be written using the law of total probability as  

[ ] [ ] .cC C I C I = ∩ + ∩ P P P  We know [ ] [ ] [ ]| .C I C I I∩ =P P P  To find  cC I ∩ P  we only 

need write |
c

c
c

C I
C I

I

 ∩   =    

P
P

P
  to see | .c c cC I C I I     ∩ =     P P P  So we may write  

 

( )

|
|

| |

|

| 1 |

c c

c c c

C I I
I C

C I I C I I

C I I

C I I C I I

                    
     

            

=
+

=
+ −

P P
P

P P P P

P P

P P P P

    

We can now solve to find 

( )
(0.85)(0.18)|

(0.85)(0.18) 1 0.90 (0.82)
0.15 0.15 0.65.

0.15 0.08 0.23

I C   =
+ −

= = =
+

P
  

A answer which is somewhat lower than [ ]| .C IP   

In the previous example, we actually proved  Bayes Theorem, attributed to Thomas 
Bayes and Richard Price, which states that given events A and B, we can write 
 

|
|

| | c c

B A A
A B

B A A B A A
                    

=
+

P P
P

P P P P
 

 

It is a simple and elegant use of the law of total probablity, and is  commonly used in assessing 

diagnostic tests  

 

Conditional Probability 
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Physicians and Conditional Probability 
Assessing Diagnostic Tests 
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The Inversion Problem 
 

Prerequisite 
Basic Properties of Probability 
Conditional Probability 

 
 

Conditional probability historically focused on the ability to deduce cause from effect 
mathematically.  

By the mid-18th century, probability was an accepted, even respected branch of applied 
mathematics. Its users at the time were well acquainted with the binomial probability 
distribution, which computes from a sequence of n independent success-failure trials the 
probability that there are exactly k successes. The use of this elementary probability model 
generated some useful conclusions that sparked new interest in the relationship between cause 
and effect, in a new, contentious, and illuminating way.  
 
Probability and 18th Century Armies 
Consider one of the most virulent scourge of the time - diarrhea. While the effects of diarrheal 
disease were disabling in urban life, the disease was devastating to an army.  

At the time, organized meal preparation was an unknown concept in the armies of 
Europe. Each man was responsible for bringing his own utensils, carrying his own food, and 
cooking his own meal over a group campfire. However, careful observers quickly noticed that, 
while diarrhea did not have just one cause, it appeared to be related to how a soldier’s meal was 
prepared.* Specifically, diarrhea was more prevalent in soldiers who prepared their meals with 
unboiled water. Racing through camps, it could bring huge segments of otherwise mobile units to 
a standstill, removing thousands of men from a battle at a critical moment. 

This was a serious issue that involved a nation’s readiness for war, and probability was 
used to help understand the problem. For example, it was easy to compute how many soldiers out 
of twenty would be sick if only 10% of them boiled their water. This was termed “reasoning 
from cause to effect,” using knowledge of the frequency of boiling water to compute “forward” 
to the effect of that habit i.e., predicting the number of soldiers expected to be sick. This was a 
straightforward, correct, and commonly helpful probability application.  

                                                 
* Other causes were spoiled food, wounds, and sepsis. 
   



Probability and 18th Century Armies 57 
 

 
 

However, suppose one reverses the logic. Now, the physician observes twenty soldiers, 
six of whom have diarrhea.  How likely is it that unboiled cooking water is the cause of the 
diarrhea ?  In this circumstance, the worker is compelled to reason “backward” from the effect 
(i.e., the sick soldiers) to the cause of their illness (unboiled water or some other cause). This 
reversal of the deduction process was mathematically known as inversion. Given events A and B, 
how could one fluidly move from knowledge of  to the more interesting and useful 

 The reversing of the condition was known as “inversion” or “reversing the given.” * 
The first semiformal method to solve this problem was provided posthumously by the 

Rev. Bayes, encapsulated in Bayes Theorem. In modern terms, it states that the probability of the 
hypothesis given the evidence can be computed from the probability of the evidence given the 
hypothesis, or  

 
         
 
where K is a proportionality constant. Further developed by Simon Laplace, this was the 
introduction to Bayesian statistics.  
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* Knowledge of one conditional probability does not imply knowledge of the probability with the conditions inverted or reversed. 
In a modern day context, the probability that given the car is a Ferrari, a male is driving is high. However, the inverse probability, 
i.e., the probabilty that given the male is a driver, the car that he is driving is a Ferrari is low.   

[ ]|A BP

[ ]| .B AP

[ ] [ ] [ ]Hypothesis Evidence Evidence | Hypothesis Hypothesis .K=P P P|
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Prerequisites 
Basic Properties of Probability 
Conditional Probability 
The Inversion Problem 

 
 

Conditional Probability and Diagnoses 
Physicians commonly use conditional probability each day in their practices perhaps without 
being formally aware of it. Patients admitted to the hospital suspected of having a stroke are 
commonly administered tissue plasminogen activator factor (tPA) to limit the extension of the 
stroke. However, because of its tendency to produce intracerebral bleeding, it is best to give tPA 
within three hours of onset of symptoms, requiring 1) the rapid identification of the ill patient, 2) 
their rapid delivery to the hospital, and 3) the rapid administration of tPA. 

A patient, their anxious family waiting just outside the exam room, undergoes a swift 
evaluation as the doctor rapidly works to identify the cause of the patient’s symptoms. She may 
ask the family, “Does anyone in the family know if she has diabetes, or hypertension? Has she or 
anybody in her family had a stroke?” 

The rapidly closing window of whether the patient can receive tPA requires the physician 
to ask the most informative questions. The answers to these questions alter and update his 
assessment of Other questions involve the patient herself. Is the patient conscious? Does she 
have new difficulty controlling her eye movements, and do her pupils react appropriately to 
light? Are there new facial asymmetries? Does she have sudden, new difficulty controlling the 
movement of her limbs?  

the likelihood the patient has suffered a stroke.  
Each of these questions has a well-deserved place in the evaluation of the patient, 

because each is believed to alter the probability that a patient has had a stroke through 
Conditional probability is also useful because it is commonly difficult to specify the 

nature of the dependency persuasively and completely using other quantitative approaches.  
Consider, for example, the relationship between health care access and cultural 

background. It has been well established that some cultures in the United States visit physicians 
and health care providers more commonly, receive prescriptions at a greater frequency, and are 
more likely to receive prenatal care than others.  

However, the precise nature of the connection is unknown, and there is no equation that 
precisely depicts the relationship. Conditional probability allows us to formulate the relationship 
by computing different probabilities of health care access for different cultural backgrounds.  
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The differences in these probabilities are one of the best descriptors of the nature of the 
relationship between culture and health care access. They delineate the magnitude of the 
relationship without having to elucidate the dependency’s nature.  
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Assessing Diagnostic Tests 
 

 
Prerequisites 
Basic Properties of Probability 
Bayes Theorem 
Assessing Diagnostic Tests 
Conditional Probability 
The Inversion Problem 
 
 
Goal of diagnostic testing 
Diagnostic testing, represented by either an imaging procedure, laboratory testing for infectious 
disease, or a collection of sequential cancer screening procedures, to be helpful, must contribute 
information about the presence of a disease or a condition. It should provide a high level of 
confidence either making or ruling out the diagnosis of a particular disease. Ideally, we wish to 
have the procedure be helpful when it is positive, and also informative when it is negative.  

Of course in health care, we desire certainty. If the test is positive, we want to ensure that 
the patient has the disease. This is called high positive predictive value.  One such test would be 
high forced expiratory volume in one second (FEV1) tests for reactive airways disease. 

We would also like for the test to have high negative predict value, i.e., if the test is 
negative, then the subject does not have the disease. An example of such a test would be PKU 
testing for newborn phenylketonuria.  

Ideally, all diagnostic testing would have both high positive and negative predictive 
value. Unfortunately this is rarely the case,  In the absence of certainty, how should we proceed? 

 
Developing a diagnostic test. 
In assay development, testing is carried out on subjects who are known to have the disease ( )D+  

and also in subjects who are known to be disease free ( )D .−  Of course, individuals are identified 

who have positive ( )T+  and negative ( )T− tests. 
 Since we know the number of individuals in both populations of disease and non-
diseased subjects tested, we can compute several useful quantities with relative frequency. We 
can compute the sensitivity of the test. This is the probability the subject has the positive test, 
given that they have the disease, or T | D .+ +  P  Clearly we want this to be high as possible.  
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 We also can compute the likelihood that the test is negative given that the patient does 
not have the disease, or T | D .− −  P  This should be as high as possible as well. This is the 
specificity of the test.  We desire tests with high specificity and sensitivity.  
 But this is not all that we need because of the impact of inversion. Recall that specificity 
and sensitivity are conditional probabilities based on knowledge of the disease. The “given” in 
the conditional probability is the disease state.  
 However, health care practitioners are not given the disease state. They wish to learn the 
disease state, given the test result. They know if the test is positive or not. They would like the 
probability of disease given the test result. These probabilities are known as “predictive value” 
since they are predicting the presence of the disease. The predictive values of interest are positive 
predictive value (PPV) which is D | T+ +  P  and negative predictive value (NPV) or D | T− −  P
. These are related to, but separate from the test’s sensitivity and specificity. 
 
 We move from sensitivity and specificity to PPV and NPV using Bayes theorem. 
Specifically 
 

D T T | D D

T T | D D T | D D

D T T | D D

T T | D D T | D D

PPV

NPV

+ + + + +

+ + + + + − −

− − − − −

− − − − − + +

∩
= =

+

∩
= =

+

          
                  

          
                  

P P P

P P P P P

P P P

P P P P P

  

 
Note that these computations are based on not just functions of sensitivity and specificity, but on 
the prevalence of the disease D+  P  as well.  
 
Example COVID-19 testing 
Several tests are available to test for the presence of COVID19 coronavirus. Assume that we 
have three such candidate tests. Test 1 has a sensitivity of 0.95 and a specificity of 0.60. Test 2 
has a sensitivity and specificity of 0.75 and 070 respectively. The sensitivity of Test 3 is 
measured as  0.65 with a specificity of 0.94.  

These tests are being considered by three different counties. County 1 has a COVID19 
prevalence of 0.75. County 2’s prevalence if 0.25 and County 3’s prevalence is 0.01. Is there an 
optimal test for all three counties?  
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Table 1 provides the PPV and NPV for each of the three counties for each of the three tests. Note 
that each of the counties will need to make an individual choice of tests, based on that county’s 
prevalence. 
 
Physicians and Conditional Probability 
Assessing Diagnostic Tests 
 
 
Basic Probability Distributions  
Basics of Bernoulli Trials.  
Basics of the Binomial Distribution 
Basics of the Poisson Distribution 
Basics of Normal Measure 
 
Advanced Probability 
Bernoulli Distribution – In Depth Discussion 
Advanced Binomial Distribution 
Multinomial Distribution 
Hypergeometric Measure 
Geometric and Negative binomial measures 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
Continuous Probability Measure 
Moment and Probability Generating Functions 
Variable Transformations 
Uniform and Beta Measure 
Normal Measure 
Compounding 
F and T Measure 
Ordering Random Variables 
Asymptotics 
Tail Event Measure 
 
 



63 
 

 
 

 
 
 
 
 

Counting Events 
 
Prerequisites 
This section requires prior study of the following sections. 
Elementary Set Theory 
Basic Properties of Probability 
Conditional Probability 
Sigma Notation 
Factorials Permutations, and Combinations 
 
Thus far, our definition of probability as relative frequency has been intuitive and relatively easy 
to use, so long as we can count 1) all possible outcomes in the denominator, and then 2) those 
outcomes in the denominator that meet the requirement for the event of interest and therefore can 
also be entered into the numerator. This section will review important ways to enumerate events 
in a way that permits us to apply the relative frequency definition of probability to compute the 
probability of increasingly sophisticated events.   

 
Counting Repeated Events 
The first occurrence of an event can sometimes be counted in a straightforward way. However, 
repeated events can be more complicated. Consider the following example.  

 
Example: Physician Scheduling 
An administrator must ensure that doctors are assigned according to a schedule that adequately 
staffs the emergency department. She has ten doctors who are available for scheduling. What is 
the probability that any particular physician is selected to staff the clinic next Monday?  

Of course there are ten individual physicians from which one can make the selection. The 
administrator can choose from among a variety of rules (for example, choose the doctor whose 
surname occurs earliest in the alphabet, or choose the oldest).  However, let us assume that she 
chooses the physician randomly. 

 
Random selection 
By random, we mean that each member of the population (in this case each of the ten physicians) 
has the same likelihood of being selected as any other physician in the sample. Furthermore, the 
selection mechanism is completely independent of any characteristic (e.g., height or personality) 
of the physician.   

This is a very specific definition, and somewhat at odds with the general perception in the 
culture, which can perceive random events as unplanned, chaotic, and uncontrollable. However, 
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we will see that in probability models, processes will be carefully plan, not to provide the same 
result, but to produce unpredictability on which we can capitalize.   

The random selection mechanism in this model helps us to compute the probability of 
individual physician selections. Let Pi denote the ith physician, 1,...,10.i =    Since one physician 
must be selected we can write { }1 2 3 10, , ,..., ,P P P PΩ =  and create the σ-algebra of all of the subsets 
of these 10 entries. 

Let S1 be the event that a physician is the first selected, for example, 1 7.S P=  

We know that one physician must be selected. Thus { }
10

1
1

1.i
i

S P
=

 
= = 

 
P


 However, since 

we also know that these events are disjoint, (because only one physician can be selected first, and 
the selection of one physician excludes the possibility of selecting any of the others), we write  

{ } [ ]
10

1 1
11

1.
n

i i
ii

S P S P
==

 
= = = = 

 
∑P P



  

In addition, the process of random selection here means that the selection of any 
physician is as equally likely as any other physician. Thus [ ]1 iS P p= =P  for each of the ten 

events, and we can now write [ ]
10 10

1
1 1

... 10 .i
i i

S P p p p p p
= =

= = = + + + + =∑ ∑P  Thus 10p = 1 or 1 .
10

p =  

This is the formal proof of the probability solution that [ ]1 1
1 .

10
S P= =P  While perhaps 

this seems like the long way around to solve a probability problem whose answer might have 
been easily intuited, it is useful to show how the sequence of formal steps produces the correct 
solution.   

Also, unlike from Table 1 in Definitions and Rules,  we required no data to compute the 
probability.  Instead, the probability was calculated from intimate knowledge of the problem. 
However we had to understand the experiment to derive it accurately.  

█ 
 
Now, however, suppose a second physician is to be selected (represented by event S2 ). 

What is the probability that any particular physician will be the second physician selected?  
Before we can compute the probability of this event, we must ask, “What happened to the first 
one? 
 
Sampling schemes  
How we proceed depends on the circumstances of the problem. Suppose, for example, that the 
second selection is for staffing the clinic for a day that is a month from now. Who are the 
candidate physicians? 
 
Sampling With Replacement 
In this case, given that a month has lapsed since the physician first selected has completed her 
assignment, it makes sense to place the first physician back into the pool of possible candidates 
for the second selection. This reinsertion of the physician back into the population of choices, 
permitting the possibility that they may be selected again, is called sampling with replacement.*  

Sampling with replacement eases the computation of probabilities. The probability that 
the same physician is selected the second time is the same probability as their being selected the 

                                                 
* This is somewhat of a misnomer since no one is being replaced, but instead the selected subject is a candidate for 
an additional selection. However, we will continue to use the historical language. 



Sampling schemes  65 
 

 
 

first time, or 1 .
10

 Thus the probability that any given physician is selected the first time and then 

again on the second time is the same.   
This makes sense because for each selection the candidate physician pool is the same, 

and the selection mechanism is independent, i.e., knowledge of who was selected the first time 
does not inform us one way or the other as to who will be selected the second time.   

We can confirm this by computing the probability that (for example) physician three is 
selected the second time given that this same physician was selected the first time

[ ] [ ]2 3 1 3 2 3
1|

10
S P S P S P= = = = =P P *  

Sampling with replacement allows these conditional and marginal probabilities to be 
independent, easing the computational burden of some complicated events. For example, if we 
carry out this physician selection mechanism many times using this same mechanism of 
sampling with replacement, then the probability that physician 3 is selected to fill any of these 

schedule slots on any particular time is 1 .
10

 
 

        
Sampling Without Replacement 
However, let’s change the paradigm. Assume now that a physician is selected on the first night, 
and that the second selection is for service on the next consecutive night. Here, the physician 
selected for the first night cannot be selected again. How do we manage this? 
 Clearly, the event space changes, and the probabilities change. It is impossible to select 

the same physician. If we focus on, for example, physician three, then while  [ ]1 3
1 .

10
S P= =P  

then  [ ]2 3 1 3| 0.S P S P= = =P  However, for the other nine physicians indexed by j,  j = 1,2,4,5,…9, 

then   2 1 3
1| .
9jS P S P = = = P Sampling without replacement reduces the number of candidate 

physicians by one, and since the selection is equally likely among the remaining nine physicians, 

the probability of any of the nine candidate physicians being selected is 1 .
9  

 

This is clearly a case of dependency between the first and second selections. Sampling 
without replacement induces a complication in our experiment that required a more complex 
probability computation.  

To demonstrate this dependence another way, let’s show that the marginal probability 

[ ]2 3S P=P  is equal to neither [ ]2 3 1 3
1|
9

S P S P= ≠ =P  nor [ ]2 3 1 3| 0.S P S P= = =P  To find 

[ ]2 3S P=P  we use the law of total probability to write 
 

                                                 
* We can see this from the conditional probability of the second physician given the first was selected is simply     

[ ]
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[ ] [ ]

[ ]
[ ]1 3 2 3 1 3 2 3

2 3 1 3 2 3

1 3 1 3

1
|

10
.

S P S P S P S P
S P S P S P

S P S P

= ∩ = = =
= = = = = = =

= =

P P P
P

P P
P  



66  Counting Events 
 

[ ] [ ] [ ]
[ ] [ ]

2 3 2 3 1 3 1 3

2 3 1 3 1 3

|

|

1 9 1 10 .
9 10 10 10

S P S P S P S P

S P S P S P

= = ≠ ≠

+ = = =

  = + =  
  

P = P P

P P

 

 
Thus, we have confirmed the dependency. 

Now, suppose we wanted the joint probability that the first selection was not the third 
physician and the second selection was, expressed as  [ ]1 3 2 3 .S P S P≠ ∩ =P  Using our definition 
of conditional probability, we write, 
   

[ ] [ ]
[ ]

[ ] [ ] [ ]

1 3 2 3
1 3 2 3

2 3
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P
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However, this is just the numerator of the solution. To finish, we find 

[ ] [ ]
[ ]

1 3 2 3
1 3 2 3

2 3

1
10| 1.1
10

S P S P
S P S P

S P
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≠ = = =
=

P
P =
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This makes sense to us since the first selection could not have been the third physician given that 
the second selection was.  
 
Enumeration 
Another style of computing probabilities is called enumeration, or event counting. In the 
previous example, we counted the number of ways one can select physicians randomly from a 
collection. Returning to our relative frequency argument, in order to compute, 

[ ]1 2 2 3 ,S P S P≠ ∩ =P we need to consider for the denominator the total number of ways to select 
two physicians, and for the numerator, the number of ways to select physicians such that the first 
selection is not physician 3 but the second one is.  

Using enumeration and first focusing on the denominator, we ask how many possible 
choices are there for the two physicians. There are 10 possible choices for the first selection, and 
then 9 possible choices for the second. The total number of sequences of two physicians is 
(10)(9) = 90. We can use what we know about factorials to go further. 

For the numerator, there are 9 possible choices for the first physician and only 1 for the 
second giving us (9)(1) = 9 possible sequences. Thus we can now write 

 

[ ] ( )( )
( )( )1 2 2 3

9 1 9 1 ,
10 9 90 10

S P S P≠ ∩ = = =P =  

confirming what we previously found. Thus counting events produced the same solution as 
manipulating these probabilities. 
 
Permutations 
In the direct computation above, we computed the number of different possible sequences of 
events. For example, the denominator reflects that there were ninety sequences of physicians 
taken two at a time. They are  
 
P1P2,  P1P3,   P1P4,  P1P5,  P1P6,  P1P7,  P1P8,   P1P9,   P1P10,  
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P2P1,  P2P3,   P2P4,  P2P5,  P2P6,  P2P7,  P2P8,   P2P9,   P2P10, 
P3P1,  P3P2,   P3P4,  P3P5,  P3P6,  P3P7,  P3P8,   P3P9,   P3P10, 
P4P1,  P4P2,   P4P3,  P4P5,  P5P6,  P4P7,  P4P8,   P4P9,   P4P10,  
P5P1,  P5P2,   P5P3,  P5P4,  P5P6,  P5P7,  P5P8,   P5P9,   P5P10, 
P6P1,  P6P2,   P6P3,  P6P4,  P6P5,  P6P7,  P6P8,   P6P9,   P6P10, 
P7P1,  P7P2,   P7P3,  P7P4,  P7P5,  P7P6,  P7P8,   P7P9,   P7P10,  
P8P1,  P8P2,   P8P3,  P8P4,  P8P5,  P8P6,  P8P7,   P8P9,   P8P10, 
P9P1,  P9P2,   P9P3,  P9P4,  P9P5,  P9P6,  P9P7,   P9P8,   P9P10, 
P10P1, P10P2, P10P3, P10P4, P10P5, P10P6, P10P7, P10P8,  P10P9  
 
Essentially what we do is permute or rotate the positions of the physicians systematically, in 
order be sure that we incorporate them all. This rotation of ten physicians through two slots gave 
us 10 for the first slot and 9 for the second. A succinct way to write this uses factorial notation 
and can be written as  
 

 
( )

10! 10! (10)(9) 90.
10 2 ! 8!

= = =
−

  

The denominator removes the counts of physicians filling the remaining eight slots.  
 Suppose we have a selection of 100 physicians from whom we wanted to select 4 at a 
time. With replacement, there would be 1004 or a one hundred million possibilities. However 
without replacement we have 100 for first position, 99 for the second, 98 for the third, and 97 for 
the fourth or (100)(99)(98)(97)  = 94,109,400, possibilities. This is exactly  
 

( )
100! 100!.

100 4 ! 96!
=

−
 

 
 In general, if we are permuting n candidates or objects through k possible slots without 
replacement, then the number of sequences is 

( )
! .

!
n

n k−
 

 As an example, suppose we want to directly compute the probability that out of ten 
physicians we select three without replacement producing  physician 3 for the first slot, and 
physician 9 for the third slot. To compute this specific  probability for the second slot invoking 
the formal use of the law of total probability is calculable but complicated.  

Returning to our definition of relative frequency, we must enumerate first all possibilities, 
then all possibilities related to the event of interest. The denominator is simply a permutation of 
10 physicians rotated through 3 slots. The numerator requires one and only one selection for slot 
1, 8 possible for slot 2 and 1 for slot 3. We therefore can write 
 

{ } { } { }1 3 2 3 9 3 9
(1)(8)(1) 8 1, .

10! 720 90
7!

S P S P P S P= ∩ ≠ ∩ = = = =    
 
 

P Example: Antibody 

generation 

One of the important functions  of the immune system's B-cells is the generation of antibodies. 
These are short sequences of amino acids that, because of their unique chemical structure, attain 
a specific three dimensional configuration that allows it to "fit" on foreign bodies and begin to 
destroy them.  
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However, there are a seemingly innumerable number of different species of viruses, 
bacteria, rickettsia, fungi, and protozoa as well as other foreign organisms, each with its own 
chemical signature. Furthermore, viruses, as well as these other organisms, can mutate into 
strains of the same species.  Each separate species/strain requires its own tailor-made antibody. 
How can one person’s immune system make enough distinct antibodies to keep up with them 
all? 
 Let's assume that an antibody consists of a chain of 75 amino acids in a specific 
sequence. For our first consideration, let's assume that for each of the first ten positions, there are 
only three possible amino acid candidates with replacement. For the next fifty positions in the 
antibody there are eight possible amino acids for each slot, and for the last fifteen, there is only 
one possible candidate for each position.  We recognize that, with these restriction, we are 
working in a sampling with replacement environment, since the filling of one position does not 
change the number of possible amino acids that can fill another. How many possible antibody 
configurations are there? 

We can compute that there are  310850115  = 8.4 x 1049  possibilities, a huge number. Even 
with these restrictions on the antibody selection, the number of possible antibodies is immense. 
 To loosen this restriction, let's assume that there are twenty possible amino acids for each 
of the 75 positions, with replacement. In this circumstance, there are 2075 different possible 
antibodies, a number that is over 3.75 x 1097, which is less than a thousand short of a google.* 
The immune system has all of the flexibility it needs to cover the diversity of foreign invaders.  
   
Combinations 
Returning to the simpler problem of permuting or rotating ten physicians through two slots, we 
see some interesting inclusions (noted in matching colors) below. 
 
P1P2,  P1P3,  P1P4,  P1P5,  P1P6,  P1P7,  P1P8,    P1P9,  P1P10,  
P2P1,  P2P3,   P2P4,   P2P5,  P2P6,   P2P7,   P2P8,    P2P9,   P2P10, 
P3P1,  P3P2,   P3P4,   P3P5,  P3P6,   P3P7,   P3P8,    P3P9,   P3P10, 
P4P1,  P4P2,   P4P3,   P4P5,  P5P6,   P4P7,   P4P8,    P4P9,   P4P10,  
P5P1,  P5P2,   P5P3,   P5P4,  P5P6,   P5P7,   P5P8,    P5P9,   P5P10, 
P6P1,  P6P2,   P6P3,   P6P4,  P6P5,   P6P6,   P6P7,    P6P8,   P6P9, 
P7P1,  P7P2,   P7P3,   P7P4,  P7P5,   P7P6,   P7P8,    P7P9,   P7P10,  
P8P1,  P8P2,   P8P3,   P8P4,  P8P5,   P8P6,   P8P7,    P8P9,   P8P10, 
P9P1,  P9P2,   P9P4,   P9P5,  P9P6,   P9P7,   P9P8,    P9P9,   P9P10, 
P10P1, P10P2, P10P3,  P10P4, P10P5,  P10P6, P10P7,   P10P8,  P10P9  
 
Observe that in our ninety permutations, there are quite a few sequences (e.g., P1P9 and P9P1) that 
have the same elements, but just in a different order. This permuting is entirely appropriate in 
many circumstances. For example if the administrator is choosing physicians for a sequence of 
shifts, then P1P9 and P9P1 reflect different events.  
 However, suppose that the administrator is interested in choosing two physicians to staff 
the same shift. Then clearly P1P9 and P9P1 reflect the same assignment (i.e., both  assigned to the 
same shift), and the sequence of assignments does not matter. Probabilists say, in this matter, that 
order does not count.  Clearly, the number of possible sequences must be reduced, but by how 
much?  
 A quick way to see what the adjustment must be follows. Once we have selected a 
sequence of physicians, how can we identify the number of "duplicates". For the selection of a 
sequence of two physicians, there are two possible choices for the first slot, and once chosen, 
there is only one possible selection for the second producing (2)(1) duplicates. Thus to remove 
the duplicates, we simply divide the number of permutations by the number of duplicates, in this 

case reducing 10!
8!

 to 10! 45.
8!2!

=  

                                                 
* To help with perspective, there are 2 x 1023 stars in the known universe, the sun weighs 2 x 1027 tons,  and there are 
3 x 1013 cells in the human body.  
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While there were ninety permutations, there are only 45 distinct sequences when order 
does not count. This final computation is called a combination, and we say the number of distinct 
sequences of n objects when taken k at a time is  

 ! .
!( )!

n n
k k n k

 
=  − 

  

The k! in the denominator is the correction necessary to reduce the duplication in the permutation 
since order does not count.  
 
Example: Ambulance arrival 
Three companies each have ambulances. Company A has seven ambulances, Company B has 
twelve ambulances, and Company C has 9 ambulances. Assume only one ambulance is 
necessary to manage a single emergency, and that the ambulance manages only one accident at a 
time.  
 All ambulances are required one morning, responding to 28 accidents. A helicopter 
surveys ten accident sites randomly. What is the probability that of these ten accidents identified 
by the helicopter, three are covered by Company A, two by Company B, and five by Company 
C? 
 We will use enumeration to solve this problem. Let's term this event A3B2C5. Then, using 
our relative frequency definition, we must compute how many possible ways there are to select 
ten accidents from 28, then compute the number of ways that A3B2C5 can occur. 
 This is clearly sampling without replacement, since an ambulance, once tasked for an 
accident is removed from consideration for another accident response that morning. Also, since 
we are not concerned about sequences in which A3B2C5 occur in different orders, we want to 
count distinct sequences in which order does not count.  
 The denominator of the probability is simply the combinatoric of 28 taken ten at a time, 

or  
28

.
10

 
 
 

 We may proceed with the numerator, taking the events in small subcollections. We 

know that of the seven ambulances from Company A, 3 were "selected" as an accident 

responder. The number of ways this can happen is 
7

.
3

 
 
 

 Similarly, we compute 
12
2

 
 
 

for 

Company B and 
9
5

 
 
 

for Company C. We can now conclude with  

  
 

[ ] ( ) ( ) ( )
3 2 5

7 12 9
35 66 1263 2 5

0.023.
28 13,123,110
10

A B C

   
   
   = = =

 
 
 

P  

 
We can compute the probability that five accidents are covered by Company A and the 
remaining five by Company C as  
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[ ] ( ) ( ) ( )
0 55

7 12 9
21 1 1265 0 5

0.0002.
28 13,123,110
10

A B C

   
   
   = = =

 
 
 

P  

  
Suppose we wanted the probability that all ten accidents were covered by Company A and 
Company C. This is related to event A5B0C5, but is much broader. We might write the desired 
event AC, and, set notation, as  
 

10

0 10
0

.i i
i

AC A B C −
=

=


 

Since these events are mutually exclusive, we can now write  
 

[ ] [ ]
10

0 10
0

10

10
0

0

7 12 9 7 9
0 10 10

.
28 28
10 10

i i
i

i

i

AC A B C

i i i i

−
=

=

=

=

      
      − −      = =

   
   
   

∑

∑
∑

P P

  

  
█ 

 
 

Sampling schemes in detail 
The concepts of sampling with and without replacement are very straightforward and distinct 
from each other. However, there are circumstances where they are quite similar.  
 Consider the quality control operation for competing companies that make their own 
catheter based cell injector systems. Each of them conducts quality control operation on their 
units which are massed produced.  
 The first company assembles their catheters in batches of 25. From each batch, they 
select ten catheters randomly, subjecting each of the ten to a rigorous test. If they find one 
defective unit in the testing, then they discard the entire batch as defective. Assume that there are 
four defective catheters in the batch of 25. What is the probability that they will find one 
defective catheter? 
 This is sampling without replacement. In addition, since a collection of catheters with 
defectives has the same number of defective catheters regardless of their order, this is a problem 
of sampling where order does not matter. For the denominator of the probability, we need to 

know how many ways there are to collect ten catheters from 25, or simply
25

.
10

 
 
 

  The numerator 

consists of the number of sequences in which one defective catheter can be selected from or 
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4
,

1
 
 
 

  and the number of sequences of four in which no defectives exists  or 
21

.
9

 
 
 

 The 

probability that we seek is ( )( )
4 21

4 293,9301 9
0.36

25 3,268,760
10

  
  
   = =

 
 
 

  

 
Company B is a much larger competitor, making batch shipments of 500. They select 10 at 
random and will reject the lot if 3 are defective. If there are 15 defects in the batch of 500, then 
the probability that the entire batch will be rejected is   
 

           ( )( )
( )

15

20

15 485
455 1.2 x 103 7

0.002.
500 2.46 x 10
10

  
  
   = =

 
 
 

                  

 
The computation for this larger company is somewhat awkward because of the large quantities in 
the numerator and denominator of this probability calculation. However, for a very large batch 
size like this, while the assumption of sampling without replacement is true to the spirit of the 
experiment, the actual computation can be approximated by sampling with replacement.  

Why is this? 
 The larger the population size, the less likely an individual will be selected twice just 

through chance. Thus sampling with replacement begins to resemble sampling without 
replacement (were the probably of reselection is zero).  

 Thus for this batch size of five hundred, we could try to approach this problem from a 
sampling with replacement perspective.  

Sampling with replacement, we compute the probability that a defective is chosen is
15 0.03.
500

=  The probability that one particular sequence of ten, has three defectives in specified 

positions is  ( ) ( )3 70.03 0.97 0.0000218.=  But there are several different sequences, each with the 
same probability that will yield three defectives in ten. The number of these sequences is simply 

the number of ways to choose three objects from ten or
10

120.
3

 
= 

 
   Thus the probability of 

having three defects in ten where the defects can occur in any position is
( )( )120 0.0000218 0.0026.= * This is very close to the exact solution of 0.002. Thus as the batch 
size gets larger, the sampling without replacement model can be approximated by the sampling 
with replacement paradigm, a finding that can be formally demonstrated.  
 
The birthday problem 
One of the most intriguing and counterintuitive examples in probability is the birthday problem. 
The question is how many people (selected randomly) must be present in a room to have a 50% 

                                                 
* This is actually a demonstration of the development of the binomial distribution. 
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chance that two of them will have the same birthday. Our intuition is some help, but commonly 
doesn’t provide an answer that even approximates the actual solution.  

Assume that individual birthdays are independent of each other, and that any particular 
day is just as likely to be a birthday as any other day. Let’s also exclude consideration of leap 
year (although as we will see momentarily, it is easy to solve this for leap year as well.  

Our intuition tells us that if we have 366 people in a room, we are guaranteed to have at 
least two with the same birthday. If one birthday event is equally likely as another, we might 
think that half of 366 or 183 individuals would be required.  That is typically as far as we can 
get.  
 We will solve this problem by computing the number the probability of the complement, 
i.e., the probability that there are no common birthdays.  
 The denominator for this probability is simply the number of possible birthdays two 
people can have. The first can “choose” from 365, as can the second. Thus, the denominator is 
3652. This is sampling with replacement paradigm.  
 The numerator requires a different computation. The first subject can have 365 possible 
birthdays. Given the first subject has “selected” their birthday, the second subject has from 
among 364 birthdays. Thus, the probability that two individuals do not have the same birthday is  
 

 ( )( )
2

365 364
1 1 0.997 0.003.

365
− = − =    

 
This solution makes sense to us, because we expect the likelihood that to are chosen at random is 
small. If we were to generalize, we would find that the probability n subjects selected at random 
have the same birthday is 
 

( )
365!

365 !
1 .

365n

n−
−  

 
Note, that here order does count, so we have a permutation and not a combination in the 
numerator of the main quotient. We can now graph this probability as a function of n the number 
of individuals in the room. 
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Most people, when exposed to this question would not guess that it only takes 23 people 
in a room to have a 50% chance that they have the same birthday, or that having only 120 people 
in a room all but ensures that two will have the same birthday.  This is because the numerator of 
the probability reflecting the number of ways people do not have the same birthday decreases 
rapidly. 

A related problem is the probability that two people have the same birthday, or a day 
apart. Following the previous example we can compute the probability that two individuals do 
not meet this criteria as 

 
( )( )

2

365 362
1 1 0.992 0.008.

365
− = − =

 
 

 
Note the second individual has only 362 possibilities for their birthday since the day of, the day 
before, and the day after the first person’s birthday must be eliminated. As we would expect, far 
fewer individuals are required in a room to have a birthday within a day of each other (Figure 2). 

 
 
Additional variants of this problem are available. For example, suppose that we want the 
probability that out of n subjects chosen at random, three individuals having the same birthday.*  
We will compute this directly, and not find the probability of the complement.  

We take this problem in carefully sequenced steps. The denominator encompasses all 
possibilities and is simply  For the numerator we first must choose three people from the 

collection of n or .
3
n 

 
 

   Once we have these three individuals, we know that each has the same 

birthday. While there are 365 possibilities for this birthday, once selected, there is only one 
choice for a birth date for the second and third members of this collection. This leaves  
( )( )( )365 1 1 . possibilities. 

How we managed the remaining 3n −  individuals opens up several possibilities. If we 
assume that they have unique birthdays, then the computation is straightforward. Assume, for 

                                                 
* This is from Judy Bettencourt and Rachel Vojvodic. 

365 .n
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example that 7.n =   Then three have the same birthday, leaving 4 to have different birthdays. 

There are ( )( )( )( ) ( )
364!364 363 362 361

364 4 !
=

−
  possible ways for this to happen. In general, if 

there are n subjects, then the number of possibilities is  

( )( )
364! ,

364 3 !n− −
  and the final solution is 

 
[ ]

( ) ( )( )

3 common birthdays among subjects

364!365
3 364 3 !

365n

n

n
n

 
  − − =

P

  

  
We can use this approach to compute the probabilities of a variety of other scenarios. For 

example the probability that there is one triple (that is three subjects have the same birthday) and 
two separate doubles in n subjects is 

 
 

( ) ( ) ( ) ( )( )
2 4 362!365 364 363

3 2 2 362 7 !
365n

n n n
n

− −     
      − −       
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Relationship Between Sampling With 
and Without Replacement 

 
 

We have seen that in a sampling scheme without replacement, in certain circumstances, 
particularly when the size of the population becomes large enough, it makes sense to think about 
sampling without replacement as sampling with replacement. This does not suggest that the 
underlying design mechanisms are ever the same, only that one probability formula yields a 
solution that is close enough to the other.  

Since formulas based on sampling with replacement are easier to use than those for 
sampling without replacement, it is helpful that there are times when we can use the simple 
sampling with replacement computations in the sampling without replacement paradigm.  

 
Prerequisites 
Limits and Continuous Functions 
Counting Events 

 
To demonstrate this relationship, consider the following situation. From a population of N 

subjects, we draw a smaller sample of size n. We know that in the larger population, there are 
0N  Hispanics. What is the probability that the sample of size n contains x Hispanics.  

In this case, we are sampling without replacement, and we must write the exact 
probability as  

 

 

0 0 0 1N N N N N
x n x x n x

N N
n n

−     
     − −     =

   
   
   

   

 
which as we have seen, is computed simply from counting the number of ways to select x 
Hispanics from 0N  Hispanics, and selecting n - x nonHispanics from the remaining 1 0N N N= −  
nonHispanics in the population, divided by the number of ways one can choose n individuals 
from a population of N.  

We can rewrite the previous formulation as  
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( ) ( )( )( )

( )

( ) ( )( )( )
( )

0 10 1

0 1

0 1

0 1

! !
! ! ! !

!
! !

! !! !
! ! !! !

N NN N
x N x N n x n xx n x

NN
n N nn

n N nN N
x N x NN n x n x

  
   − − − −−   =

 
  − 

−
=

− − − −

 

   
A simple rearrangement of terms reveals that  

 

( ) ( ) ( )( )
( )

0 1

0 1

0 1

!! !!
! ! ! !! !

N N
N nx n x N Nn

N x n x N x NN n x
n

  
   −−   =

− − − − 
 
 

    

 

Expanding the terms 
( )

0

0

!
!

N
N x−

 and ( )!
!

N n
N
−

 term by term, we may rewrite  the expression above 

as  
 

 ( )
!

! !
n Q

x n x−
  

where  
 

( )( )( ) ( )
( )( )( ) ( )

( )( )( ) ( )

0 0 0 0 0

1 1 1 1 1

1 2 3 ... 1
1 2 3 ... 1

1 2 3 ... 1

N N N N N x
Q

N N N N N n

N N N N N n x

− − − − +
=

− − − − +

• − − − − + +
 

 
 
Since 0 ,x n≤ ≤ we can write ,n x n x= + −  write the denominator as  
 

( )( )( ) ( )1 2 3 ... 1N N N N N x n x− − − − + − + .  
 
This allows us to match each of the terms in the numerator with a term from the denominator. 
Thus we can write Q as  
 

( )( )( ) ( ) ( )( )( ) ( )
( )( )( ) ( )

0 0 0 0 0 1 1 1 1 11 2 3 ... 1 1 2 3 ... 1
1 2 3 ... 1

N N N N N x N N N N N n x
N N N N N x n x

− − − − + • − − − − + +
− − − − + − +

  

 
Which can be expressed as 
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( )( )( ) ( )
( )( )( ) ( )

( )( )( ) ( )
( )( )( )( ) ( )

0 0 0 0 0

1 1 1 1 1

1 2 3 ... 1
1 2 3 ... 1

1 2 3 ... 1
.

1 2 2. .. 1

N N N N N x
N N N N N x

N N N N N n x
N x N x N x N x N n x

 − − − − +
=  

− − − − +  
 − − − − + +

• 
− − − − − − − − + +  

 

 
Which  we can express as 1 2Q Q•  
 
Examining Q1 reveals 
 

( )( )( ) ( )
( )( )( ) ( )

0 0 0 0 0
1

0 0 0 0 0

1 2 3 ... 1
1 2 3 ... 1

1 1 1 1... .
1 2 3 1

N N N N N x
Q

N N N N N x

N N N N N x
N N N N N x

− − − − +
=

− − − − +

− − − − +      =       − − − − +        
  

The last line contains x quotients. If we allow both N0 and N to get large (although N0 must 

always be smaller than N) we will see that each of these quotients is dominated by 0 .N
N

Since we 

have x such terms we may approximate Q1  by 0 .
xN

N
 
 
 

 We proceed analogously for Q2 to write 

 
( )( )( ) ( )

( )( )( )( ) ( )
1 1 1 1 1

2

1 1 1 1 1

1 2 3 ... 1
1 2 3 .. 1

1 2 3 1...
1 2 3 1

N N N N N n x
Q

N x N x N x N x N n x

N N N N N n x
N x N x N x N x N n x

− − − − + +
=

− − − − − − − − + +

− − − − + +      =       − − − − − − − − + +      

  

 

Here, there are n-x terms and again, allowing N1 and N  to get large, such that 1 ,N N<  we find 

we can approximate each of these terms by 1N
N

, we can approximate Q2 by 1 .
n xN

N

−
 
 
 

 We can 

now write [ ]xP as  

[ ]

( )

0 0 01

0 01

1 .

x x n xn x

x n x

n xx

n nN N N NNx
x xN N N N

n N N
x N N

n
p p

x

−−

−

−

    −      ≈ =         
         

    = −    
    

 
= − 

 

P

  

This formula computes the probability of x Bernoulli events in n trials multiplied by the 
number of distinct (i.e., order does not count) ways to distribute x events in n trials. This is a 
sampling with replacement paradigm. So for large N  and 0 ,N  we can compute the probability of 
an event that is based on sampling without replacement as though it is sampling with 
replacement. The final expression is the probability formula for the 
binomial distribution.   
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An Introduction to the Concept of 
Measure* 

 
 
Prerequisite sections 
Elementary Set Theory 
 
 
Brief Background 
Measure theory has historically been one of the most challenging topics in mathematical 
analysis. First developed by Henri Lebesgue and Andrey Kolmogorov in the early 20th century, it 
builds on set theory to produce some of the most profound findings in mathematics. Measure 
theory has provided a deeper understanding of probability, and has also fueled the development 
of the field of stochastic processes.†  

Unfortunately, measure theoretic probability has classically been taught at such a high 
level, and with such a heavy mathematical preamble‡ that its application to public health can be 
obscured.  
 Fortunately, measure theory can be demystified to demonstrate its applicability to 
probability, permitting us to smoothly incorporating it into our ongoing discussions concerning 
probability and public health.  
 
What is measure theory 
Measure theory at its heart is the process of accumulating the value of sets.  What we are 
“measuring” in measure theory is sets. We place “value” or “measure” on sets, and accumulate 
this measure. 

Sometimes the rules of accumulation are complicated. Other times (e.g., simple counting) 
this aggregation or collection of value across sets is easy to follow.  In any event, the guiding 
ideas are straightforward: 1)The particular “measure” or “value” must be well defined and follow 
a clear set of rules (this is the development and justification of the measure) and 2) the rules of 
set theory and set operations are used to guide the accumulation of measure across a wide variety 
of sets.  
                                                 
* This chapter is adapted from Moyé, L Weighing the Evidence: Duality, Set, and Measure Theory in Clinical 
Research. Trafford Inc. 2020. 
† Stochastic processes are events whose occurrence is governed by probability and time e.g., the number of arrivals 
at an emergency department in the next hour.  
‡ Commonly two years of calculus and at least a semester of formal mathematical analysis.  
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 Measure theory is a large field; probability is one of its subfields. Developed by the 
Russian probabilist Kolmogorov, it is based on the concept of set functions. We have already 
seen how helpful it is to observe that computing a probability is the same as computing the value 
of a function that operates on a set. Ultimately, we will see that the use of measure theory will 
expand our probability computing ability to rich collections of events that we might have first 
thought were too complicated to manipulate and measure.  
 The principal advantages of measure theory to the practicing probabilist is the ability to 
accumulate probability over complicated and sometimes dissimilar events. There are theoretical 
advantages as well, but to the applied probabilist, it is the ability to work with new types of 
“measurable” functions on new and heretofore unanticipated events that makes measure theory 
worth learning. In fact without it, we lose the ability to apply novel functions to nature’s 
problems that are beyond the ability of standard probability theory to manage.  
 
Accumulation 
Measure theory focuses on the process of accumulation (or valuing) of sets This valuation 
involves the use of set functions. 

Recall Table’s 1 demographic description. If we want to compute the  probability that a 
subject is a women, we can “accumulate” probability over both non-Hispanic women and 
Hispanic women. This accumulation process is the heart of measure theory. In the example of 
Table 1, it is straightforward.  

In order to carry this aggregation of measure out, we must have the right collection of 
events, or σ-algebra. We must also have a measure that follows specific rules. 

  Thus, in order to measure a set A  in the σ-algebra, ,Σ  we may have to manipulate sets in 
Σ  through our standard set operations (unions, intersections, and complements) to create .A  We 
then parallel the generation of A  through these set operations with a process (typically no more 
than addition or subtraction) that accumulates the measure of .A  As we build up A  from  other 
sets in ,Σ   we accumulate the measure of A  from the measure of these same other sets in .Σ    
Let’s start with an easy example.  
 
Example: Music tracks 
Many people now manage their songs (or tracks) digitally. Suppose an individual with several 
thousand tracks wishes to get a sense of the “value”  of them. How could they do this? 

One way to assess value is simply to count the number of tracks, increasing the count by 
one for each distinct track. This is simply and naively, “counting measure”. The value of a 
particular track is simply its presence.  
 
Intuitive Rules of Accumulation 
Does “counting measure” make sense as a value to be accumulated?  From a mathematical point 
of view, the answer is yes. It also follows our intuition about accumulation. For example, no set 
can have negative measure. In addition, if you have no tracks, you have a count or “measure” of  
zero. These two properties seem self-evident, but are a requirement of a measure or value 
system.  

In addition, if you have two subsets of tracks and the first subset is completely contained 
in the second, then the “counting measure” of the first is less than that of the second. This is also 
a required property. 

If you have five different playlists, then the measure of the five playlists is equal to the 
total number of tracks in the playlists  minus the duplicate tracks, i.e., minus the measure of the 



82  Introduction to Measure Theory  
intersections of the tracks across the five playlists.  Accumulation makes sense to us with this 
“counting” measure. 

So how do we “accumulate measure” in this music track example? 
We use set operations to guide us.  Define Ω  as the set of all of our music tracks 

{ }1 2 3, , ,... .T T T  Our  σ-algebra, ,Σ  is the set of all subsets of these tracks (including the subsets 
representing our playlists.) Then we manipulate these sets and subsets using set operations to 
construct the final set, accumulating counting measure as we go along.  We both “build up” our 
final set and also build up, or accumulate our measure.  

For example the measure of the set of tracks { }3 7,T T  is 2. We say { }( )3 7, 2.T Tµ =  It is 
also true that { }( )7 115, 2T Tµ =  as well. Suppose that we want ( )Sµ  where  

{ } { }3 7 7 115, ,S T T T T= ∪  However we notice that there is overlap in the identities of the tracks. But 
we can also see that { } { } { } { } { }3 7 7 115 3 115 7, ,S T T T T T T T= ∪ = ∪ ∪ from our standard set 
operations. * Thus we see that ( )Sµ  is three.  

While this may seem the “long way around” to get the measure of three tracks, this 
formal process consists of the precise steps we take to isolate and identify these tracks, so that 
that we can measure the precise ones of interest. We start from other sets to “build up” ,S  
building up ( )Sµ  in the process. 
   
Additional Music track “Measures” 
A great flexibility of measure theory is that there is a great variety of measures that are and can 
be developed. For example one can consider defining a music track measure as the play count, 
i.e., the number of times the track has been played. If it meets our criteria of measure described 
as rules of accumulation, then it is an admissible measure. Its use will produce a different 
measure of the music collection. 
 A third “measure” would be duration of the track in time. Here one simply accumulates 
or sums the length of each track in the end coming to a time ( e.g., 17.7 months). 
 Each of these measures (total tracks, number of  plays, and total time), is legitimate.  
However, each measure is different, because it emphasizes a different characteristic of the track. 
Also, the characteristic of the track must be available to be measured. And of course each 
“measure” has to consistent with the rules of accumulation 
 Thus, from this perspective, “measuring sets” is not new. It, in fact, is all around us. Our 
task is to apply this process directly to sets in public health. 
 
Example: Clinical Research Reimbursement  
As another example, suppose you are in charge of making payments in a clinical study that will 
follow subjects over a period of time.† The clinical centers that recruit these subjects will of 
course incur substantial cost as they see and examine each patient, draw blood work, and obtain 
modern (and expensive) imaging over the course of the study. Assume that each study patient 
will be seen six times over the course of the research. How should the coordinating center 
reimburse the centers for their costs?  
 One idea (Plan A) reimburses the centers directly in accordance with the way that costs 
were incurred; in this case making equal payments of 16.7% of the total cost on each of the 
entire six months so that by the conclusion of the study, the clinics have received 100% of the 
payments.  

                                                 
* Recall that for sets A and B that ( ) ( ) ( ) .c cA B A B A B A B∪ = ∩ ∪ ∩ ∪ ∩   
† This is based on example provided by Rachel W.Vojvodic, M.P.H. 
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However, Plan B  assigns dollars differently. It provides 60% of the cost divided equally 
over the first two visits, then 10% during the remaining four visits. This front loading of cost 
permits the clinical center to expand their research team early in the study to provide more 
accurate and timely patient throughput and data transmission.  

Alternatively, Plan C backloads costs, paying 10% of the total cost for each of the first 5 
visits, then 50% for the last visit. This adds an important financial incentive to the scientific 
motivation  of clinical centers to follow study subjects to the end of the research.  

Each of these plans provides total cost disbursement at the conclusion of the study; 
however the distribution of costs is different (Figure 1). 
 

 
 

  
 Suppose that we want to compute the cost reimbursement for the first three visits of each 
plan. Plan A reimburses approximately 50% of the total patient care cost during this period. Plan 
B reimburses 60% during that period of time, while Plan C reimburses 30%. Now, define the 
cost for a visit as the measure of that visit. The costs or “measure” of each of these plans during 
the first three visits is different. The total “measure” over the six visits is the same or 100%. 

If we characterize the visits as 1 2 3 4 5 6, , , , , ,V V V V V V  then we can go even farther and define 
measure µ  as the reimbursed cost for each visit.  So the cost for visit 1V   as  ( )1 ,Vµ and the cost 
or measure of visit 1 under plan A is ( )1 16.7A Vµ = . Then the system of cost or measure of both 

1V   and 2V  is ( ) ( ) ( )1 2 1 2 16.7 16.7 33.4.A A AV V V Vµ µ µ∪ = + = + =   We can also see that 
( ) ( ) ( )1 1 1 ,B A CV V Vµ µ µ> >   and ( ) ( ) ( )6 6 6 .C A BV V Vµ µ µ> > In fact there are many types of 

relationships between these measures that are induced by the system of payments. However, 
each comports with our intuitive rules of accumulation, and is admissible as a measure. 

Developing these systems (which appears to be quite like operating with sets) is at the 
center of our use of measure theory. 

  
Biomarkers and phenotypes 
As a final example, consider the work of an investigator working on a biomarker that will 
hopefully predict the occurrence of heart failure (HF) in a patient for their next year. The levels 
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of this biomarker are reported as being between zero and one. The risk of heart failure is related 
to the interval in which the biomarker is located.  

However, its predictive value is strange. Specifically, the risk is related to each decile of 
heart failure, where the height of the risk alternates with the decile. The risk of heart failure is 
low for patients with biomarker levels in (0.40, 0.50] but high for patients in the level [0.05, 
0.10] etc. In addition, if there are three contiguous intervals, then the risk is low in at least one of 
them and high in at least one of them. Finally, these relationships are only true for patients who 
have a particular phenotype. Patients with other phenotypes have an entirely different set of 
relationships between HF and biomarkers.  

The use of such a tool (for example, to compute the risk to a population of subjects with a 
distribution of phenotypes) would likely lead to frustration because in health care we can easily 
manage monotonic risk or U/J shaped risk.  

Risk which oscillates are outside of our experience and therefore confounds us.  
However, all that this biomarker is really doing is assigning different heart attack risks to 

different regions of the [ ]0,1  interval, which is what set functions and measure theory are tailored 
to do.  We can create a measure that measures, or integrates or accumulates risk over these 
intervals.*  
 
Symbols 
In order to help us, we will need more notation. Typically, the symbology used in measure 
theory is ( ).µ   Here, µ  refers to the measure, (e.g., counting measure from the music track 

example) and the argument refers to the set being measured. An example is  ( )1 2 3A A Aµ ∩ ∩
denotes the measure of the collection of sets or objects common to the sets 1 2, ,A A  and 3.A    It 
says nothing about how we actually take the measure, but instead only signals our intent to carry 
out the measuring procedure.  

The integral sign serves the same purpose. In fact, we will use the integral sign and the 

measure denotation ( )µ  interchangeably. Just like the ( )µ notation, du∫ will announce our 
intent to measure a collection of sets with respect to the measure µ  . These collections may be 
discrete objects, intervals on the real line, volumes of space, or combinations of these different 
metrics.   

Again, how we measure them is not conveyed by either notation. That we will measure 
them is.   
 This can be a little disconcerting to an enthusiast of integral calculus with its collection of 

formulas denoting how to “integrate”, such as ( ) ( )cos sin ,x dx x=∫  or .tt

t

e dt e λλλ
−

∞
− =∫   

However, it is useful at this point to take a step back and see just what this integration is doing.   
The classic way for us to view these standard integration rules is that we are 

accumulating “area under the curve” and of course many times that is not a wrong perspective. 
However, another approach is to say that we are taking the “measure” of intervals of the real 
line. From this perspective, each of these formulas provides a different “measure” of the same 
interval. For example, consider an interval ( ),a b  on the positive real line. Then we know  

                                                 
* This also begs the question, are we missing useful biomarkers because they don’t conform with the standard 
monotonic  or U/J risk predictive behavior to which we are accustomed. 
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cos( ) sin( ) sin( )

b

a
b

a
b

x a b

a

dx b a

x dx b a

e dx e eλ λ λλ − − −

= −

= −

= −

∫

∫

∫

 

 
Each of these three integrals does something different with the same interval ( ),a b , i.e., each 

“measures” the ( ),a b   interval but uses a different measuring tool. For example  
b

a

dx b a= −∫  

denotes that the measure of an interval as simply its length. This is known most famously as 
Lebesgue* measure.  

However, the other two definite intervals demonstrate that there are additional ways to 
measure the same interval, each providing a different answer. In fact there are uncountably many 
measuring tools (many of which you already know) that provide the means to measure intervals 
of real numbers.  

Thus, when we are taking a definite integral, we are measuring the interval, and the 
integrand is the measuring tool.  

 From this perspective, it is easy to see that   ( ) 0,1,2,3...
0 0

1 1 .1n kk t
k n

n
p p e dt

k
λλ

∞ ∞
− −

=

 
− = = 

 
∫ ∫  This 

is a measure theoretic way to convey that binomial measure and negative exponential measure 
have the same measure of the entire real line. Again, the naked ∫ sign does not tell us how to 
take the measure; this is conveyed by the integrand or measuring tool.   

From a measure theoretic perspective there is no theoretical difference between 
measuring the real line by counting a subset of whole numbers on the one hand and completing a 
computation involving the length of the interval as the other. From the measure theory 
perspective, the only difference is the measuring tool.  
 
Goal of our approach 
Measure theory as it is typically taught spends considerable time on the development of the 
underlying thought process, with very little time spent on the mechanics of actually how one uses 
it.  It one wants to jump ahead into the details, a fair elaboration is provided  here.  

While it is useful to cover both, we will work not to get stuck on the deep mathematical 
elaborations, but will instead work to understand enough about the theory to see how it is 
applied. Some calculus will be involved from time to time and this will require a review of the 
indicated sections.  

Our goal will be to incorporate measure theoretic concepts in our probability thought 
process so deeply that the measure theoretic tools become second nature, and we use them 
fluidly, almost without thinking (like counting music tracks).   
 
Sequences of Sets 
Sequences of Functions 
                                                 
* Pronounced LaBāg 
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Sequences of Functions 
 
Prerequisites 
Indicator functions 
Pointwise and Uniform Convergence  
 
In order to appreciate sum of the underpinnings of measure theory, we need to have an 
understanding of the concept of a sequence of functions, and from their what the limit of a 
sequence of functions can look like. This development will parallel our work on sequences of 
sets. 

A sequence of functions, like a sequences of sets, is a concept that we must master if we 
are to actually wield measure theoretic constructs with some facility.  In measure theory we build 
the support for functions that are measurable, or integrable by using sequences of simple 
functions. Therefore in order to understand the support for a type of measure or integral, we need 
to understand the behavior of these function sequences.  

As we did with sets, we will approach these concepts beginning with simple examples, 
building up our intuition, and then summarize our findings. 
 
Building a function sequence 
We are quite comfortable with functions e.g., 2( ) 3 7,f x x= − and are not intimidated by this not 
being constant, but instead being a function of the variable x.  However, how do we manage a 

function of “two variables” e.g., 
2

( )n
xf x
n

= for n = 1,2,3… ? Here the domain of the function 

with regard to x is the real numbers. However, n (indexed by the non-negative integers) sets up 
an infinite collection of functions. For any x, the function sequence is  
 

2 2 2 2
2 , , , , , .....

3 4 5 6
x x x xx   

 
These types of functions are commonly used in statistics. For example, the  sequence of 
functions is 1 2 3, , , ... , ...nX X X X  is the collection of means of independent samples from the same 
population, each time increasing the number of observations in the sample by one.  

Another example of the use of sequences of functions is the study of the property of  
convergence,  In that case we have not just a sequence of numbers, but a sequence of functions 
of x that converge. This use of a function permitted us to differentiate pointwise versus uniform 
convergence.  

The reason for this differentiation you will recall is that for pointwise convergence, the 
rate of convergence was related to the value of x; therefore we cannot be guaranteed that for all 
values of n N>  the function will be within some small distance ε  of the limiting value for all x. 
It is uniform convergence that provided us this value that did not involve x.  



88  Sequences of Functions  

Another example of a sequence of functions would be 
2

1( ) .1n x
xf x
n ==  This combination 

of a function and an indicator function provides important flexibility as we construct sequences 
of functions that meet our needs. For example, the value of ( )nf x  produces the sequence 

1 1 1 11, , , , , ....
2 3 4 5

 which clearly converges to zero. We can also convert this same function into 

( )
2

= .1n x A
x
n

f x ∈  This is a sequence of functions that takes on the value
2x

n
 for every x A⊂  and 

vanishes everywhere else. An example would be 
2

1 1,
1

( ) 1n
x

n n

xf x
n  ∈  + 

= , producing the functions 

2 2 2
2

1 1 1 1 1 1 1,1 , , ,
2 3 2 4 3 5 4

, , , , ...
2 3 4

1 1 1 1
x x x x

x x xx        ∈ ∈ ∈ ∈             

 .  

 
 We certainly have tremendous flexibility building these sequences of functions. The 
purpose of this flexibility is to be able to build up a from a sequence of simpler functions a more 
complicated function in which we have a central interest. While the final function may at first 
blush be difficult to work with, the simpler functions are not, and properties of sequences of 
these simpler functions can under some circumstances be absorbed into the final more 
complicated function.  
 
Step functions 
One of the most important constructs for sequences of functions is the step function or indicator 
function  .1x Aα ⊂  It is easy to think of this function residing on the real number line, such as the 

function ( ) [ ]0,1
1
2
1xf x ∈=  that takes on the value 1

2
 on the [ ]0,1 .   

However, the set A may not be an interval. For example, consider the function that is the 

value 1 for every natural number, 1
2

 for every 1, ,
2

x n n ∈ + 
 

 and  1
3

 for every 1 , 1 .
2

x n n ∈ + + 
 

 

We write this function as  
 

1 1, , 1
2 2

1 1( ) .
2 3

1 1 1n x
x n n x n n

f x ⊂ℵ    ⊂ + ⊂ + +   
   

= + +  

 
Here the process of aggregating sets which take on the same value for ( )f x  is more complicated.  
 
Example: Community viral testing 
A consequence of this approach is that, although one cannot directly write the final limiting form 
of a function, one might be able to write a simpler function whose limit is the final form.   

For example, suppose we wanted to assess the extent of a virus’ spread through a 
community. There are parametric epidemiologic mathematics available to study this 
phenomenon e.g., the contagion model; however these models require the estimates of 
parameters that may not be available, or, if available, may not be accurate.  

 Consider an alternative approach. Suppose that there is a set of individuals in the 
community who are positive for the virus at time .t  Let that set be .tA  There is also a set of 
individuals tB   who at time ,t  while not positive for the virus now, are positive for antibodies, 
reflecting a prior infection.  Finally, consider the set .tC  who are the individuals positive for both 
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antibodies and virus. If ( )i tω  reflects the status of the  ith individual in the community, then we 
create the function  

 ( ) ( ) ( ) ( )
1
1 1 1

i t i t i t

n

t t A t B t C
i

C n ω ω ω⊂ ⊂ ⊂
=

= + +∑
 

( )tC n
 
is the cumulative exposure in the sample at time t . The ( )lim tn

C n
→∞

 is the cumulative 

exposure in the population at time .t    
While this function can be computed for each time point t, a plot of ( )tC n  overt reveals 

not just the increase in ( )tC n  over time, but plots of each of its three components demonstrate to 
what degree past and present infections are driving the cumulative counts over time, without the 
assumptions required to formulate a parametric model. We will see later that these simple 
functions can be integrated to provide a wealth of new information.   
 In this case, we have created a path to capture a complex process, beginning with a 
simple function. We will see that this permits us to not just build one, but many simple functions, 
using them as a starting point for the implementation of Lebesgue integration theory . We will 
see that commonly, the sequence of these functions is all that is required, and not the 
mathematical formulation of their limit.  

█ 
 
 
Infs and sups with function sequences  
Now consider two function, 2

[ 1,2]( ) 1xf x x ∈ −=  and 3
[ 1,2]( ) 1xg x x ∈ −= . These familiar functions are 

easy to visualize (Figure 1). Now, based on these two functions, let’s examine what the 
minimum of these functions looks like as a function of .x   .  
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And examination of these two common functions reveals that the minimum of the two functions 
changes over the region. However, we also notice that the minimum value is delivered by 
different functions over the entire 1, 2  −   range (Figure 2).  
 

 
For the smaller values of  x within this interval, ( )g x  provides the minimum value of the two 
functions. This is followed by a region where the two values are essentially the same value, 
followed by a region farther to the right where the minimum value is provided not by ( )g x  but 
by ( ).f x   

Thus, we can think of the minimum or infimum of these two functions as itself a function 
of x. A similar development reveals that the ( )sup ( ), ( )f x g x  is also a function of x. In order to 
make this observation explicit we will write ( )( ) inf ( ), ( )I x f x g x=  and ( )( ) sup ( ), ( ) .S x f x g x=

Sometimes ( )( ) inf ( ), ( )I x f x g x=  is written as ( ) ( ) ( ).I x f x g x= ∩   Here the intersection sign 
which we have seen with sets means the minimum, or more precisely and helpfully, the greatest 
lower bound. The union sign mean maximum or smallest upper bound. 
 Having already established the concept of an infinite sequence of functions 

( ), 1, 2, 3,...,nf x n =  we can now write the infimum and supremum functions as  
 

                           
1

( ) ( ),n
n

I x f x
∞

=

=


 and 
1

( ) ( ).n
n

S x f x
∞

=

=


 

 
  With this we can write the greatest lower bound of the sequence of functions ( )nf x  
 

1
liminf ( ) ( ),n mn n m n

f x f x
∞ ∞

→∞
= >

=


 

 and  

1
limsup ( ) ( ).n m

n n m n
f x f x

∞ ∞

→∞ = >
=


 

 
Again, note that these are functions of x. Thus the liminf is the least upper bound of all of 

the greatest lower bounds (the maximum of all of the minimum values for all intent and 
purposes) for that value of x. Similarly for the limsup which is the minimum values of all of the 
maximums for that value of x. 
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Finally, if liminf ( ) limsup ( ),n nn n
f x f x

→∞ →∞
= then ( )lim nn

f x
→∞

 exists and is equal to the liminf 

and limsup.  
As an example, let’s define ( )nf x a=  for all n. We start this trivial example by 

acknowledging that with regard to functions, the simple ∩   sign just means to take minimums, 

and ∪  simply means to take maximums. Then in this case 
1

( )n
n

f x
∞

=


 denotes the minimum value 

of each member of the sequence of functions, and we see  that 
1

( ) .n
n

f x a
∞

=
=



 Thus, we have that

1

( )n
n m n

f x a
∞ ∞

= >

=


 as well and conclude that liminf ( ) .nn
f x a

→∞
=  Similarly, 

1 1
( ) , ( ) ,n n

n n m n
f x a f x a

∞ ∞ ∞

= = >
= =

 

and limsup ( ) .n
n

f x a
→∞

=   

 
Consider another sequence of functions, this time ( ) n

nf x x=  at the point 0.x =  Our 
intuition tells us that at 0, (0) 0nx f= = for all n. Consider the following analysis: 
 

( )
( )
( )

2 3 4 5
0 0 0 0 0

2

3 4 5
0 0 0 0

3

5
0 0

4

min , , , , ... 0

min , , , ... 0

min , ... 0

1 1 1 1 1

1 1 1 1

1 1

n
x x x x x

m

n
x x x x

m

n
x x

m

x x x x x

x x x x

x x

∞

= = = = =
=

∞

= = = =
=

∞

= =
=

= =

= =

= =







  

 The smallest upper bound of all of these zeros is of course zero. Thus

0
1 1

( ) 0.1nn x
n m n n m n

f x x
∞ ∞ ∞ ∞

=
= > = >

= =
 

  

 
Now consider the function 0.1( ) 1nn xf x x == . We proceed to find 

 

( ) ( )

( ) ( )

( ) ( )

2 3 4
0 0.1 0.1 0.1

2

3 4 5
0 0.1 0.1 0.1

3

4 5
0 0.1 0.1

4

inf , , , ... inf 0.01, 0.001, 0.0001,... 0

inf , , , ... inf 0.001, 0.0001,... 0

inf , , ... inf 0.0001, 0.00001, ... 0

1 1 1 1

1 1 1 1

1 1 1

m
x x x x

m

m
x x x x

m

m
x x x

m

x x x x

x x x x

x x x

∞

= = = =
=

∞

= = = =
=

∞

= = =
=

= = =

= = =

= = =







 

Remember here that the ∩  sign means not just the minimum, but the greatest lower 
bound. This is most helpful, because, while nx  never actually reaches zero, its greatest lower 
bound is zero.  

The ∪   or maximum value of all of these zeros is zero, so we have  

0.1
1 1

( ) 0.1nn x
n m n n m n

f x x
∞ ∞ ∞ ∞

=
= > = >

= =
 

  

Now, what is the limsup? We write 
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( )
( )

( )
( )

2 3 4 5
0 0.1 0.1 0.1 0.1

2

3 4 5 6
0 0.1 0.1 0.1 0.1

3

4 5 6
0 0.1 0.1

4

max , , , ,...

max 0.01, 0.001, 0.0001,... 0.01

max , , , ,...

max 0.001, 0.0001,... 0.001

max , ,

1 1 1 1 1

1 1 1 1 1

1 1 1 1

m
x x x x x

m

m
x x x x x

m

m
x x x

m

x x x x x

x x x x x

x x x x

∞

= = = = =
=

∞

= = = = =
=

∞

= = =
=

=

= =

=

= =

=





 ( )
( )

0.1,...

max 0.0001, 0.00001,... 0.0001

x=

= =

 

 
Now we compute the minimum or greatest lower bound for this infinite set as we find 

( ) 0.1
1 1

0.1nn x
n m n n m n

f x x
∞ ∞ ∞ ∞

=
= > = >

= =
 

 With this preliminary work we can now write 

liminf ( ) limsup ( ) lim ( ) 0.n n nn nn
f x f x f x

→∞ →∞→∞
= = =   

 All of this effort is a necessary preamble to understanding in what sense does 
( ) ( ) ( )lim lim ?n nn n

f x f x f x
→∞ →∞

= =∫ ∫ ∫  The ability to pass limits through integral signs is quite useful 

in advanced probability in particular and measure theory in general. When is this possible?  
Supremums are also useful because we examine all simple functions that take on a value 

less than  or equal to ( )f x  then take its supremum we will have the integral of .( )f x  This is 
covered in the discussion of the monotone convergence theorem.  

 
Set Functions in Measure Theory 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
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Set Functions in Measure Theory 
 
 
 
Our ultimate goal will be to develop what we will soon call measurable functions.  Here we 
begin by describing their relatively uncomplicated building blocks; set, indicator, and simple 
functions. Ultimately, we will discuss their possible use in describing complex assessments in 
public health.  
 
Prerequisite sections 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Sequences of Functions 
 
So far, we have described measure in very basic terms as the process of accumulation, and the 
provided examples have demonstrated that sometimes different tools are used depending on what 
is being accumulated. In order to understand how to use this theory to good effect, we need to 
generate some new notation and tools.  
 We will assume that we have a sample space/σ‒algebra complex denoted as ( ),Ω Σ  and 

that .iω ⊂ Σ     We begin with the concept of an indicator function .1A B⊂    This function takes 
the value one if A B⊂  and zero otherwise.  Thus, an indicator function maps the result of a “set 
test” (i.e., either A B⊂  or not) to either the value 0 or 1.  

We have seen indicator functions before, but there, their argument was part of the real 
line, which of course are wholly appropriate sets. Here we will work primarily with set functions 
whose domains are not of necessity subsets of the real line. We write

 ( ) .1A Bf A ⊂=   
 
Defining an elementary set function 
The simplest set function operates on a single and specific member of the set, testing that 
particular set member against a specific condition and returning the value 0 or 1. We will denote 
this as one of the simplest set function as ( )e ω . Its argument or domain is a singleton element, 

,iω  of a set, and it maps this single set element to either 0 or 1; We write  

( ) 1
ii Ae ωω ⊂=

 
 

 which we interpret as 

( ) 1 for
= 0for 

i i

i

e A
A.

ω ω
ω

= ⊂
⊄  

 
Example: Demographic set function  
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As an example of the development of this uncomplicated set function using actual public health 
information, consider data that provides demographic information for subjects entered into a 
heart failure study (Table 1).  
 

<<Table 1>> 
 
Table 1 provides data by gender and ethnicity only. We can compute a large number of 
probabilities from data such as these. However, let’s use this table to create an elementary 
function.  

Define Ω  as the space of all 210 individuals, and ,Σ   its σ-algebra.  Let iω  be the ith 

person of these 210 individuals in Table 1, (thus iω ⊂ Σ  ) and define ( ) Hispanic1
iiX ωω ⊂= .  Here 

( )iX ω  is our function taking on the value of 0 or 1 depending on whether the th
iω  individual is a 

member of the set of individuals with Hispanic ethnicity. Thus, every individual in Table 1 has a 
value connected to them, namely ( )iX ω  depending on their ethnicity.   

Now, define four mutually exclusive sets of Ω.  
 

HMA   the collection of Hispanic males  
HFA   the collection of Hispanic females 
nHMA  the collection of are non-Hispanic males  
nHFA  the collection of are non-Hispanic females 

 
Clearly .HM HF nHM nHFA A A A∪ = Ω    Lets now let the set B ⊂ Σ  be an arbitrary subset of 
individuals. Can we map the function ( ) [ ] ?1

HMB AU B ⊂=   
 The answer is “Yes”,  but it may not provide the result of interest. The condition 

HMB A⊂  is met if every member of our arbitrary set B  can be found in ,HMA  that is every 
member of B  is an Hispanic male. The function ( )U B  does not count the number of Hispanic 
males in ;B  It simply determines if all members are Hispanic males or not. It is mappable  but 
something of a coarse tool. 
 If we wanted to use set functions to count the number of Hispanic males in set ,B  we 
would create the function ( ) [ ]1

i AHi AR ωω ⊂=  which would return the value of 0 or 1 based on the 
status of a single individual. We could then ( )

i

i
B

R
ω

ω
⊂

∑  as returning the accumulated number of 

individuals in set B  who are Hispanic males. 
 So we have considerable freedom in setting up our set function depending on our goals. 
 
Combining Indicator Functions 
As we saw in the previous section, we can sum indicator- set functions to compute for example, 
the total number subjects who are Hispanic males in set in an arbitrary set .B  We can expand 
this concept to consider linear combinations of set functions.  

For example, suppose  we wanted an approximation of the impact of diabetes mellitus in 
a community, and we recognized that this morbidity impact varied by the ethnicity and gender. 
We could proceed as follows. Define four set functions.  

( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ]

:

:

1 1
1 1

i i

i i

HM i HF iHM HF

nHM i nHF inHM nHF

R R

R R
ω ω

ω ω

ω ω

ω ω
⊂ ⊂

⊂ ⊂

= =

= =
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These are four set functions that map an individual based on their sex and ethnicity.  Now 
if HMm  is the morbidity burden for Hispanic males, and we had the analogous quantities for the 
remaining three ethnic gender combination, then the quantity  
 

( ) ( ) ( ) ( )
i

HM HM i HF HF i nHM nHM i nHF nHF iM m R m R m R m R
ω

ω ω ω ω= + + +∑  

In this case, each member of the sample has their gender and ethnicity assessed, and then the 
appropriate morbidity weight is applied.  
Such a linear combination of set function is called a simple function.  
 
Other uses of simple functions 
Simple functions historically  make important foundational contributions to measure theory 
because we can approximate measurable functions by them.   

Consider a simple polynomial function e.g., 2y x=  on the [ ]0,1  real number line. This is 
a parametric, smooth, and well behaved function that is easy to work with. It is possible for us to 
approximate this function by creating a collection of indicator functions.  
 We would begin with a collection of disjoint intervals on [ ]0,1 , { } ( ),i i iA a b= for 

1,.., .i n=  Let’s also assume that these are adjacent, non-overlapping intervals of equal lengths.  

We might have a first approximation as ( )
2

[ ]2
1

i i

i i
i a x b

b af A ≤ ≤

+ =  
 

 and define our approximation 

function as ( )
1

( ) .
n

i
i

y x f A
=

= ∑  The larger the value of ,n the smaller the distance between ia  and 

,ib  the approximation of ( )y x  by ( ).y x  
However, the value of simple functions in public health is not to approximate functions 

like 2 ,y x=  but to approximate functions whose final form is not known. For example, there is 
no generally accepted parametric function that maps diabetes type II morbidity to ethnicity and 
gender. However, simple functions can be built up to approximate such a function, even though 
the final functional form is unknown and likely unknowable. This is the practical contribution of 
simple functions to public health.  
  
Simple functions in public health 

Simple functions that are based on subintervals of the real number line and useful in 
understanding the mechanics of measure theory, but the public health applications will require us 
to broaden these simple functions to assess characteristics of the environment, or renal function.  

Examples that we have discussed before would be function built  to assess viral 
susceptibility  Another example follows. 
 
Example: GI track homogeneity 
As an example, consider the heterogeneity of the bacterial species that inhabit the gastrointestinal 
(GI) track. There are several thousand bacterial species that colonize the GI track. How could we 
construct an adequate representation and summary measure of the GI track’s heterogeneity? 

Divide the GI track into contiguous, non-overlapping square mm of surface area. Survey 
each square mm for the dominant bacterial species. Let jA be the total area of GI tissue where 
the dominant bacterial species is j. Define iω  as the condition of the ith square mm of the GI 
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track. Then ( ) .1

i ji Ae ωω ⊂=  This function is 1, if the dominant bacterial species in the ith square 

mm of the GI track is j . We can proceed by defining ( ) ( )1
j i jt t i t A

i i j

B W ωω α ⊂= =∑ ∑∑  which is 

the overall virulence status of the bacterial state of the GI track at time t  where jα  is an 
assessment of the threat of bacterial species j to the host.    

We can see that the manipulation of these combinations of set functions into simple 
functions gives us the ability to generate functions with substantial flexibility. We will see in 
later examples  that we can determine the shape of the function that we want by using the 
resilience that comes from creating combinations of different set functions.  
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Set functions versus measurable functions 
Measurable functions are simply set functions that have two additional traits.  

The first and the easiest is that the function must map to a non-negative number. For 
example the function ( )h A  equal to the number of males in set A minus the number of females 
in set A is a perfectly fine set function, but since it might be negatively valued, it is not a 
measurable function.   

The second requirement of a measurable function is a concept that, while somewhat 
awkwardly described mathematically, is easy to understand.  

It has to do with a property of the domain of the function.  
Consider Table 1, from which we know the demography of the 210 individuals. We will 

assume that we have a sample space/σ‒algebra complex denoted as ( ),Ω Σ  and that ,iω ⊂ Σ  
where Σ  contains all of the subsets of subjects in Table 1.  Let’s take a set of subjects M from 
Table 1 and create the function ( )j M  which is the mean creatinine value for the individuals in 
the set.  

This is a fine set function, i.e., its maps a set to a number.  It also meets the measurable 
function criterion of positivity. However, the trait that it measures (creatinine) is not available 
from Table 1, which provides only the gender and ethnicity of the participants.  Therefore, we 
say that the function is non-measurable with respect to the contents of Table 1, since the function 
requires knowledge of a characteristic of these patients that is not available.  

In measure theory parlance, we say that the function j is not measurable since there are 
creatinines c, for which we cannot find preimages of  j (i.e., individuals in Table 1), ( )1 ).j c−  One 
cannot determine creatinine values (only ethnicity and gender) from the elements of Ω . Thus, 

( )1 .j c− ⊄ Σ   
 

Measurability and inspection testing 
Another way to think of this second trait of measurable functions is that a function, to be 
measurable, must pass an inspection test. This inspection assesses whether the trait that the 
function requires is available.  

Obviously, again using Table 1, functions that are based on ethnicity and gender are 
measurable. Other functions requiring other traits are not (and are nonmeasurable) since an 
inspection reveals that the individual characteristics on which they are based are not obtainable 
from Table 1.  

Elementary functions can be measurable functions. For example, the function from Table 
1, ( ) Hispanic1

iiX ωω ⊂=  assigns a nonnegative value to a set (which happens to be a single participant 
from Table 1). Also, ethnicity can be identified so that the inspection (preimage) requirement is 
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met (i.e., we can identify individuals in Table 1 whose ethnicity is known). In fact, even if there 
were no participants in Table 1 who were Hispanic, the function is still measurable – it just does 
not ever return the value one.   

We can also easily see that simple functions constructed from measurable, elementary 
functions are measurable. As an example of why this is true, consider the example where Ω  is a 
collection of individuals on whom demographics including age and race are available, and Σ  is 
the σ-algebra of these individuals. Now consider the function ( ) ( ) 45 .1 1

iii CaucasianAgek ωωω ⊂≤= +  

For any value of ( )ik ω  one can find the age and race of individuals so that the function value 
can be assigned. The key to this is noting that since the elementary functions are measurable, so 
too is the simple function on which it is constructed.  

The set function is the simplest type of measurable function.  We will rely on it as heavily 
as Bernhard Riemann relied on the rectangle for the classic Riemann integral.   
  
Measurable spaces and functions 
We are now ready to talk in a little more detail about the structure of sets on which measurable 
functions are based.   

We begin with the collection of all possible sets of interest.  This is the sample space, 
commonly signified as Ω. It is the collection of all possible events or outcomes, each denoted by 
ω. It can be all of the subjects that comprise Table 1, taking each subject one at a time as one 
example. In another example, it can be the set of real numbers on [ ]0,1 .   

From the sample space, we construct the σ-algebra, known as .Σ  This is the expanse of 
sets generated from Ω using the set operations union, intersection, and complement. Both the 
null set and Ω  themselves are members of .Σ   The combination of Ω   and Σ   – denoted by (Ω, 
Σ) – defines the measurable space.   
 With this structure, we now define a set function on that measurable space. This function 
will map sets in (Ω, Σ)  to a number.  This function f  is a measurable function if it meets the 
prior two conditions of non-negativity and mappable preimages, on (Ω, Σ) (i.e., the inspection 
criterion).  

There is an uncountably many number of measurable functions on (Ω, Σ).* Although 
most are not helpful, we can be encouraged by the observation that we typically have tremendous 
freedom in defining the measurable function of interest f to suit our interest. 
 Let’s now explore some simple functions. 
 
Next Sections 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Basic Properties of the Lebesgue-Stieltjes Integral 
Monotone Convergence Theorem 
Some Classic Measure Theory Results 
Asymptotics 
Tail Event Measure 
 

                                                 
* For example, the set of indicator functions  ( ){ }r if ω  indexed by r where ( ) [ ]1r i i Af r ωω ⊂=   where A ⊂ Σ   and 
r is a unique real number is a set containing uncountably many measurable elementary functions. 
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Prerequisites 
Elementary Set Theory 
Sequences of Sets 
Sequences of Functions 
Set Functions in Measure Theory 
Measurable Functions 
 
Constructing applied simple functions 
It is easy to construct simple functions in general mathematics, and in fact that is what is 
commonly done in classical real analysis. However, how can we construct simple functions that 
would be helpful in public health? The following are examples of the building process for 
measurable functions in biology and ecology.  
 
Index of soil pollution 
Soil pollution is typically caused by industrial activity, agricultural chemicals, improper disposal 
of waste, and/or radiation. Here, we are interested in building set functions that would permit us 
to estimate contaminants in a cubic mm of soil.*   

We will begin by classifying soil contaminants into four categories 1) industrial, 2) 
agricultural, 3) waste (human and animal waste product), and 4) radioactive. Each of these sets 
we will signify as I, A, W, and R. The set I is the set of all soil that contains industrial 
contaminants.  We will define the sets A, W, and R similarly. Let iω  be the ith square millimeter 
of soil selected for chemical evaluations.  Let’s now define the indicator function ( ) 1

iI i Ie ωω ⊂=  
that denotes membership in the soil samples containing industrial pollutants. Note that this is a 
measurable function. Define analogous functions for the other three classes of ground pollutants. 
Then define the spectrum of the ith soil sample, is the short subsequence  

 
                             ( ) ( ) ( ) ( ), , ,i i i iI W NAe e e eω ω ω ω   
 
i.e.,  a collection of zeros or ones, depending on the soil’s contaminant components. For example 
0,0,0,0 denotes no soil contamination, while the sequence 0,1,0,1, denotes animal and nuclear 
contamination. We can define a more refined elementary function where there are multiple 
contaminants e.g. ( ).IA ie ω   Now define the simple function  
 

( ) ( ) ( ) ( ) ( )i I I i A A i W W i N N if e e e eω α ω α ω α ω α ω= + + +  
 
where the constants , , ,I A W Nα α α α   are the weighting factors necessary to permit the relative 
danger posed by the pollutants to be compared to one another. Then ( )if ω   reflects the 
pollution burden of that square millimeter of soil.  
                                                 
* This is certainly very small, but it permits us to reasonably rely on that volume having one and only type of 
polution 
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If we can further refine the class of pollutants (for example, industrial can be broken 
down to benzene compounds, nitrous oxides, sulfur oxides, etc., while nuclear waste can be 
further classified by element, e.g., uranium, thorium, etc. ) we can more explicitly define the 

burden function. Thus we might think of ( )n if ω  as ( )
1

1
i j

n

n i j A
j

f ωω α ⊂
=

= ∑ that reflects a more 

refined elaboration of the burden of waste in the cubic millimeter of soil. Of course ( )n if ω  
becomes increasingly refined as n continues to increase. In a time of increasingly precise and 
detailed refinement, n can become quite large.  

In addition, we have the freedom to build up sets iB  from the iω  elements. For example, 
we can build up iB  to be a square foot of soil (comprised of 90,000 individual iω ’s.) We could 
also define iB to the be the set of land comprising the banks of a meandering stream.  In this 

circumstances, we write ( )
1

.1
i j

i

n

n j A
B j

f B ω
ω

α ⊂
⊂ =

= ∑ ∑ What provides flexibility here is the many 

different ways we can assemble the sets iB  and the degree to which we can partition the 
pollutants all using simple, measurable  functions. 
 
Building a disease burden function 
We can also take a similar approach for a more general set function. Consider a patient at risk for 
a cardiovascular disease. Let ( )iA t  be the set of clinical events that the patient has experienced 
at this point in time t. Then define a collection of sets that contain classes of these events. For 
example let tH  be the number of heart attacks at time t. Similarly, let , ,t tS U  and tD  be the 
sets of numbers of  strokes, cardiovascular surgeries, or deaths on or before time t respectively.* 
Now define a simple function 
 

                  ( ) .1 1 1 1
i t ii t ii t ii tt i t H t S t U t Mf a b c dω ω ω ωω ⊂ ⊂ ⊂ ⊂= + + +   

 
Where , , ,t t t ta b c d  are non-negative constants. This function ( )t if w  comprises a weighted sum of 
the events that have occurred for the ith subject at time t. However, note that although each of the 
four components of the indicator function is a set function, it is a set function at a particular point 
in time. We can sum this over time to compute 
 

 
( ) ( )

0 0 0

0 0
.

1 1

1 1
i t i t

i t i t

T T T

T i t i t H t S
t t t
T T

t U t M
t t

g f a b

c d

ω ω

ω ω

ω ω ⊂ ⊂
= = =

⊂ ⊂
= =

= = +

+ +

∑ ∑ ∑

∑ ∑
 

 
The sum is a collection of the accumulated burden of events up to time T. Also note that as in the 
previous example, this is a function of .iw  This is a complicated function and not parametric. 
However, by starting with set functions, we have built up a simple function with many 
components that through its flexibility (e.g., different function weights that are themselves a 

                                                 
* The elements of each of ,  and are simply natural numbers reflecting the number of possible events 

that could have occurred at time t. For example  simply reflecting the number of possible heart 
attacks that the patient may have sustained at time t. An individual experiences only one death of course. 

tH , ,t tS U tD

{ }1,2,3,...tH =
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function of time) permit us to coalesce the function’s complexity. A useful question is what does 
this function look like when the increments of t are quite small (e.g., seconds) and T becomes 

very large. This begins to look like ( )
0

lim ,
T

t iT t
f A

→∞
=
∑ representing the lifetime burden of these 

events.   
Consider that any attempt to compute this disease burden function parametrically is a 

challenge. The use of indicator functions, converting them  to the limit of simple functions was 
much easier because we did not have to make assumptions about relationships between 
complicated variables; essentially, we just counted. We will later see that although we may not 
be able to identify this function parametrically, we will be able to integrate it.* 
 
Urine production 
The continued normal function of the body relies on the intake of water, nutrients, and calories, 
and the removal of waste products from the body. The major organ systems involved in 
removing wastes are the skin and kidneys.† 

The bulk of the kidney is made up of nephrons, which, like the alveolus in the lung is not 
a cell, but a functioning physiologic unit that itself is made up of different cell types. It is 
principally composed of a thick mesh of capillaries and tubules. The capillaries are specially 
adapted to identify and remove metabolic waste products and toxins. This filtrate is then 
collected into the tubules, which when they join with other tubules of the kidney produce the 
ureter which guides the flow of urine to the bladder. Normal kidneys have between 800,000 and 
1,500,000 nephrons apiece.  

Now let’s define an ( ),Ω Σ  sample space, σ-algebra pair representing all of the nephrons 
in the kidney. We select one nephron iω ⊂ Σ  and ask how well that nephron is functioning over 
time. Let’s sample this nephron once per minute t and define ( )t if ω  as the function that 
summarizes the performance of the ith nephron at time t. It would be difficult to characterize the 
function of this complicated unit parametrically since it must handle all waste products and 
toxins. What would be the parametric form? Log linear?  Quadratic? Hyperbolic? Even 
trigonometric? Some combination of these?   

However, what we can do is create a large collection of indicator functions that capture 
this physiologic function. Define a collection of sets jS  one set for each of the known waste 
products and poisons.  Set ,j tS  is the set of all nephrons that appropriately filter toxin j at time t. 

Then let ( )
,, 1

i j tj t i Se ωω ⊂=  characterize the ability of the ith nephron to filter  the thj  waste product 
of poison at time t. Each nephron’s function can then be characterized at time point t by a 
spectrum of activity  

 
( ) ( ) ( ) ( ) ( )1, 2, 3, 4, ,, , , ..... .....t i t i t i t i j t ie e e e eω ω ω ω ω  ,  

 
which like in the preceding environmental toxin example is a sequence of zeros and ones 
defining a spectrum of filtering functions. Now we define a simple function at time  t, 

( ) ( ), ,
1

n

n t i j t j i
j

f eω α ω
=

= ∑  where the jα  are scaling constants that permits the function ( ),n t if ω  to 

be unitless. Then this function reflects the urine producing functionality of the nephron, defined 
not by the simple measure of urine output, but by the nephron’s ability to filter each of the 

                                                 
* Drawing on the monotone convergence theorem. 
† While liver heptocytes play a major role in the detoxification of harmful substances, these detoxified compounds 
are not directly excreted from the body by the liver but are transported to the kidney for final removal.  
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known molecules that it was designed to remove. We need only compute

( ) ( ),
0 1

T n

T i j t j i
t j

f eω α ω
= =

= ∑∑ to capture the filtering experience of the single nephron iω in the 

[ ]0,T  time interval.   
With this result in hand, we can compute the filtering experience of any collection of 

nephrons. Let jA ⊂ Σ  be a set of nephrons. We have complete freedom in determining .jA For 
example, jA could be all of the nephrons in the left kidney, or all cortical nephrons, or all 

nephrons that are in an area of disease. Then ( ) ( ),
0 1i j

T n

T j j t j i
A t j

f A e
ω

α ω
⊂ = =

= ∑ ∑∑ would represent the 

functioning of that unit. In fact, we can use the measurability of that function to define all 
nephrons for which the function is less than some value, beginning to identify a measure of  the 
precursor of kidney disease, here define ( ){ }/ .D i T iA f Cω ω= <  
 
The eye and color vision 
We can develop a similar model for the reception of light by the retina. The retina is a cell-dense 
organ at the back of the eye. It is composed of two different active types of light sensitive cells, 
cones and rods. The rods are sensitive to low light circumstances and transmit principally black 
and while images. The cones principally transmit color.  

In the fovea (the small area of the retina where the visual acuity is the greatest), the 
density of cones is approximately 150,000 per mm2. This density suggests that we might use 
indicator functions to develop a metric for governing the sensitivity of the retina to light. Let’s 
begin with identifying a ( ),Ω Σ  pair reflecting the sample space and σ-algebra of cones in the 
retina. We let iω  be a particular cone.  

Consider a collection of sets { }kA each representing a range of mutually exclusive sets of 
contiguous light wavelengths. 

Each individual set kA is a length in nanometers and can be quite narrow. Now  let’s also 
define an indicator function ( ) 1

i kk i Ae ωω ⊂=  This indicator function maps 1 to a cone if that cone’s 
sensitivity to light is in the set kA . Then following the previous examples, then the sequence  
 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4, , , ... ...i i i i k i n ie e e e e eω ω ω ω ω ω  
 
is the spectrum of the cone’s sensitivity.  

We can also summarize that cone’s sensitivity to light by computing  ( )
1

.1
i k

m

m i k A
k

f ωω α ⊂
=

= ∑  

We can also define the set’s sensitivity to light in a region of cones denoted by R  by 

( )
1

.1
i k

i

m

m Ak
R k

f R ω
ω

α ⊂
⊂ =

= ∑ ∑  Should the set R be composed of millions of cones, then we have a 

very detailed and intricate definition of that retina region’s sensitivity to light.  
 
Clinical trial analyses 
The statistical analyses of a clinical trial follows a collection of rules that are both efficient but 
also heuristic. Typically, analysis types are divided into prospective (protocol driven) or 
exploratory evaluations. Prospective analyses are then divided into primary evaluations where 
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the type I error rate is controlled for multiple testing, or secondary, where type I error testing 
occurs at a nominal (typically 0.05) level.  Consider a design in which the statistical information 
(the inverse of the variance of an estimate) is also formally considered. We will use a simple 
function to assess the contribution an estimator makes.  
 Here our ( ),q qΩ Σ  will be the space of all statistical analyses that can be conducted from 
a clinical trial’s data set that addresses a particular question. Let iω  be a single analysis from this 
effort, i.e., .iω ⊂ Σ  Let us now create a collection of analysis sets .kA  For example, one such set 
might be the class of exploratory analyses, another would be prospectively declared secondary 
analyses, etc. Then we define the indicator function ( ) 1

i kk i Ae ωω ⊂= . This simply classifies the 
th
iω  analysis.  In this case, the collection of sets { }kA  need not be mutually exclusive. For 

example an analysis might be an exploratory subgroup analysis, where there is a member of  
{ }kA *iA  that denotes exploratory and another jA  that denotes an analysis that is a member of a 
subgroup. In this case the sequence of indicator functions   
 

( ) ( ) ( ) ( ) ( )1 2 3 4, , , ... ...i i i i k ie e e e eω ω ω ω ω  
 
represents the classification, or the spectrum of properties  of the statistical analysis .iω  We now 

create the simple function ( )
1

1
i k

n

n i k A
k

f ωω α ⊂
=

= ∑  where the constants kα  reflect the weights of the 

analyses. Then we might consider  ( )n if ω  the contribution of the th
iω  statistical analysis to the 

conclusion of the trial. We then define the set R  as a collection of analyses { }1 2 3, , ...ω ω ω of 

interest. Then ( )
1

1
i k

i

m

m k A
R k

f R ω
ω

α ⊂
⊂ =

= ∑ ∑  is the contribution of the set of analyses R to the clinical 

trial results.  
 
Summary of simple function creation 
Through  these examples we have developed a process that we can use to build set functions in 
public health.  Specifically, after creating our ( ), ,Ω Σ  we focus on an element iω ⊂ Σ  and 
construct an indicator function for a relevant measurable characteristic of .iω    

Recognizing that this particular characteristic is just one of many possible facets of the 
characteristics of interest, we create first the spectrum of characteristics of ,iω  

( ) ( ) ( ) ( ) ( )1 2 3 4, , , ... ...i i i i k ie e e e eω ω ω ω ω  and then a simple function ( )
1

m

k k i
k

eα ω
=

∑  where the kα ’s 

are scaling constants (converting the function into the units of interest) and m is the total number 
of characteristics the function is to consider. We then define the set function on the set S 
contained in the σ-algebra Σ . If the character of the set S is just the sum of the characters of the 
elements of S, then we compute   

( ) ( )
1i

m

k k i
S k

f S e
ω

α ω
⊂ =

= ∑ ∑  . 

Note that since this is a non-parametric approach, we will not recognize a functional form for 
( )f S  (i.e., ( )f S is not quadratic, or trigonometric for example). 

 These are useful examples, and they become even more illuminating if we focus on the 
properties of the collections of sets i Sω ⊂  of interest. The examples of toxicity, urine 
production and vision all have as there ( ),Ω Σ  basis the tacit assumption that there are only 
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finitely many sets in Ω   and in .Σ  While this assumption is valid for these examples, (there are 
only finitely many nephrons in the kidney), we want to develop a theory that encompasses many 
more possible elements.  

For example, if Ω   was the sample size for the number of possible phenotypes of a 
hepatocyte, then how many elements would it have? Or if Ω   was the set of all possible adverse 
events, how large would it be? In these circumstances, Ω   and Σ  contain many more outcomes 
which are as numerous as the irrational numbers (nondenumerable). So any development must 
take into account that when we talk about the set of all ,i Aω ⊂ ⊂ Σ  this collection of iω  may be 
infinite and nondenumerable. This consideration delivers us to the concept of limits and 
integration.  
 
Limits of simple functions 
One of the disadvantages of the simple function generation process described above is that the 
final result does not have an easily recognizable form and therefore, the function’s behavior can 
be difficult to describe. For example, if the function is cubic, then we know to expect a smooth 
trajectory that changes direction twice. Parameterization helps us to see, characterize and 
understand the function’s behavior.  

Not so with simple functions. It is quite difficult to see and appreciate their behavior in 
the abstract. For example, consider the retinal reception example above, where  

( )
1

1
i k

n

n i k A
k

f ωω α ⊂
=

= ∑  is a measure of the sensitivity to light of the ith cone. What does this function 

look like? How do we even describe the abscissa of this function?  And what about n? What 
happens as n gets larger and larger? Does it even make sense for us to talk about convergence of 

nf as ?n → ∞  And to what function f  would it converge? 
 Stepping back to consider the physiology of vision for a moment, it clearly makes no 
sense to talk about the convergence of ( )n if ω  to the same value for different values of iω  since 
there is no biologically plausible argument stating that the light sensitivity function of one cone 
should converge to that of another cone.* However, if we fix i, then what of the long term 
behavior of ( )?n if ω  
 Even though we do not know what the limit of this function is, we can deduce that it does 
converge for any given .iω  †As it turns out, this convergence and the fact that the constants 

0kα >  are what we need to assert the integrability of these functions.   

                                                 
* This is another way to say that  is not uniformly convergent across all of the   cones.  
† Recall that a sequence  is Cauchy if the further out in the sequence we get, the function values approach each 

other.  Assume that we have an exceedingly fine mesh of  Begin by recognizing that a given cone is not 

receptive to all frequencies of light. We can therefore reorder the light frequencies  so that all of the frequencies 

of light to which the  is not sensitive  occur at the end of the sequence. Thus, for these frequencies 

are all equal to zero and the function  does not increase. Then we can find an N such that 

for all  and   or  satisfying the Cauchy criteria for 
convergence.   

( )n if ω ω

nx
{ }.kA

kA

iω
( ) 1

i kk i k Ae ωω α
⊂

= ( )n if ω

n N> m N> ( ) ( )m i n if fω ω= ( ) ( ) 0m i n if fω ω ε− = ≤
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 But what does integrability mean?  Specifically, can we integrate this simple function? 
What does integration even mean if we cannot write down the function’s final form, but conceive 
of as only ( )lim ?n in

f ω
→∞

  

Measure theory answers these questions for us.  
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Advanced Binomial Distribution 
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Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
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Measure and its Properties 
 
 

We have talked in fairly nonmathematical ways about the concept of measure, discussing 
it as an operation on a set that produces that set’s content or value. As initially developed by 
Henri Lebesgue, its use was focused on the sets of numbers that constitute intervals on the real 
line. This tool of using the real line as the object of measure theory helps us to understand some 
of its implications, since we know so much about the real line (e.g., how to measure the length of 
an interval). 

However, the intriguing nature of measure theory for us is that it applies to measuring set 
content in general and is not restricted to real line intervals.  Therefore, measure theory can be 
used to measure the wealth of families, the content of microRNA in a specimen, or the quantity 
of radiation in a room.  

But, while we have a great deal of freedom in defining our “measure”,  it must have some 
common features to be useful. Here, we introduce its important characteristics and provide their 
motivations. 
 
Prerequisites 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Sequences of Sets 
Sequences of Functions 
Set Functions in Measure Theory 
Simple Functions in Public Health 
 
Sample space and the sigma algebra 
Recall that the sample space Ω  is the ultimate source of sets that concern us. The members ω of 
Ω  are the building blocks of sets in which we hold the greatest interest.  Recall that the set Ω  
can have a relatively small number of elements (for example the number of patients in an 
infectology ward on a given day), or it can have an immense number of sets (the individual cubic 
nanometers of atmosphere over the Pacific Ocean). The limitations of the constituents of Ω  
reside only within the scope of the problem and the imagination of the worker. 

Once Ω is established as the foundation, the σ-algebra Σ   is generated.  Remember that 
Σ   is nothing more than the collection of sets built from a combination of the elements in Ω 
using the elementary set operations of unions, intersections, and complements. While Σ  is easy 
and systematic to construct, the actual number of sets in Σ   can be immense.  
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To begin, every element iω  that is contained in Ω is also contained in .Σ  Σ  also contains 
the null set. In addition, Σ   contains every possible union of different elements in Ω, first taken 
two at a time { } { } { }1 2 1 3 1 4, , ....ω ω ω ω ω ω∪ ∪ ∪  , then three at a time, and so on. Next, Σ  contains 
all of the intersections, then unions of intersections, then intersections of unions in all of their 
complexity. From here, the process of building Σ   continues, this time including complements of 
sets. 

Thus, even when Ω  is small, Σ  can be quite large*, and when Ω  is large (such as cubic 
mm. of soil at an industrial waste dumping ground) then the σ-algebra Σ   can be quite 
overwhelming.  
 
The four core measure properties 
Once Σ  is identified, we are free to create set functions on it. Remember that the only property 
that a measurable function must have is that it must be positive, and that it must pass the 
inspection test, i.e., every value that it takes must map back to a set in .Σ We have tremendous 
freedom in defining measurable functions.  

However, measure is different than a measurable function. A measurable function is a 
non-negative set function that passes the inspection test and assigns a value to a set. Measure 
does not just assign a value to a set–it assigns content. Thus there are properties of content 
assessment that go beyond simply assigning a number to the set:   
 
Measure property 1 
If set A  is a member of ,Σ , then ( )Aµ  (called “the measure of A”) must be a non-negative real 
number.  
 
Just as measurable functions must be positive, so too must measure be a number greater than or 
equal to zero. Thus the measure of a set does not map a set to another set, or a set to a 
multidimensional vector. It maps the set to a real number that cannot be negative.  This real 
number, ( )Aµ   is the measure of, the content of, or the value of the set A .   
 How the set is converted into a number is the property of the measure. For example, if Ω  
is the set of all cubic centimeters of a lake, and the set A is contained in its σ-algebra Σ , then one 
possible candidate for a measure † might be the oxygen content of sets ( )Aν   A ⊂ Σ ;  a wholly 
separate measure ( )iξ ω  could return the algae density of that same set A.  In addition, the 
measure could simply be a 0-1 dichotomous measure, e.g., does the set A  contain any 
hydrocarbons. However, the measure or value itself must reside on the non-negative real line.  
 
Measure property 2 
If µ  is a measure on ( ),Ω Σ  then ( ) 0.µ ∅ =    
This statement buttresses the notion that the measure provides value or content to sets residing in 
Σ   by permitting no value or content to the empty set. Even though the set ∅  resides within ,Σ   
the measure we attach to it is by definition zero. For example, while one can quite reasonably 
define a measure based on the number of bacteria that inhabit a cubic mm of space, it makes 
little sense to ask what is the measure or content of “no space”. The statement ( ) 0µ ∅ =   is a 
mathematical statement of that reality, tightening the link between measure as a practical 
assessment of content.   
 

                                                 
* If  for example, contains three and only three elements,  contains  over thirty elements. 
† Assuming that the other three measure properties are upheld. 

Ω Σ
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Measure property 3 
If sets A  and B   are both elements of Σ  such that A is contained in B, then ( ) ( ).A Bµ µ≤  

Another way to say this is that if B contains A, then ( ) ( ).B Aµ µ≥  
 This follows easily from consideration of elementary set theory. If  A B=  then since A  
contains B  and B  contains ,A  it must be so that ( ) ( ).A Bµ µ=   For other circumstances, we 
begin with a very helpful formulation of the set B  as 
 

( )
{ } { }.

c

c

B B

B A A

B A B A

= ∩ Ω

= ∩ ∪

= ∩ ∪ ∩
 

 
Note that B A∩  and cB A∩  are disjoint.  

Now, if ,A B⊂   then .B A A∩ =   The set cB A∩  is colloquially expressed as  “ B  
without A  “, or B A− .*  

Since these sets are disjoint, ( ) ( ) ( ) ( ).B A B A Aµ µ µ µ= + − ≥  We will return to this 
construction, providing a formal demonstration of this when we consider the next property of 
measure.  

As another example, from this perspective, we can think of a collection of sets nA   all in 
,Σ  such that 1 2 3 ... ...nA A A A⊂ ⊂ ⊂ ⊂ ⊂  . This sequence property of increasing sets, each one 

containing the set preceding it, is referred to as monotonicity. Then according to this measure 
property we must have  

( ) ( ) ( ) ( )1 2 3 ... ...nA A A Aµ µ µ µ≤ ≤ ≤ ≤ ≤   
This third measure property provides for the accumulation of measure, which increasing 

as the set's content increases so that larger sets accumulate no less measure than smaller sets 
(Figure 1).  

 
 

                                                 
* Technically, there is no set operation as .B A−  However, since cB A∩  expresses the same concept as 
substraction, we will let .cB A B A− = ∩   
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Measures of unions of sets 
Our work on the properties of measure along with our set theory background has put us in the 
position to consider the measure of the unions of sets.  There are several different scenarios that 
we will consider.  
 
Equivalence 
 Let’s begin with the concept of equivalence, that is, if ,A B=  then ( ) ( ).A Bµ µ=  

If ,A B=  then both A B⊆  and .B A⊆  From property three of measure we know that 
A B⊆ implies that ( ) ( ).A Bµ µ≤  However, it is also true that ,B A⊆ implying that 

( ) ( ).B Aµ µ≤ The only way that both inequalities involving the measure are true is if 

( ) ( ).A Bµ µ=  Thus, equivalent sets must have equivalent measure.  
 We can take this further. If the sets A  and B  are the same, then we would expect that 
the measure of the union of the sets ( ) ( ) ( ).A B A Bµ µ µ∪ = =  How can we show this?  

If  ,A B=  then A B A B∪ = =  and since the sets are equivalent, 
( ) ( ) ( ).A B A Bµ µ µ∪ = =   

 
Disjoint sets 
If the two sets A  and B  are disjoint, then is it true that ( ) ( ) ( )?A B A Bµ µ µ∪ = +   

Let’s assume that it is not true. For example, that ( ) ( ) ( ).A B A Bµ µ µ∪ ≤ +  Then there 

must be some set C  such that ( ) ( ) ( ) ( ).A B A B Cµ µ µ µ∪ = + −  Where must this set C  reside?  
If C is disjoint from each of sets A  and B , then  C is not part of the union of sets A  and B  and 
the proposition fail.  

Alternatively, C could reside within either A  or .B  Assume .C A⊂  Then 
( ) ( ) ( ) ,cA C A Cµ µ µ− = ∩ and .cA C B A B∩ ∪ ≠ ∪ A similar argument follows if .C B⊂  So

( )A Bµ ∪ cannot be less than the sum of the measures. 
Can the measure of the union of disjoint sets be greater than the sum of the measures? 

That would mean  ( ) ( ) ( ) ( ).A B A B Cµ µ µ µ∪ = + + Clearly the set C  would reside outside 
each of sets A  and ,B  and therefore  C A B⊄ ∪ , another contradiction.  

Thus ( ) ( ) ( )A B A Bµ µ µ∪ = + for two disjoint sets. 

  
Measure of complements 
The notion of disjoint sets serves well when we try assess the measure of complements. Given an 
( ),Ω Σ  pair and a set ,A ⊂ Σ  we know that .cA A∩ = ∅  We also know that .cA A∪ = Ω  These 
two statements permit us to write 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ,

c c

c

A A A A

A A

µ = µ µ µ

µ µ µ

Ω ∪ = +

= Ω −
  

 
Nondisjoint Sets 
There are several circumstances that must be formally considered when the sets A  and B  are 
not disjoint.  



The four core measure properties 111 
 

 

For example,  if  ( )Aµ ≠ ∅  and A B⊂   then ,A B B∪ =  and 

( ) ( ) ( ) ( ).A B B A Bµ µ µ µ∪ = < +    
 However, if ,A B≠  and ,A B∩ ≠ ∅  some additional steps are needed to find and then 
bound ( ).A Bµ ∪   

We know that we can write 
 

( ) ( )
( ) ( ).

c

c

A A B A B

B A B B A

= ∩ ∪ ∩

= ∩ ∪ ∩
 

 
From this construction, we see that A B∪  is the union of three disjoint sets, 

, , .c cA B B A A B∩ ∩ ∩  Since these sets are disjoint, we can write 
 

( ) ( ) ( )
( ) ( ) ( ).

c

c

A A B A B

B A B B A

µ µ µ

µ µ µ

= ∩ + ∩

= ∩ + ∩
 

 
Thus ( ) ( ) ( ) ( ) ( )2 .c cA B A B A B B Aµ µ µ µ µ+ = ∩ + ∩ + ∩  
 
Now turning to the union, we note that since  

( ) ( ) ( ) ( )
( ) ( ) ( )

c c

c c

A B A B A B A B A B

A B A B A B

∪ = ∩ ∪ ∩ ∪ ∩ ∪ ∩

= ∩ ∪ ∩ ∪ ∩
  

And these are disjoint sets, then 
( ) ( ) ( ) ( ).c cA B A B A B B Aµ µ µ µ∪ = ∩ + ∩ + ∩  

 
This is less than the ( ) ( )A Bµ µ+  since the measure of the intersection is only needed once. So, 
in general we may write  
 

( ) ( ) ( ).A B A Bµ µ µ∪ ≤ +  
 

Based on this result, Property four of measure is not surprising. 
 
Measure Property 4 

If an infinite sequence of disjoint sets nA  is contained in Σ , then ( )
11

n n
in

A Aµ µ
∞ ∞

==

 
= 

 
∑

 This is 

known as countable additivity.  
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Note that the upper bound of the index is infinity. There is another concept where the 

upper bound is finite, termed finite additivity i.e., ( )
11

.
k k

n n
in

A Aµ µ
==

 
= 

 
∑

 This is a derivative of 

the countable additivity property which can be easily demonstrated.*  
 Non-null intersections of these sets requires a change based on the consideration of this 

complication.  If the sets are not disjoint, then ( )
11

.n n
in

A Aµ µ
∞ ∞

==

 
≤ 

 
∑

Furthermore, using 

DeMorgan’s law we can write this as  ( )
11 1

.c c
n n n

nn n

A A Aµ µ µ
∞ ∞ ∞

== =

   
= =   

   
∑ 

 The countable 

additivity property is very powerful† 
 

As another example,  let’s assume we have two sets  A  and B  each contained in the σ-
algebra Σ . As is our custom, let’s define the set operation of A B−   as .cA B A B− = ∩  Then 
the set is equal to different sets based on the relationship between the two sets (Figure 2).  
 

<<Figure 2>> 
 

We can easily deduce ( ) ( )cA B A Bµ µ− = ∩ for .B A⊂  We begin by writing ( ).cA B A B= ∪ − ‡ 

Then, the sets B  and A B−  are disjoint since ( ) ( ) ( ) ( )c cB A B B A B B A B B∩ − = ∩ ∩ = ∩ ∩ ∩  

which is .B ∩ ∅ = ∅  Thus ( ) ( )( )cA B A Bµ µ= ∪ −  and by finite additivity, 

( )( ) ( ) ( ).B A B B A Bµ µ µ∪ − = + −  Therefore, ( ) ( ) ( )A B A Bµ µ µ− = −  when .B A⊂    

                                                 
* We note that  Now lets choose our collection of sets such that for n = 1 to k,  

However, for all n > k, Then  Thus, for this collection of  the 

infinite union reduces to a finite union of exactly the  sets that we want. Also, we have 

Thereforefor any collection of finite sets contained in   

 

† For example, if we follow the proof above, this time lettting for all n, we find  Also 

 Since in this case the  are each identifable and must be nonnegative, the only possible choice for 

their value is zero. Thus  

 
‡ This follows from  Since  then 

 and   
 

( )
11

,n n
nn

A Aµ µ
∞ ∞

==

 
= 

 
∑

.nA ≠ ∅

.nA = ∅
1 1 1 1

.
k k

n n n
n n n k n

A A A
∞ ∞

= = = + =

 
= ∪ ∅ = 

 
   

,nA

nA

( ) ( ) ( ) ( )
1 1 1 1

0.
k k

n n n n
n n n k n

A A A Aµ µ µ µ
∞ ∞

= = = + =

= + = +∑ ∑ ∑ ∑ ,Σ

( )
11

.
k k

n n
nn

A Aµ µ
==

 
= 

 
∑

nA = ∅
1

.n
n

A
∞

=

= ∅


( )
1

0.n
n

Aµ
∞

=

=∑ nA

( ) ( )
11

0.n n
nn

A Aµ µ µ
∞ ∞

==

 
= ∅ = = 

 
∑

( ) ( ) ( ) ( ).c cB A B B A B B A B B∪ − = ∪ ∩ = ∪ ∩ ∪ B A⊂

. ,cB A A B B∪ = ∪ = Ω ( ) .B A B A A∪ − = ∩ Ω =
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This fourth “countable additivity” property of measure, while appearing somewhat 
abstract right now is actually quite important. It permits us to deconstruct the measure of a large 
union of sets into the measures of the individual constituents of these sets.  

In addition, if the individual sets that compose the union are disjoint, we can simply sum 
the measures. Much of the developmental work of measure theory is based on the ability to 
deconstruct the union of sets into an equivalent union of different but disjoint events, then using 
the property of countable additivity to sum the measure of these disjoint sets. This is part of the 
heart of the proof of the monotone convergence theorem.  
 
 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Basic Properties of the Lebesgue-Stieltjes Integral 
Monotone Convergence Theorem 
Some Classic Measure Theory Results 
Asymptotics 
Tail Event Measure 

 
Advanced Probability 
Bernoulli Distribution – In Depth Discussion 
Advanced Binomial Distribution 
Multinomial Distribution 
Hypergeometric Measure 
Geometric and Negative binomial measures 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
Continuous Probability Measure 
Moment and Probability Generating Functions 
Variable Transformations 
Uniform and Beta Measure 
Normal Measure 
Compounding 
F and T Measure 
Ordering Random Variables 
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Working with Measure 
 
 
Prerequisites 
Elementary Set Theory 
Sequences of Sets 
Sequences of Functions 
Set Functions in Measure Theory 
Simple Functions in Public Health 
Measure and its Properties 
 
Why does measure need its properties? 
Most measurable set functions do not constitute a measure.  In order to be so, a measurable 
function must have the four properties we just described: 1) map a set to a nonnegative number 
on the real number line, 2) map a null set to 0, 3) if the set A contains the set B, then the measure 
of A is greater than or equal to that of B, and 4) countable additivity.  

So, why do we need these four properties, and especially, why insist on countable 
additivity? 
 The motivation for properties 1 – 3  comes from the need and desire to make measure 
useful. We want it to assess the content or value of an item. Properties 1-3 nicely match this 
intuition.   

However,  property four (countable additivity) has a different motivation.  It is focused 
on aggregating measure across sets. Specifically, given that measure can be assigned to a 
collection of sets, it governs how measure may be assigned to other sets which can be formed 
from the original collection.  
 
Path construction 
For example, suppose that we want to measure a set A.  The procedure to obtain the measure of A 
is to “cover” A with sets that each have known measure. If the collection of sets whose measure 
we know “nicely” covers the set A then we can build up to the measure of A by 1) noting the 
precise union, intersections and complement operations needed to construct A (the path of set 'A
s construction),  and then 2) build up the measure of A  by, following the path of its construction, 
adding and subtracting the measure of the constituent sets that make up .A  This is where 
countable additivity is important.  
 
Example: Measure of three sets 
As a simple example. Consider the sets A, B and C in Figure 1.  
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We are tasked with finding ( ).A B Cµ ∪ ∪  It is easiest if we can disassemble the set A B C∪ ∪
into the union of disjoint sets which are themselves a function of the original three sets. From 
Figure 1, we can write 
 

A B C∪ ∪ = 
( ) ( ) ( )c c c

c c c

A B C B A C C A B

A B C B C A A C B
A B C

∩ ∪ ∩ ∪ ∩ ∪

∩ ∩ ∩ ∩ ∩ ∩
∩ ∩

  

     

 
We can then write the ( )A B Cµ ∪ ∪  as the sum of the measures of these seven sets. While this 
is not the only way to write the measure of this union, its advantage is that it breaks the union 
down into a collection of subsets. If the measure of these subsets can be assessed, then the 
measure of ( )A B Cµ ∪ ∪ is easily attained.   

For example, if it takes 
1

k

n
n

A
=


to nicely approximate set  A, where all of the sets nA  are 

mutually disjoint*, then ( )
1

k

n
n

A Aµ µ
=

 
=  

 


 and since the countable additivity provides  

( ) ( )
11

k k

n n
nn

A A Aµ µ µ
==

 
= = 

 
∑

then we have the measure of the set we want.  

 
Outer and inner measure  
The approximation of sets by collections of other sets is an important concept in set and measure 
theory.  

Let’s explore this in detail by beginning with a thought experiment. There is a set A 
within the interval ( ) ( ), , , .a b A a b⊂  You want to know its measure, which, in this case we 
define as the line’s length.†  

You have at your disposal and infinite number of people each of whom has their own 
individual collections of intervals, whose lengths they know. Some have a finite collection of 

                                                 
* This assumption of mutual exclusivity is a big one. However, in many circustances, as we did in the previous example, we will 
have to work to have the sets that cover A be mutually disjoint.  
† This is what is called Lebesgue measure, not to be confused with Lebesgue measure theory which is more general. 
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intervals, others have an infinite but countable number of intervals. But, each claims that by 
approximating A  though set operations applied to their intervals, they will be able to compute 

( ).Aµ    
 Since A is known, you can divide the candidate collections of intervals into four different 
groups. The first group of candidates have families of intervals that do not intersect with A at all 
(i.e., they can only approximate cA ). They cannot be used to get the length  (or measure)  of A  
and are rejected out of hand.  

The second group only cover part of A and also cover part of cA   They are also rejected.  
 

Outer measure 
The third group of individuals have interval families that cover all of A but also cover part of .cA  
Lets collect these sets. It the ith such individual provides disjoint sets ,,1 ,2 ,3, , ,.... ,.....i ni i iA A A A  and 

we know that the union of these ,i j
j

A


 covers A, or , .i j
j

A A⊃


 Now this coverage may be 

precise and capture A exactly, or may be coarse, and cover not just A but a sizable component of 
cA  We do this for every individual in this group, collecting their intervals 

,,1 ,2 ,3, , ,.... ,.....i ni i iA A A A   some collections doing a good job and others doing poorly.  
Now, we can manage their varying ability to “tightly” cover A  by noting that since they 

all cover A, their intersection must cover A. Thus ,i j
i j

A


should be a tight upper bound for A. 

This is the infimum of these unions of sets. We write this as ,inf .i ji
j

A
 
 
 


 If the sets are disjoint, 

then the  ( ) ( ),
1

inf .i ji j
A A

∞

=

 
<  

 
∑µ µ  We define ( ),

1
inf i ji j

A
∞

=

 
 
 
∑µ as the outer measure of A.  

 
Inner measure 
The fourth group of individuals each has a collection of sets, but this time they reside wholly 
within A.  As before,  the kth individual of this group produces a collection of infinite disjoint kB
sets such that , .k j

j

B A⊂


 Each of these  union serves as an approximation of A. However, these 

unions are each within ,A  the best coverage of A is obtained by taking the union of all of these 
unions. Thus ,k j

k j

B A⊂


   approximates  A.  This is the supremum or greatest lower bound, 

,sup k j
k j

B
 
 
 


 and is known as the inner measure of A. We write ( ) ( ),
1

sup .k j
k j

A Bµ µ
∞

=

≥ ∑  

Thus, we have two ways we can use sets with known measure to cover a set of unknown 

measure. However, neither the ,inf i ji
j

A
 
 
 


nor the ,sup k j
k j

B
 
 
 


are guaranteed to be exactly A. 

They approximate A from above and below respectively. Since we know that each of the ,i jA  and 

,k jB  have measure, then  ( ), ,sup inf .k j i jkk j j

B A A
      

≤ ≤               
 

µ µ µ  Using countable additivity, 
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we have ( ) ( ) ( ), ,
1 1

sup inf ,k j i jik j j
B A A

∞ ∞

= =

   
≤ ≤   

   
∑ ∑µ µ µ  but this does not tell us what the ( )Aµ  is. We 

can write this as ( ) ( ) ( )*
* ,A A A≤ ≤µ µ µ  where ( )* Aµ is the inner measure and ( )* Aµ  the outer 

measure of A. 

Let’s examine the outer measure of A. Since we know 
1

inf ji
j

A A
∞

=

⊆


 there is some set *E  

such that *

1

inf ji
j

E A
∞

=

⊆


and * .cE A⊆  Thus ( ) ( )*

1

inf .ji
j

A E A
∞

=

 
+ =  

 


µ µ µ  Similarly, regarding 

inner measure, there is a set *E  such that , *sup .k j
k j

B E A
 

∪ = 
 


then  

 

( ) ( ) ( ) ( ) ( )*
, * ,

1 1
sup inf .k j i jik j j

B E A A E
∞ ∞

= =

   
+ = = +   

   
∑ ∑µ µ µ µ µ And if ( ) ( )*

* ,E E=µ µ  then outer 

measure and inner measure are equal and we say the set A is measurable.  
 

 
Limits of measure 
We have discussed how to compute and understand the limits of an infinite sequence of sets. A 
relevant question is how does measure operate term by term when we examine these sequences?  
For example if a sequence of sets nA  converges to a set A* then under what circumstances can 
we say that the measure of the limit converges to the limit of the measures, i.e., 

( ) ( )lim lim .n nn n
A Aµ µ

→∞ →∞
=   

 Why do we even care that this property may be true?  The reasoning begins with the 
contribution of simple functions. As we have shown, it is possible to generate simple functions 
that assess the presence of characteristics of systems in public health. We will be interested in 

determining the value or measure of these systems. This would be akin to computing  ( ).lim nn
Aµ

→∞
  

However, it is difficult to see what lim nn
A

→∞
actually is, much less take its measure. 

However we do know what the ( )nAµ is and it is possible to compute its limit. Therefore the 

equality ( ) ( )lim limn nn n
A Aµ µ

→∞ →∞
= enables us to compute a desired but unrecognizable function 

( )lim nn
Aµ

→∞
by taking the limit of a recognizable one.  

 However, while this equality is in general not true. it is a property of certain types of sets. 
One such collection of sets is those that have the monotonicity property; i.e., they are 
“increasing”, i.e., in the sequence of sets 1 2 3, , ,.... ,A A A  where 1 2 3 ... .....nA A A A⊂ ⊂ ⊂ ⊂ ⊂   (Figure 
1).  

                                                 
* Recall that, if the limit of an infinite sequence of sets  exists, then every element of A must be in all but finitely 

many of the  and every element that is not in A must only be in finitely many of the for A to exist. This is 
clearly the case for an increasing sequence of sets for which A contains all of the sets in the entire sequence.. 
 
 

nA
,nA ,nA
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If the sequence of sets is increasing, we can demonstrate that ( )
1

lim lim .
n

n nn n
i

A Aµ µ
→∞ →∞

=

 
= 

 


  

 The key is to recreate nA  from a sequence of disjoint sets. Define a new but related 
infinite sequence of sets { }nB  such that 1 1 2 2 1 3 3 2. ; ;B A B A A B A A= = − = −  This defines B as 
the donut, i.e., the space between nA  and 1.nA −  (Figure 2) 
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Note that the family of sets B  are disjoint. * The construction of this sequence of pairwise 
disjoint sets is critical because it permits us to invoke the countable additivity property of 
measure.   

Let’s begin. We note from the construction that in fact,  
1 1

n n
n n

A B
∞ ∞

= =

=
 

 and thus  

1 1

.n n
n n

A Bµ µ
∞ ∞

= =

   
=   

   
 

  Now we can invoke countable additivity to write ( )
11

.n n
nn

B B
∞ ∞

==

 
= 

 
∑

µ µ This 

last expression is a simple infinite sum and can be written as ( )
1

lim .
n

in i
Bµ

→∞ =
∑  Now, using finite 

additivity,
 

( )
1 1

.
nn

i i
i i

B Bµ µ
= =

 
 
 

=∑ 

 However, 
1

,
n

i n
i

B A
=

=


 and thus find that 

( ) ( )
11

lim lim lim .
n

i
i

n

i nn n ni
BB Aµµ µ

=
→∞ →∞ →∞=

 
 
 

= =∑ 

  

 
The complete development is as follows.  

 
( ) ( )

( )

1 11 1 1

1

lim lim

lim lim

n n

n n n n in nn ii n n

n

i nn n
i

A A B B B

B A

µ = µ µ µ = µ  

= µ µ

∞ ∞ ∞

→∞ →∞
= == = =

→∞ →∞
=

     
= =     

     
 

= 
 

∑ ∑  



 

Note, that a key to this demonstration was the use of each of the concepts of countable 
and finite additivity. This finding will be an important ingredient in our proof of the Monotone 
Convergence Theorem. 
 This result of having the measure of the limit be the limit of the measure is quite useful. 
However, in the above example, it applies only to increasing sequence of sets. However, there 
are other constructions that are quite useful.  

For example, consider the set of all analyses that are carried out in a clinical trial.  
Among these sets are results provided on primary endpoints, secondary endpoints, and 
exploratory endpoints. In addition, there are subgroup analyses, nonparametric analyses, 
Bayesian analyses,  and analyses based on the general model.   

Let nA be the knowledge gained from the nth analysis. Then, since the analyses are 
themselves not independent of one another, the information that they provide in response to a 
clinical question e.g., “is the therapy beneficial” overlap. If we can depict each circle as a single 

,nA  then they might appear intensely nondisjoint. (Figure 3).  
 
 
 
 
  
 

                                                 
* Consider two sets iB  and jB .Then ( ) ( )1 1i j i i j jB B A A A A− −∩ = − ∩ −  which is ( ) ( )1 1 .c c

i i j jA A A A− −∩ ∩ ∩

While ,i j iA A A∩ =  1 ,c
i jA A −∩ = ∅ making the enire complex equal to the null set, proving the two sets iB  and 

jB are disjoint. 
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We are interested in the total information in the system which we represent as 
1

n
n

A
∞

=


 and we 

would like to compute the measure of this universe 
1

.n
n

Aµ
∞

=

 
 
 


Clearly we cannot write 

( )
11

n n
nn

A Aµ µ
∞ ∞

==

 
= 

 
∑

and thus ( ) ( )lim limn nn n
A Aµ µ

→∞ →∞
=  because of the nondisjoint nature of the sets. 

  
However, suppose we create the following sequence of sets.  

 
1` 1

2` 1 2

3` 1 2 3

...

C A
C A A
C A A A

=
= ∪
= ∪ ∪

 

 

Then 1 2 3 ...C C C⊂ ⊂ ⊂  and 
1 1

,n n
n n

C A
∞ ∞

= =

=
 

 Thus, .n n
n n

A Cµ µ   
=   

   
 

 From our previous 

construction, we have ( )
1

lim lim .
n

n i nn n
n i

C C Cµ µ µ
→∞ →∞

=

   
= =   

   
 

However, since the collection of sets  

{ }nC is increasing, we can write ( ) ( )lim lim .n nn n
C Cµ µ

→∞ →∞
= Thus  

 

( )lim .n nnn
A Cµ µ

→∞

 
 
 

=


 

 
Exploring this at a deeper level reveals that the set of disjoint sets { }iB  that makes this work is  
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1 1 1

2 2 1 1 2 1

3 3 2 1 2 3 1 2

B C A
B C C A A A
B C C A A A A A

= =
= − = ∪ −
= − = ∪ ∪ − ∪

 

 
 
Thus the disjoint sets { }iB are the disjoint contributions of each analysis .iA  We can therefore 
write that  

( ) ( )
1

lim lim .
n

n n in n in
A C Bµ µ µ

→∞ →∞ =

 
  
 

= = ∑

 

 
Thus the measure of the union we seek is the sum of the measures of the independent (i.e., 
disjoint) components that make up that union.  

This technique of carrying out a collection of set operations to give a sequence of sets the 
desired monotonicity property is quite helpful.  
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Measure-Based Integration 
  

Prerequisite 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Sequences of Sets 
Sequences of Functions 
Set Functions in Measure Theory 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
 
Background 
Most students of calculus have an understanding of the role of integration i.e., of “finding the 
area under a curve” and after a period of re-acquaintance, can integrate familiar functions easily. 
They can therefore be forgiven for asking “What’s the big deal with integration now?” when the 
topic comes up in measure theory.  

After all, the notion of integration as area under the curve makes very good intuitive 
sense and is quite practical. Smooth, continuous functions comprise a very rich field, and our 
ability to manipulate their integrals requires no additional consideration from measure theory.  
The area under the curve approach extends to many problems in probability. Use of common 
distributions such as the normal distribution, Laplace distribution, chi-square distribution, etc. 
can be managed nicely. In fact, the central limit theorem  ‒ which itself requires no deep 
understanding of measure theory ‒ leads to the broad generalization of the use of normal 
measure for many problems where the underlying probability model is not normal. While the 
actual probabilities have to be found in tables or other look-up instruments, the explicit 
application of measure theory by the student is not necessary.  
 So, why do we bother with measure theory for integration in general, and for probability 
in particular? 

 In a nutshell, we need measure theory because the problems that we solve without it are 
only a fraction of the problems that we need to solve, and the solution to these more complicated 
problems requires working with functions for whom the notion of area under the curve does not 
help e.g., the disease burden function.  

The developments in measure theory that we review in this chapter provide us the ability 
to not just apply integration as we usually do, but to recognize circumstances where we need to 
integrate but in which the classic Riemann integral fails, and we must turn from our usual 
standard of integration. We will see that integration is not just taking the area over the curve, but 
is more generally the process of accumulation,  Area under the curve is just one type of 
accumulation among many that we will use.  
  
Evolution of integration 
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In the typical calculus course, integration is presented as a “self-contained” process, with no past 
and no future. It simply is, and the student memorizes its rules and tools. In order to understand 
the weakness of the standard “area under the curve integration,” we have to understand 
something of its history. 
 Integration was first discovered not as its own process, but instead as the reverse of 
differentiation.  

Developed independently by Isaac Newton and Gottfried Leibnitz in the late 1600’s*, 
integration had no underlying theory of its own; the Fundamental Theorem of Calculus formally 
described the integral as the reverse of  the derivative. In fact, it wasn’t even called the “integral” 
but instead called the “antiderivative” . While there was a sense that the integral could be related 
to the area under a curve, the theory underlying this had yet to be developed.  

It was Bernhard Riemann who introduced integration as “area under the curve” using the 
concepts of limits. Building on the work of Cauchy (who developed the epsilon-delta approach 
to the limit process), Riemann defined the integral of a curvilinear function f(x) by breaking the 
region over which one was integrating into many vertical rectangles, and then taking the limit of 
the sums of their areas as the rectangles were permitted to get thinner and thinner (Figure 1).  
 

 
 
 
This underlying asymptotic approach solidified the theoretical concept of what was to be known 
as the Riemann integral. Essentially, one 1) partitions the domain of the function into intervals, 
2) for each interval, compute the value of that function at a single point x within the interval, 3) 
compute the product of the function value and the interval width, producing an “area” then 4) 
sum the area of these rectangles.  
 This concept worked very nicely for smooth functions e.g., polynomials. In fact, in the 
standard calculus course, one typically works primarily if not exclusively with smooth curves, 
carrying out our standard integration procedures (e.g., partial fractions, integration by parts, 
trigonometric integration, etc.) easily, assuming that the foundation “rectangle” perspective is 
operating in the background.  

However, they are some circumstances in which the concept of the area under the curve 
starts to breaks down.  Consider for example, a curve that is smooth, except for a small number 
of discontinuities (Figure 2).  
 
                                                 
*  Actually, the truly first theory of integration was developed by Archimedes in the 3rd century BC, using a 
quadrature method. However, it was tightly circumscribe by the requirement of geometric symmetry.  
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Here, our area under the curve (Riemann) approach to integration still holds up nicely – 
but we have to make an adjustment. As long as we can ensure that the rectangle vertices whose 
areas that we need line up with the points of discontinuity, we can still create the rectangles that 
we need. Thus, discontinuities pose no problem for the Riemann approach  − as long as there are 
not to many of them.   
 Nevertheless, this discontinuity adjustment revealed a potential weakness in the Riemann 
integration theory, and workers hammered away at the difficulty discontinuities could pose if 
there were too many of them. Ultimately they identified functions that “broke” the Riemann 
integration process.  
 The best known example is the Dirichlet function defined on the [0.1] as  
 
                        ( ) 1f x =  if x is rational, and  

( ) 0f x =  if x is irrational.  
 
The Dirichlet function is almost indescribably discontinuous since there are infinitely many 
rational numbers interspersed with uncountably many irrational numbers on the [ ]0,1  interval.  

The difficulty here is not the value of the function (it is simplicity itself, taking on only 
the values of  0 or 1), but the domain of the function. The Dirichlet function uses the non-
sparseness of the irrationals, the density of the rational numbers, and the intense inter-spersement 
of the rational and irrational numbers on 0,1    so as to make the concept of “rectangle area as 
integration” break down. The problem is there is no “width” on which to base a rectangle’s area.  

This is an important concept and bears closer examination. The real number line is dense 
in the rationals, because, between any two rational numbers, however close they are, one can 
find another rational number.  However, the rational numbers are also sparse; there is substantial 
space between any two rational numbers. This space is occupied by the irrational numbers. 
Although there are many more irrational than rational numbers  the rational and irrational 
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numbers are tightly interweaved, so much so that one cannot build a rectangle over just a set of 
rational numbers or over just a set of irrational numbers.*   

However, this is just what the Riemann integral of the Dirichlet function requires. In 
order for it to be constructed, we must have an interval on the x axis that is only rational 
numbers. Yet, this is impossible since every interval however tiny must contain irrational 
numbers. Thus, there is no way to identify a rectangle whose expanse on the x-axis consists of 
rational numbers to the exclusion of irrationals. Another way to say it is that the Dirichlet 
function is intensely discontinuous, having a discontinuity at every rational number in [0.1]. †It is 
this real number property of the domain of x that causes the Riemann integral to break down.  
 The Riemann integral breaks down because of the sequence of steps required. In that 
process, we first focus our attention on finding contiguous values of x, essential to the rectangle 
building process. However, what if we reversed the process, instead focusing on the value of the 
function – not its domain. Choose a function value ( )f x  then gather all of the values of x that 
produce the same value of ( )f x  and measure the x’s. 
 
The Lebesgue integral 
The combination of injecting measure into integration was introduced by Henri Lebesgue. Rather 
than build the rectangle by starting with the domain of the function, he recommended that we 
start with the range, i.e., the function values. He also suggested a measure that would be most 
useful to mathematicians.  

Essentially, Lebesgue defined the measure of open sets of intervals on the real line as the 
length of the interval. This measure of the interval has come to be known as Lebesgue measure.‡ 
This is only one of many types of measure, and we will not be restricted to it. However, it is this 
particular measure that is the basis for much of the application of Lebesgue measure theory to the 
real number line.  

It is therefore important to distinguish Lebesgue measure theory (the concept of 
integrating by fixing the value of the function and measuring the set which produces that value) 
from Lebesgue measure (a particular type of measure in Lebesgue measure theory in which the 
measure of an interval on the real number line is the length of the interval).  
 How would Lebesgue measure work for the Dirichlet function?  One writes the measure 
of this function as simply the sum of the values of this function multiplied by the measure of the 
set of x that produce this value. In this case, it would be  
 
          0* measure of irrationals on [ ]0,1  +1*measure of rationals on [ ]0,1  .  
 
The first term is zero. For the second, we note that the rational numbers, though infinite are 
countable. However,  the Lebesgue measure of a countable set is zero.  The second term is 
therefore 0 and the measure of the Dirichlet function is 0. Recall, that, using the Riemann 
concept, the integral was simply undefined.  

                                                 
* As a helpful analogy, think of a pastoral field, extending farther than the eye can see. The rational numbers are the 
blades of grass and the soil that surrounds and is interspersed with these blades is the set of irrational numbers.  
† Many attempts have been made to plot the Diriclet function such as  
https://www.google.com/search?q=dirichlet+function+image&hl=en&tbo=u&tbm=isch&source=univ&sa=X&ei=L
NHEUIuELq322QWgxYGIAw&ved=0CCsQsAQ&biw=1151&bih=849 
‡ One of the reasons that Lebesgue measure is so popular as a didactic tool is that it is the natural counterpart to 
Riemann integration. From the Riemann perspective,  the base of the rectangle x∆ is always the same, regardless of 
the integrand. Defining Lebesgue measure as the length of an integral, creates a firm relationship with Riemann 
integration,setting a solid foundation for the demonstration that Riemann integration and Lebesgue integration are 
equivalent. Of course Lebesgue integration theory is much more general in that it permits many other types of 
measures other than interval length. 
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Fortunately the Lebesgue integral equals the familiar Riemann integral when the number 
of discontinuities is finite,* bringing the familiar findings of the Riemann integral as area under 
the Lebesgue roof. However, the Lebesgue integral and its larger measure theory construct 
permits the integration of many functions that had simply been intractable under Riemann.  

 
Purpose of the measure theory integral 
If we are to approach integration from the perspective of  measure theory we will need some 
notation. The good news is that all that is required is that we re-task the “integral” sign. We let 
∫ announce our intention to measure a set.  

For us the concept of integrating a function in measure theory is easy. Measuring a set is 
the same as integrating an indicator function. However, in order to carry this out, we need a 
metric, or measure.  

 
Examples of measures 
We have already formally developed this metric’s requirements. However, there are many 
metrics that meet these requisites, giving us substantial freedom in formulating unique ones.  In 
general, we will define this metric as µ  and denote ( )Aµ  as “the measure of the set A”. If this 
metric conforms to the following a) it is real valued and nonnegative,  b) ( ) ,0µ ∅ =  c) if ,A B⊂  

then ( ) ( ),A Bµ µ≤  and d) ( )n n
nn

A Aµ µ
 
  
 

≤ ∑

 † then the metric is a measure. 

For example let’s say that we have an ( ),Ω Σ collection and we propose that the metric of 
a set A⊂ Σ   is simply the number of elements of the set (so called “counting measure”). This 
simple counting procedure meets all four properties above, qualifying it as a measure that we 
may delineate as ( ).Aµ   

Another useful example of a metric that meets these criteria and therefore is a measure is 
to let ( ),Ω Σ   be all intervals on the real line, and define ( )A b aµ = −   the length of the interval 

A. We have seen that this particular measure is defined as “Lebesgue measure”.   
 
Indicator Functions in Lebesgue Integrals 
Now, with the triplet ( ), , ,µΩ Σ   where ( )Aµ  is defined for any ,A ⊂ Σ   we can define the 

integral of the indicator function ( ) 1
ii Ae ωω ⊂=  as  

 
                         ( ).1

i A d Aω µ µ⊂
Ω

=∫   

 
Thus the integral of the indicator function over the entire sample space Ω   is defined as the 
measure of the set on which the indicator function is based.  

                                                 
* One way to think of this is that since Riemann uses the rectangle approximation, we adapt the Lebesgue construct 
by using the Lebesgue measure of the base of the rectangle as simply the rectangle’s length on the x-axis. A more 
formal proof is provided here 
† This last property it called countable additivity.  
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How does this process work? We might think of the source material or the domain of the 
integral as all elements contained in .Ω  The integral then inspects these elements in order to 
determine which ones are contained in the set A. The “mass” or the “value” of the accumulated 
sets identified to be in the set A is the measure of A, ( ).Aµ  In some sense, the integral is a sifter 
of elements, tagging and weighing them, assigning nonzero value to only those sets in A. By this 
same reasoning, we can write this as ( ).1

i A
A

d d Aω µ µ µ⊂
Ω

= =∫ ∫  * This is a very different 

perspective then the Riemann “rectangle” approach to integration. 
However, we must be explicit about the measure that we are using because different 

measures provide different results. For example, let ( ),Ω Σ   be a sample space/ σ-algebra pair 

reflecting the subjects in a neurology clinic. We could assign the measure ( )1 Aµ   as the number 
of males in the set A where .A⊂ Σ  This would meet our definition of measure, permitting the 
creation of ( )1, , µΩ Σ  and ( )1 11

i
dω µ µ⊂Ω

Ω

= Ω∫  would reflect the number of males in the 

neurology clinic. Alternatively, we could assign the measure  ( )2 Aµ    as the total number of 

stroke victims in set .A  This also meets our criteria of a measure, and by creating ( )2, , µΩ Σ

permitting the computation ( )2 21
i

dω µ µ⊂Ω
Ω

= Ω∫ as the total number of stroke victims in the 

neurology clinic.  
Note that the indicator function in the above examples stayed the same. All that changed 

was the measure against which the indicator function was assessed.  The freedom that comes 
from selecting a measure requires us to be explicit about the measure that we have selected. 

In classic integration, this notion of the variable with which the measure is taken “with 

respect to” is reflected in the omnipresent expression “ dx ” e.g., in the expression .
b

x

a
e dx−∫  We 

will adapt that and use the expression dµ  which we will interpret as “with respect to the 
measure µ ” with the understanding that we will be explicit about its choice.   

In order to examine the role of indicator functions in the Lebesgue integral, let’s define 
two such functions. The first is ( ) 1

iiM Me ωω ⊂= , the indicator function that identifies males, 

where M is the set of all males in the clinic. Also, we define ( ) 1
iiS Se ωω ⊂=  as the indicator 

function where S is the set of all stroke victims in .Ω  Lets also let mµ  be the measure that counts 
males, and the measure sµ  be the measure that counts strokes.  

Let’s now consider the four integrals,  
 

                                                 
* This follows from  

( ) .

1 1 1 1
i i i i

c

A A A A

A AA

A

d d d d

d A

ω ω ω ωµ µ µ µ

µ µ

⊂ ⊂ ⊂ ⊂

Ω

= + =

= =

∫ ∫ ∫ ∫

∫
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The first integral, collects all of the males in Σ  and then measures that set. Since measure mµ  
measures males, then we write 
 

( ) ,

1 1 1

1
i i i

c

i

M m M m M m
M M

M m m
M

d d d

d

ω ω ω

ω

µ µ µ

µ µ

⊂ ⊂ ⊂
Ω

⊂

= +

= = Ω

∫ ∫ ∫

∫
   

 
the total number of males.  The second integral collects all males in the clinic and then identifies 
the number of strokes in this set. Thus, ( )1

i M s sd Mω µ µ⊂
Ω

=∫ or the number of strokes given the 

participant is a male. Similarly, ( ) ,1
i S m md Sω µ µ⊂

Ω

=∫ the number of males given the patient has 

had a stroke, and ( ) ( ) 1.1
i S s s sd Sω µ µ µ⊂

Ω

= = Ω =∫   

This exercise justifies the differentiation between the set of interest and the measure in 
the integral sign (Figure 3). 

 
<<Figure 3>> 
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Using this as background, what does f dµ∫  mean?  In order to  compute this we will 
need both a function and a measure.  
 As an example, let ( ),Ω Σ  be the sample space and σ-algebra of the number of patients in 
a hospital. Define the measure µ  of a set contained in Σ  as the number of patients with renal 
disease in that set. Then we can identify all patients in the hospital with renal disease as 

( ) .dµ µ
Ω

Ω = ∫  

Now specify the set .A ⊂ Σ  Then ( )Aµ is the number of patients in set A  with renal 

disease and ( ).1
i A d Aω µ µ⊂

Ω

=∫   Let’s also define R as the set of all patients with renal disease. 

Then ( ) ( )d Rµ µ µ
Ω

= Ω =∫ since  ( ) ( ).
cR RR

d d d d Rµ µ µ µ µ µ
Ω

Ω = = + = =∫ ∫ ∫ ∫  In addition, if we define 

the indicator function ( ) =1
ii Re ωω ⊂  then this is a measurable function for each of the iω  patients 

in the hospital and  ( ) ( )= .1
i R d Rω µ µ µ⊂

Ω

= Ω∫  

Let’s now develop a function defined on an element .iω ⊂ Σ   If we assume that serum 
creatinine values are available we can define the measurable function ( )if ω    as the serum 

creatinine value for the th
iω  patient.  We are now poised to ask the question, on any set ,A ⊂ Σ  

what does ( )i
A

f dω µ∫
 
look like? 

Let’s begin by writing ( ) ( ) .1
ii A i

A

f d f dωω µ ω µ⊂
Ω

=∫ ∫  The indicator function in the 

integrand directs us to focus on the set A. Then, on that set, the integrand doesn’t just accumulate 
the number of patients with renal disease, but it also accumulates their creatinine values. Thus  

( )i
A

f dω µ∫  is the sum of the creatinine values of only those patients with renal disease in set A. * 

                                                 

* We can also write 
( )i

A

A

f d

d

ω µ

µ

∫

∫
 as the average creatine value for patients with renal disease in set 

A.   
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Note the contribution of ( )if ω  to the product ( )if dω µ . The notation dµ denotes that we 
assign value to a member of the set iω  by whether or not they have renal disease.  However the 
introduction the product ( )if dω µ  tells us that we must modify this process. While we must 
remain focused on whether the th

iω  subject has renal disease,  we assign the value of their 
creatinine value, ( ).if ω  In some sense this product creates a new measure, one that assigns not 
just dichotomous 0 ‒ 1 weight to set membership but instead that member’s actual creatinine 
value (accumulating creatinine over a set satisfies the four properties of measure defined earlier). 
It is this modification of the measure that is credited to Johann Stieltjes, leading to the 
description of this process as not just Lebesgue integration, but Lebesgue-Stieltjes integration 
(Figure 4).    

 
 

Example: aerosols 
Let’s apply these concepts to the content of aerosols.  Aerosols are microscopic combinations of 
particles in the air. They comprise the basic element of cloud formation.  
 The sun, heating the ocean’s surface, converts water to its gas phase where it rises into 
the atmosphere. There this water vapor comes in contact with and condenses on each aerosol to 
form a droplet of water and a dust particle. When they gather together, a cloud is formed. 

Hundreds of years ago, the only aerosols in the atmosphere were salt particles from the 
ocean, small amounts of soot from volcanoes, or tiny bits of soil. The industrial revolution has 
increased the number of aerosols in the environment. 

Define Ω   as all of the cubic mm of space in the Earth’s atmosphere, Σ  its σ–algebra and 
iω  an individual element of .Ω  Let the measure ( )Aµ  be the number of aerosols in a volume of 

space .A ⊂ Σ  Let ( )if ω  be the pollutant content of an aerosol .iω  Then what is ( ) ?1
i A if dω ω µ⊂

Ω
∫   

Using the architecture described in Figure 4, we see that our concern lines with a defined 
sub-volume of space (which need not be contiguous) A. Recall that ( )Aµ   is the aerosols 

contained in the cloud content of the volume of space .A   Then ( )if dω µ   accumulates the 
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pollutant content in the cloud that inhabits a cubic cc of space, and  ( )1

i A if dω ω µ⊂
Ω
∫  is therefore 

the pollutant content or load in all clouds in the volume of space .A   
As we have seen before, we can define a new measure which would be the pollutant 

content of aerosols in a volume of space A ⊂ Σ   as ( )f Aµ   and the integral becomes  

.1
i A f f

A

d dω µ µ⊂
Ω

=∫ ∫  Here the function ( )if ω   is subsumed into the measure using the Lebesgue-

Stieltjes approach.  
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Lebesgue Integration Theory and the 
Bernoulli Distribution 

 
 
Having discussed the motivation and development of integration theory, we are now ready to 
apply it to probability. We will begin with the most elementary distribution in probability, the 
Bernoulli distribution.  
 
Prerequisites 
Basics of Bernoulli Trials – The Bernoulli Distribution  
Measure Based Integration 
 
Notation and procedures 
We begin by letting   

d
Ω
∫ P  

 
stand for not just an integral, but for a procedure. The term dP  stipulates that we want to 
accumulate this measure with respect to a probability distribution P .  The recognition that we 
could let the integrand be with respect to sets other than those that comprise the real number line, 
permitting “ dP ” rather than " "dx   was developed by Stieltjes, earning the integral the descriptor 
“Lebesgue-Stieltjes” 
 So, one thing that we know from probability is that the total accumulation of probability 
over the sample space Ω should be one, or 
 

1d
Ω

=∫ P
 

 
In order to attempt this, we must have a measure .P  Let’s first start with simplist  distribution.  
Define the random variable Y as  

11yY ==  
Here, Y takes on only one value (the value 1) with probability 1. One could be forgiven for 
thinking there is no probability attached to this “random” variable at all, but our goal here is to 
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choose the simplest distribution possible to ease our first work with the use of Lebesgue 
integration theory. How do we demonstrate that 1d

Ω

=∫ P  in this example?  

 There are two equivalent ways that we can show this. The first is to see that there are two 
collections of outcomes that contribute to Y. The first is the value Y = 1 which has probability 1. 
All other values have probability zero. We therefore can write 
 

{ }[ ] { }[ ]1 1 0 0 1d all sets where Y all sets where Y
Ω

= = + = =∫ P P P  

 
 This is the heart of the Lebesgue theory of integration. We do the integration simply by 
combining values of the random variable whose probability (or measure) is the same, and then 
just sum the probability.  
 An equivalent approach is to see that Y is a real valued random variable, so we lose 

nothing by writing 1.1yd d
∞ ∞

=
Ω −∞ −∞

= =∫ ∫ ∫P P  The integral 11y

∞

=
−∞
∫  states that we will measure the 

( ),−∞ ∞  interval using the (very simple) measuring tool 1.1y=  This integral we compute by 
beginning at -∞ and, moving in the positive direction, accumulate probability (or measure) as we 
go. There is no accumulation until we get to the value y = 1 where there is a spike in the 
probability. We accumulate this spike of “1” and continue to positive infinity where again we 

make no additional accumulations. Thus  the value of 1 1.1y

∞

=
−∞

=∫ The failure of the Riemann-

Stieltjes integral* here is why historically probability distributions have been divided into 
continuous and discrete distributions, since the area under the curve concept breaks down when 
probability is concentrated at one point.  However, the Lebesgue approach will allow us to 
manage both types of distributions equally well.   
  
Application to bernoulli distribution 
Now, let’s turn to the classic Bernoulli distribution.  Here, for p  a known constant, 0 1,p< <   
we have  [ ] ( )1 01 .1 1x xX p p= == + −P  We  now know that we can write  
 

( )( ) ( )

( )

1 0 1 01 1

1 1.

1 1 1 1x x x xd p p p p

p p

= = = =
Ω Ω Ω Ω

= + − = + −

= + − =

∫ ∫ ∫ ∫P
  

 
Again, we can “measure” this set two ways. One way is to aggregate the real line into two sets. 
The first is all values of  x where the probability p. The second is all values of x where the 

probability is 1 .p−  The second is, to write as before ,d d
∞

Ω −∞

=∫ ∫P P and to accumulate measure or 

probability moving from −∞   positively.  During this process, we pick up no probability until we 

                                                 
* It is important to note that the common Riemann-Stiljes integral fails in this simple example, since it would 

produce since the function has no ‘area under the curve”. 1 01y

∞

=
−∞

=∫
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get to 0x =  where we pick up probability 1 ,p− then accumulate no more probability until we get 
to 1 where we accumulate at this one point probability or measure p, accumulating no more 
measure after that.  
  Note again the failure of Riemann integral. Since it requires a rectangle to compute the 
area, and there are no rectangles defined by this measuring tool defined by the Bernoulli 
distribution [ ] ( )1 01 ,1 1x xX p p= == + −P the Riemann integral would be zero.  
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Basic Properties of the Lebesgue-
Stieltjes Integral 

 
 
We have developed enough of an introduction to the Lebesgue-Stieltjes integral to begin to 
establish some of its basic principles. For each of these principles, we assume that we have a 
triplet ( ), ,µΩ Σ  focusing on any set .A ⊂ Σ  We will begin with the assertion that we can 

characterize an integrable function ( )if ω  as the sum of indicator functions 
1

1
i k

n

k A
k

ωα ⊂
=

∑  for n 

large enough where the sets kA  are mutually exclusive, and that 

( ) ( )
1 1

.1
i k

n n

i i A A k k
k kA A

f d A Aω αω µ α µ⊂ ∩
= =

= = ∩∑ ∑∫ ∫  We will first limit these principals to these 

functions, then generalize beyond them using the Monotone Convergence Theorem.  
 
Properties of integrals of simple functions 
The following represent the major properties of the Lebesgue-Stieltjes integral. They are worth 
careful study with the view to understanding each of the steps in their motivation and 
development. 
  
Property 1: If ( ) 0,if ω =  for all i Aω ⊂  then ( ) 0.i

A

f dω µ =∫   

 

The key to this demonstration is to see that if ( )
1

1
i k

n

i k A
k

f ωω α ⊂
=

= ∑ and ( ) 0if ω =   for all ,iω  then 

each kα  for which i kAω ⊂  must be zero.* Then 

                                                 
* Let ( ),Ω Σ  represent community membership for each of iω  citizens. Define ( ) 1 21 1

i ii M Ff ω ωω α α⊂ ⊂= + where 

M ⊂ Σ  is the set of males and F ⊂ Σ  is the set of females. Then since ,M F∩ = ∅  iω  can be a member of 

either M  or .F  For males  ( ) 11 ii Mf ωω α ⊂=  but ( ) 0if ω =  implies that 1 0.α =  A similar argument can be 

made for females, revealing that 2 0.α = The key part of this proof is constructing the simple function from disjoint 
sets.  
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( ) ( ) ( ) ( )
1 1 1

0 0.1
i k

n n n

i k A k k k
k k kA A

f d d A Aωω µ α µ α µ µ⊂
= = =

= = = =∑ ∑ ∑∫ ∫  

 
Property 2 : For all ,i Aω ⊂ and constant 0,c >  then 

( ) ( ) .i i
A A

c f d c f duω µ ω=∫ ∫  

We write  

( )

( ) ( )

( )

1 1

1 1

1

1 1

1

i k i k

i k

n n

i k A A k A A
k kA A A

n n

k k k k
k k

n

k A A i
iA A

cf d c d c d

c A A c A A

c d c f d

ω ω

ω

ω µ α µ α µ

α µ α µ

α µ ω µ

⊂ ∩ ⊂ ∩
= =

= =

⊂ ∩
=

= =

= ∩ = ∩

= =

∑ ∑∫ ∫ ∫

∑ ∑

∑∫ ∫

 

 
 
Property 3: If for all ,i Aω ⊂  ( ) 0,if ω >  then ( ) 0.i

A

f dω µ ≥∫   

Begin with ( )
1

.1
i k

n

i k A
k

f ωω α ⊂
=

= ∑ Since the family of sets kA  are mutually exclusive, then the 

element i kAω ⊂  falls in one and only one of the .kA  Call this particular kA the set *.kA  Then 

( ) *

1
.1

i k

n

i k A k
k

f ωω α α⊂
=

= =∑  However, ( )
*

* 0.1
i k

i Akf ωω α ⊂= >  Thus 

( ) ( )* * *

1
0.1 1

i k i k

n

i k A k A A k k
kA A A

f d d A Aω ωω µ α µ α α µ⊂ ⊂ ∩
=

= = = ∩ ≥∑∫ ∫ ∫  Now, we know that * 0,kα >  so 

( )* *
k kA Aα µ ∩  is positive if ( )* 0kA Aµ ∩ > but zero if the set *

kA A∩ has zero measure.  

 
Property 4. If for all ,i Aω ⊂ ( ) ( ),i if gω ω=  then ( ) ( ) .i i

A A

f d g dω µ ω µ=∫ ∫   

In order to demonstrate this, observe that we can finely partition the family of kA  (which are 
mutually exclusive) such that the element i kAω ⊂  falls in one and only one of the .kA  Call this 
particular kA the set *.kA Then ( ) ( )* .i ikf gω α ω= = Thus  

( ) ( )*

1
.1 1

i k i k

n

i k A k A A i
kA A A A

f d d g dω ωω µ α µ α ω µ⊂ ⊂ ∩
=

= = =∑∫ ∫ ∫ ∫  

 
Note however, that the converse is not true. If,  ( ) ( )i i

A A

f d g dω µ ω µ=∫ ∫  then it does not always 

follow that the functions are equal. For an example, set ( ) 0if ω =  for all .i Aω ⊂  Then 

( ) 0 0.i
A A

f d dω µ µ= =∫ ∫  Now, create sets 1B  and 2B  such that 1 2 1 2, ,B B B B A∩ = ∅ ∪ =  and 
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( ) ( )1 2 .B Bµ µ=  Let ( )ig ω  be positive for 1i Bω ⊂  and its negative value for all 2i Bω ⊂  such that 

( ) ( )
2 1

i i
B B

g d g dω µ ω µ= −∫ ∫ . Then 
( ) ( ) ( )

( ) ( )
1 2

1 1

0.

i i i
A B B

i i
B B

g d g d g d

g d g d

ω µ ω µ ω µ

ω µ ω µ

= +

= − =

∫ ∫ ∫

∫ ∫
   

 
Thus ( ) ( ) 0i i

A A

f d g dω µ ω µ= =∫ ∫ but clearly ( ) ( )0 i if gω ω= ≠  for all of .i Aω ⊂   

 
Property 5: If for all ,i Aω ⊂ ( ) ( ) ,i if gω ω>  then ( ) ( ) .i i

A A

f d g dω µ ω µ>∫ ∫   

This stands to reason, since, if the integrand of one is greater than the integrand for the other for 
all ,i Aω ⊂ then the integral (which is just an accumulation of the integrands) should also be 
greater.  

Keeping in mind that both f and g are simple functions, we can write ( )
1

1
i k

n

i k A
k

f ωω α ⊂
=

= ∑  

and ( )
1

.1
i k

n

i k A
k

g ωω β ⊂
=

= ∑  Then observe that we can finely partition the family of kA  (which are 

mutually exclusive) such that the element i kAω ⊂  falls in one and only one of the .kA  Call this 
particular kA the set *.kA Then ( ) *

i kf ω α=  and ( ) *.i kg ω β=  Since ( ) ( )i if gω ω>  we can write 
* *.k kα β>  Thus 

 
( ) ( )

( ) ( )

*

*

* * *

1

* * *

1
.

1 1

1 1

i k i k

i ki k

n

i k A A k k kA A
kA A A

n

k k k k A A iA A
kA A A

f d A A

A A g d

ω ω

ωω

ω µ α α α µ

β µ β β ω µ

⊂ ∩ ⊂ ∩
=

⊂ ∩⊂ ∩
=

= = = ∩

< ∩ = = =

∑∫ ∫ ∫

∑∫ ∫ ∫
  

 
These are examples of properties of measurable functions which can be precisely categorized as 
simple functions.  
 
Property 6: If for all ,i Aω ⊂  ( )if ω  and ( )ig ω  exists, then 

( ) ( )( ) ( ) ( ) .i i i i
A A A

f g d f d g dω ω µ ω µ ω µ+ = +∫ ∫ ∫   

We define ( )
1

1
i k

n

i k A
k

f ωω α ⊂
=

= ∑  and ( )
1

.1
i k

n

i k A
k

g ωω β ⊂
=

= ∑ Then  

( ) ( )( )

( ) ( ) ( )

( ) ( )

( ) ( )

1 1

1 1

1 1 1 1

+ +

.

1 1

1

1 1

i k i k

i k

i k i k

n n

i i k A A k A A
k kA A

n n

k k A A k k k
k kA

n n n n

k k k k k A k A
k k k kA A

i i
A A

f g d d

d A A

A A A A

f d g d

ω ω

ω

ω ω

ω ω µ α β µ

α β µ α β µ

α µ β µ α β

ω µ ω µ

⊂ ∩ ⊂ ∩
= =

⊂ ∩
= =

⊂ ⊂
= = = =

 
+ = + 

 

= = ∩

= ∩ + ∩ = +

= +

∑ ∑∫ ∫

∑ ∑∫

∑ ∑ ∑ ∑∫ ∫

∫ ∫

 

 
The same is true for taking the difference of two functions.  
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Property 7: If for all ,i Aω ⊂  ( )if ω  exists and integrable, then 
( )
1

iA

d
f

µ
ω∫  is integrable so 

long as ( ) 0if ω ≠  on a set of positive measure.  

Since ( )if ω  is integrable, we know that ( )
1

1
i j

n

i j A
j

f ωω α ⊂
=

= ∑  and we can write naively that    

( )
1

1 1 .
1

i j

n
i

j A
j

f
ω

ω α ⊂
=

=

∑
 However, since the simple function is in cardinal form and therefore the set 

{ }iA  is made up of pairwise disjoint sets, then for each iω  we can write 
( ) **

1 1 1
i jA

i jf ωω α ⊂
=  where 

the * signifies the single set *
jA   in which iω  resides.  This indicator function exists as long as *

jα  
is not equal to zero where the ( )* 0.jAµ >  If ( )* 0,jAµ = then the value of the function on the set is 
immaterial since this value is not considered on a set of measure zero.  
 
Property 8: If for all ,i Aω ⊂  ( )if ω  and ( )ig ω  exists and are integrable, then 

( ) ( )i i
A

f g dω ω µ∫  is integrable. 

Since ( )if ω  is integrable, we know that ( )
1

1
i j

n

i j A
j

f ωω α ⊂
=

= ∑  and ( ) ( )
1

.
m

i j j
jA

f Aω α µ
=

= ∑∫  Also, 

( )
1

1
i k

m

i k B
k

g ωω β ⊂
=

= ∑ and ( ) ( )
1

.
m

i k k
kA

g Bω β µ
=

= ∑∫  If the sets { }jA  and { }kB  are in cardinal form such 

that the { }jA and { }kB are each pairwise disjoint, then we can write  

( ) ( )
1 1 1 1

1 1 1
i j i k i j k

n m n m

i i j A k B j k A B
j k j k

f g ω ω ωω ω α β α β⊂ ⊂ ⊂ ∩
= = = =

   
= =   

  
∑ ∑ ∑∑  

This is itself a simple function in cardinal form. Since the sets { }jA and { }kB are measurable, 

then so are their intersections. Thus the integral exists.  Furthermore, since { }jA and { }kB are in 
cardinal form, their intersections are also in cardinal form. Thus,  

( ) ( )

( )
1 1

1 1
.

1
i j k

n m

i i j k A B
j kA A

n m

j k j k
j k

f g d d

A B

ωω ω µ α β µ

α β µ

⊂ ∩
= =

= =

=

= ∩

∑∑∫ ∫

∑∑
 

Combining properties 7 and 8, we can now deduce that if ,i Aω ⊂  ( )if ω  and ( )ig ω  exists and 

are integrable, then ( )
( )

i

iA

f
d

g
ω

µ
ω∫  is integrable. 

 
Integration using simple functions 
From the developments of the last chapter, we can integrate set and simple functions using 
Lebesgue integration. This is already a solid step forward from Riemann integration since many 
functions  provide no helpful mesh around which we can build a Riemann integral.  

However, for Lebesgue integration to be of real value we must be able to integrate 
functions that themselves are not simple.  
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Ironically, the tool that we use for this extension is the simple function.  Assume that we 
have a sample space, σ-algebra and a measure ( ), , .µΩ Σ  Let S  be the set of all simple functions. 

Then, for a function ( )if ω and a measure µ we define the Lebesgue integral ( )i
A

f dω µ∫  as 

 
( )

( )
( ) ( )

( )sup
i

i i

i i
s SA A
s f

f d f d
ω
ω ω

ω µ ω µ
⊂
≤

=∫ ∫  

 
Thus, the Lebesgue integral is the supremum of the integral over all simple functions that are 

( ).if ω≤  How does this take place? Here is the process: 
 
1 - identify all simple functions that are ( ).if ω≤  

2 – for each of these simple functions  ( )
1

,1
j

i j

n

j i j A
j

s ωω α ⊂
=

= ∑   we must compute its integral on the 

set ,A  ( ) ( )
1

.
jn

i j j
jA

s d A Aω µ α µ
=

= ∩∑∫  

 
3- identify the supremum of all of these integrals and that supremum is ( ).i

A

f ω∫  

This computation has something of the feel of the “inner measure” concept that we 
discussed earlier. Here we first find all of the simple functions ( )is ω  where ( ) ( ).i is fω ω≤  This 
activity, in and of itself is a huge undertaking, since there are uncountably many such functions.  

We then compute the integral of each of these simple functions, remembering that for the 

simple function ( )
11 1

.11 ki ik k

n

k
k

n n

A A A Ak k
k k

Adω ω α µα α µ
=

⊂ ∩ ⊂ ∩
= =

→ = ∑∑ ∑∫  

The final task is to identify the sup of these integrals  
The foundation of this argument is that a general function ( )f x  even though itself is not 

a simple function, can be linked to simple functions.  Also note that the role  of ( )is ω  is not to 

approximate ( );if ω  it is not ( )
( )
( ) ( )

( )sup ,
i

i i

i i
s SA A
s f

f d f d
ω
ω ω

ω µ ω µ
⊂
≤

=∫ ∫  

 

that we seek, but  ( )
( )
( ) ( )

( )sup
i

i i

i i
s SA A
s f

f d f d
ω
ω ω

ω µ ω µ
⊂
≤

=∫ ∫  

We are approximating the measure of the set of A  directly, not indirectly by approximating 
( )if ω  and then integrating this approximation.  

 Another way to say this is that every Lebesgue integrable function is itself the limit of a 
monotonically increasing sequence of simple functions.  Thus, the process is to identify the 
simple function which most closely approximates ( )f x  from below. Since that simple function is 
Lebesgue integrable, we integrate it, and have the Lebesgue integral for ( ).f x   

Lebesgue integrable functions,  just like Riemann integrable functions must both be built; 
however, they are built from different substrates. As we have seen, Riemann integrable functions 
are built up from rectangles. Lebesgue integrable functions are built up from simple functions.  
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Example – Protein synthesis 
As an example, lets create a function based on the ribosome. The ribosome is one of the smallest 
organelles contained in a cell, but it plays a critical role in the synthesis of proteins. The 
ribosome is itself composed of ribonucleic acids and protein divided into two components.  
 The smaller of these two components contains the nucleic acid and is prepared to house 
the messenger RNA (mRNA) that comes from the cell nucleus. This mRNA strand holds the 
sequence of instructions to build the protein structure chain one amino acid at a time.  The larger 
component functions more like an enzyme; it is a protein catalyst providing the energy for the 
lengthening of the nascent protein to take place, amino acid by amino acid. 

The process for protein development begins in the cell’s nucleus, where a sequence of 
DNA is decoded into messenger RNA (mRNA). This mRNA strand, once extruded from the 
nucleus into the cytoplasm, then attracts the two inactive components of the ribosome which 
come together around the mRNA strand so that the mRNA is aligned along their interface.  

At this point transfer RNA (tRNA), a three codon sequence that is attached to a single 
amino acid, competes for the mRNA sites. Once the correct tRNA is chosen, the larger catalytic 
component generates the chemical energy necessary to put the amino acid into position in the 
growing protein chain. When complete, the protein is released into the cytoplasm and the two 
components of the ribosome fall away from each other, making themselves available for the 
construction of other proteins.  
 The human cell has on average 30 million ribosomes, many of which are embedded in the 
rough endoplasmic reticulum that surrounds the nucleus. Each ribosome can build a 200 amino 
acid sequence in a minute, an amino acid addition rate of three to four amino acids per second.  
 Suppose we wish to find all peptides on a sphere of radius L microns from the center of 
the ribosome. Is this a measurable function? Can we define a function that will do this for us, and 
if so, what does its integral mean?   
 First, we must ask how would we manage this parametrically.  

Let’s define iω  is the ith peptide identified. Define Ω  as the sample space containing all 
peptides surrounding the ribosomes, and Σ  as its σ‒algebra. Here, we want to map 'i sω  
location using as a reference point a sphere of radius L.  Either the peptide is on the surface of 
this sphere or it is not. This meets the criterion of a measurable function*. The challenge is to 
find a sequence of monotonically increasing simple functions that has a limit of our desirable 
function ( ).if ω   
 There are many such sequences. Consider the elementary function 

( ) 1 1,
1

.1
i

n i
L L

n n

e
ω

ω  ⊂ − − + 

=  The argument ( )1 1, 1i L Ln nω ⊂ − − +  just traps the peptide in a spherical 

annulus whose diameter is between 1L
n

−  and 1
1

L
n

−
+

 microns taking on the value 1 if  the 

peptide location is within this region and 0 if not.  
Then ( )1 11,

2

,1
i L L

if
ω

ω  ⊂ − − 
 

=   and ( )2 1 1 11, ,
2 2 3

.1 1
i i

i
L L L L

f
ω ω

ω
⊂ ⊂

   − − − −   
   

= +  This function is 1 if 

either iω  is located within 1 micron and 1
2

 micron below the surface of  the sphere or within 1

2
  

                                                 
* Its real valued, maps a peptide to one and only one location and its preimage is a property of  ,iω  namely its 
location.  
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and 1
3

 micron.  If we let ( )
1

1 1,
,1

i

n

n i
i L L

n n

f
ω

ω  
⊂  =  

− +
= ∑  then ( )n if w  is either equal to 0 or 1, 

depending on how close the location of peptide iω  is to L. Thus, ( ) ( )lim 1 .n i in
f fω ω

→∞
= = Thus, for 

each of the billions of peptides, ( )if ω  is either 0 or 1 but whatever the limit, 

( ) ( )lim .n i in
f fω ω

→∞
=  

Suppose that we now defined ( ) 1 1,
1

1
1 .1

i
n i

L L
n n

e k
n ω

ω
⊂

 − − + 

= − 
 
 

 Then, there is some value 

( )in ω  such that ( )
( ) ( ) ( ) ( )1 1,

1

1 1
1 1 .1

i
i i

n i
L Li in n

e k k
n nω

ω ω

ω
ω ω⊂

 
− −  + 

= − −
   

=   
   

 We may write

( ) ( )
( ) ( ) ( )

1 1,1 1 1

1
1 ,1

i
i i

j i

n n

n i
L Lj j i n n

e k
n

f
ω

ω ω

ωω
ω ⊂

 
− − = =  + 

= −
 

=  
 

∑ ∑    and 

( )

( ) ( ) ( ) ( )1 1,1 1

1 1
1 1

lim

lim .1
i

i i

n in

n

n L Lj i in n

k k
n n

f

ω
ω ω

ω

ω ω⊂

→∞

 →∞ − − =  + 

− −
   

= =   
   

∑
 

 
where k  is the value of the function when iω  is on the sphere with radius .L  Note that this is an 
increasing function, ( ) ( ).n i if fω ω↑   Note that since we do not assess the collection of iω  in any 

particular order, this function’s value jumps rapidly from 0 to 
( )

1
1

i

k
n ω

−
 
 
 

 and back depending 

iω  and its location.  

Note that our function ( )
1

1
i

k
n ω

−
 
 
 
 

is the limit of a monotonic sequence of simple 

functions, which is sufficient to build its Lebesgue integral. For this function to be integrable, we 
must define the measure of a spherical annulus. This poses no difficulty since we can define 
measure as “volume measure”.   

However, note that building the sequence of functions which is the foundation of ( )if ω
is a different process than identifying the measure.  

Finally, since the measure is a three dimensional volume, it also has a Riemann integral; 
the use of rectangles (or in this case three dimensional rectangles) would be the geometric basis 
of the Riemann integral.  

In this case the Lebesgue integral and Riemann integrals each exist and they equal to 
each other. It is the simultaneous construction of the integral as the limit of areas of rectangles 
(when they exists) and the integral as a sequence of monotonically increasing simple functions 
that is the basis of the equivalence of the Riemann and Lebesgue integral, a finding that will be 
proved later.  

However, suppose we define a measure on ( ),Ω Σ  called φ   and define ( )iϕ ω  as the 
number of times that the alanine-tyrosine-lysine triplet (ATLs) occurs in the peptide. Since 
peptides are separate and apart from each other, then it is easy to confirm that ( )iϕ ω  is also a 
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measure.* Using our previous definition of ( ) ( )
1

1lim n in
i

k
n

f ω
ω→∞

−
 

=  
 

as the location of the peptide 

on the sphere, how can we interpret ( ) ?if dω ϕ
Ω
∫  

Our intuition leads us to think that ( )if dω ϕ
Ω
∫  is the accumulation  of the value 

( )
1

1
i

k
n ω

−
 
 
 

 multiplied by the ATL’s in each peptide whose location is in that annulus of the 

sphere . However, that intuition assumes that ( ) ( ) ( )lim lim ,n i n i in n
f d f d f dω ϕ ω ϕ ω ϕ

→∞ →∞
= =∫ ∫ ∫  a 

set of equalities that is not always the case. The role of the monotone convergence theorem is to 
provide an important circumstance when these equalities are correct.  

We know that continuous functions can be built up from rectangles. However, how many 
functions can be approximated by simple functions? As it turns out, every bounded measurable 
function is the nonnegative limit of a sequence of monotonically increasing simple functions. 
This we learn from the monotone convergence theorem.  
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* Clearly it is positive, its measure of the null set is 0, and the measure of peptide is greater than  the measure of a 

subpeptide that it contains. Since the peptides are separate from each other, ( ) ( )
11

.i i
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ϕ ω ϕ ω
∞ ∞

==

= ∑
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Monotone Convergence Theorem 
 
 
What does this theorem do for us? 
What we have seen is that the basic properties of the Lebesgue integral are relatively 
straightforward to prove as long as the function f  is a simple function. However, many times if 
not most times our function is not a simple function. The function may be unidentifiable. Under 
what assumptions are such functions Lebesgue integrable? 
 
Prerequisites 
Sequences of Sets 
Sequences of Functions 
Set Functions in Measure Theory 
Basic Properties of the Lebesgue-Stieltjes Integral 
 
Lebesgue integration and the MCT 
The monotone convergence theorem (MCT, also known as Beppo Levi’s Theorem) answers that 
question for us. It tells us that, although the function f may not be a simple function, if it is the 
limit of an increasing sequence of simple functions, then the function will have an integral, and 
the integral itself will be defined in terms of the sequence of integrals of simple functions.  

The monotone convergence theorem is a powerful tool because it permits us to link 
simple functions (that we know to be measurable) to non-simple functions. This link allows us to 
essentially transfer all of the properties of integration that we have derived for simple functions 
onto non-simple functions that are measurable. This greatly expands both the utility of simple 
functions as well as the universe of measurable functions for us.  

Its precise statement follows: 
 

Monotone Convergence Theorem 
Assume we have a measure space ( ), ,µΩ Σ  and a function .f  Assume that there is monotonically 

increasing sequence of simple functions ( )
1

1
i k

n

n i i A
k

f ωω ω ⊂
=

= ∑  for sets kA ⊂ Σ  such that 
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( ) ( )lim .n i in
f fω ω

→∞
= Then this limit function, ( ) ,if ω  is Lebesgue integrable and 

( ) ( )lim .i n in
A A

f d f dω µ ω µ
→∞

=∫ ∫  

 
This is an important theorem and it behooves us to understand all of its facets.  

Overall, the monotone convergence theorem tells us how to determine if a function f  is 
integrable and then how to carry out its integration.  In order to do this we must find the simple 
function of which it is a limit, integrate a member of that sequence, and then take the limit of the 
integral.  
At first blush, this may seem somewhat awkward . For example, consider the uncomplicated 

function ( ) sin cosf x x x= −   for 0 .
2

x π
≤ ≤  If we were to apply the monotone convergence 

theorem to this function, we would first be required to identify a sequence of simple functions 
that converges to ( ).f x   Then, once this function was identified, we would find its thn  term. We 

would then integrate that term ( )nf x  and take the limit of this integral.  
 While this sequence of steps would be technically accurate, the fact is that it is much 
simpler to just go ahead with the direct integration of ( ) ( ) ( )sin cos .i i if ω ω ω= −     
 We are able to take this more direct approach because this function is Riemann 
integrable.* When the function is Riemann integrable it is commonly easier to just carry out the 
Riemann integration than to go through the simple function construct.  So from one perspective 
the theorem does not appear to be of practical use.   
  
Utility of the monotone class theorem 
However, the key to the utility of the monotone convergence theorem is seeing that many 
problems have solutions where the function is not Riemann integrable. Commonly the only 
function that we are exposed to is the Diriclet function, one that admittedly does not appear 
commonly in public health.  
 However examples that we have provided in protein synthesis, toxin measurement, 
aerosols, etc show how useful public health functions are not Riemann integrable. If all we have 
is the Riemann integration, these functions could not be integrable (in fact, we would likely not 
even know that they exists. 
 Knowledge of the MCT motivates us to see beyond Riemann integrable, “parametric” 
functions to functions that are based on complicated simple functions that the MCT guarantees 
will be Lebesgue integrable, in fact, tells us how to conduct the integration. 
 For example, the function that we built to capture a nephron’s ability to filter waste 
products in the blood is nothing but a sequence of increasing simple functions. It is not possible 
to know the functional form of ( ) ( )lim ni in

f eω ω
→∞

= yet our interest resides in the integral of this 

limit.  Fortunately, we do not have to know the form of the limit f  in order to integrate it, and 
that is the key contribution of the monotone convergence theorem.  We simply compute 

( )lim n in
A

e dω µ
→∞ ∫  and by this theorem know that it is ( ) .i

A

f dω µ∫  

                                                 
* This process could be carried out under the monotone convergence theorem. In fact it is precisely the process of 
following the steps outlined by the monotone class theorem that demonstrates Riemann integrals are also Lebesgue 
integrable and have the same value.  
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 The second point of the monotone convergence theorem is that it provides a condition for 
which we can pass the limiting argument through the integral sign without disturbing the 
equality. Thus,  

( ) ( ) ( )lim lim .n i n i in n
A A A

f d f d f dω µ ω µ ω µ
→∞ →∞

= =∫ ∫ ∫  The ability to pass the limit through the integral 

sign is not a property that we can take for granted, but it does operate under MCT control. * 
 
Proving the theorem  
With this as background, we are now in a position to prove the monotone convergence theorem. 
A key concept that we will have to deal with is the process of passing a limit through an integral 
sign.  
 In order to be in a position to proof  this we will develop a key concept of measures and 
sets.  For example if a sequence of sets nA  converges to a set A† then under what circumstances 

can we say that the ( ) ( ) ( )lim lim ?n nn n
A A Aµ µ µ

→∞ →∞
= =   

 In turns out that this is not a general property of measure. However, there are some sets 
for which this equality is true, and one collection of such sets is sets that are “increasing”, i.e., in 
the sequence of sets 1 2 3, , , ..., ...nA A A A  the sets have the property that 1 2 3 ... .....nA A A A⊂ ⊂ ⊂ ⊂ ⊂

).If the sequence of sets is increasing, we have demonstrated that ( ) ( ) ( )lim limn nn n
A A Aµ µ µ

→∞ →∞
= =   

 Now having demonstrated this property of sets and measure, we can begin the formal 
proof of the monotone convergence theorem.  
 We must show that if ( ){ }n if ω  is an increasing sequence of simple functions, such that 

( ) ( )lim ,n i in
f fω ω

→∞
=  then ( ) ( )lim lim .n i n in n

A A

f d f dω µ ω µ
→∞ →∞

=∫ ∫  We will accomplish this by 

demonstrating that both  ( ) ( )lim limn i n in n
A A

f d f dω µ ω µ
→∞ →∞

≤∫ ∫  and ( ) ( )lim limn i n in n
A A

f d f dω µ ω µ
→∞ →∞

≥∫ ∫  

are both true, leaving the equality statement as the only option.  
 
 Begin with demonstrating that ( ) ( )lim lim .n i n in n

A A

f d f dω µ ω µ
→∞ →∞

≤∫ ∫  This part of the proof is 

straightforward.  
 Since  ( ){ }n if ω is an increasing sequence of functions up to ( ),if ω  then 

( ) ( ) ( ) ( )1 lim .n i i n i in n
f f f fω ω ω ω+ →∞

≤ ≤ = In addition, by our properties of integrals on set 

functions, then  ( ) ( )1 .....n i n i
A A

f d f dω µ ω µ+≤ ≤∫ ∫   Since this sequence of integrals is increasing and 

is bounded, its limit, ( )lim n in
A

f dω µ
→∞ ∫  makes sense. If this is the case, then 

( ) ( )lim sup .n i n in nA A

f d f dω µ ω µ
→∞ →∞

=∫ ∫   

 However, since ( ){ }n if ω  is a sequence of simple functions each of which is less than or 
equal to ( ) ,if ω  then  by the definition of the Lebesgue integral it now follows that the 

                                                 
* The Lebesgue dominated integration theorm is another example.  
† Recall that, if the limit of an infinite sequence of sets  exists, then every element of A must be in all but finitely 

many of the  and every element that is not in A must only be in finitely many of the for A to exixt. 
nA

,nA ,nA
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( )
( ) ( )

( ) ( )
/

sup sup .
i i

n i i i
n s s fA A

f d s f d
ω ω

ω µ ω ω µ
→∞ ≤

≤ =∫ ∫ ∫  Thus ( ) ( )lim .n i in
A A

f d f dω µ ω µ
→∞

≤∫ ∫ *

 
This 

concludes the first half of the proof.  
 We now show ( ) ( ) ( )lim lim .n i n i in n

A A A

f d f d f dω µ ω µ ω µ
→∞ →∞

≥ =∫ ∫ ∫  This may seem somewhat 

counterintuitive. 
  Let’s first define a simple function ( )is ω  that is less then our function ( )if ω  for all .iω  
Now lets choose an arbitrary value α  such that 0 1.α< <  Then clearly ( ) ( )i is sα ω ω<  for all iω  

and ( ) ( ) ( ).i i i
A A A

s d s d fα ω µ α ω µ ω= ≤∫ ∫ ∫  In addition, we are reminded by definition that  

( ) ( )
( ) ( )

/
sup .

i i

i i
s s f

s f
ω ω

ω ω
≤

=∫ ∫    

 Now consider the sequence of functions ( ){ }.n if ω  As this sequence increases to ( ) ,if ω

the elements of ( ){ }n if ω  must first pass through and exceed ( )isα ω  and then exceed ( ).is ω  
Now, for a fixed value of  n  this will not be true for all iω  but as n  increases it will be true for a 
larger and larger set of iω  until it is true for all .i Aω ⊂  Thus there is a set of iω  what we will 
denote as ,nE α  for which all i nEω ⊂  have the property that ( ) ( ).n i if sω α ω>  As n  increases, this 
set of ,s

iω nE  also increases.  This permits us to write ( ) ( ) ( )
, , ,

.
n n n

i i n i
E E E

s d s d f
α α α

α ω µ α ω µ ω= ≤∫ ∫ ∫

We also know that since ,nE A⊂  that ( ) ( )
,

.
n

n i n i
E A

f f
α

ω ω≤∫ ∫ Thus

( ) ( ) ( ) ( )
, , ,

.
n n n

i i n i n i
E E E A

s d s d f f
α α α

α ω µ α ω µ ω ω= ≤ ≤∫ ∫ ∫ ∫
 

 Taking limits we can write  
 

( ) ( ) ( )

( )
, , ,

lim lim lim

lim .
n n n

i i n in n n
E E E

n in
A

s d s d f

f
α α α

α ω µ α ω µ ω

ω

→∞ →∞ →∞

→∞

= ≤

≤

∫ ∫ ∫

∫  

 
The critical inequality here is  
 

( ) ( )
,

lim lim .
n

i n in n
E A

s d f
α

α ω µ ω
→∞ →∞

≤∫ ∫  

 

                                                 
* The definition of the Lebesgue integral is ( )

( ) ( )
( )

/
sup .

i i

i i
s s f

f s
ω ω

ω ω
≤

=∫ ∫  This supremum is over all simple 

functions less than ( ).if ω  The reason that we can say that ( )
( ) ( )

( )
/

sup sup
i i

n i i
n s s fA

f d s
ω ω

ω µ ω
→∞ ≤

≤∫ ∫ is because the 

sequence of functions ( ){ }n if ω  is only a fraction of all simple functions that are less than or equal to ( ).if ω  
Thus, its supremum must be lower than the supremum over all simple functions. The fact that 

( )
( ) ( )

( )
/

sup .
i i

i i
s s f

f s
ω ω

ω ω
≤

=∫ ∫  finishes this part of the proof off. 
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We need to convert the region of integration on the left hand side of the integral to the set .A   
 In order to do this, we can invoke an earlier result about the measure of the set of 
increasing function. Now call ( ) ( ).i s

A

s d Aαα ω µ µ=∫  So we have ( ) ( ).i s
A

s d Aαα ω µ µ=∫ Also, since

nE is increasing to ,A  then 
1

.n
n

A E
∞

=

=


 Thus ( )
1

.s s n
n

A Eα αµ µ
∞

=

 
=  

 


 But from what we have 

demonstrated before ( ) ( ), , ,
1

lim lim .s n s n s nn n
n

E E Eα α α α α αµ µ µ
∞

→∞ →∞
=

 
= = 

 


Using this result, we can write  

 
( ) ( ) ( )

,

lim lim lim .
n

i i n in n n
E A A

s d s d f
α

α ω µ α ω µ ω
→∞ →∞ →∞

= ≤∫ ∫ ∫  

 
Since this is true for all ( )0,1 ,α ⊂  then  

( ) ( )limi n in
A A

s fω ω
→∞

≤∫ ∫ for all simple functions ( ) ( ).i is fω ω<  Thus 
( ) ( )

( ) ( )
/

sup lim .
i i

i n ins s f A

s f
ω ω

ω ω
→∞≤

≤∫ ∫  

Now invoking
( ) ( )

( ) ( )
/

sup .
i i

i i
s s f

s f
ω ω

ω ω
≤

=∫ ∫  we have ( ) ( )lim .i n in
A A

f fω ω
→∞

≤∫ ∫  

 Since ( ) ( )limi n in
A A

f fω ω
→∞

≥∫ ∫ and ( ) ( )limi n in
A A

f fω ω
→∞

≤∫ ∫ then ( ) ( )limi n in
A A

f fω ω
→∞

=∫ ∫  and the 

theorem is proved. 
 
How do we know that the MCT applies? 
How can we demonstrate that the monotone class theorem truly applies to any measurable 
function?  
  Our approach will be to first show that we can approximate a measurable function f by 
a simple function ( )* .n ie ω  Then we will show that the integral of this simple function is the limit 
of the sequence of integrals of increasing simple functions. 
 The first step is to demonstrate that we can create a simple function as close to ( )if ω  as 
we like, for any ,i Aω ⊂  we can partition A into a collection of sets { }kA  that are pairwise 
disjoint such that there exist a set kA  for which i kAω ⊂  but iω  is not in any other set in .kA  Then 

we may write ( ) ( ) .1
i ki Ak if ωω α ⊂=  Then we can write this as ( ) ( ) - .1

i ki k i Af
n ω
εω α ⊂

 
 
 
-  As n gets 

large and for ε  arbitrarily small, ( ) - 1
i kk i An ω

εα ⊂
 
 
 

becomes arbitrarily close to ( ).if ω   
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Some Classic Measure Theory Results 
 

 
 
This chapter provides the link between the Riemann and Lebesgue integral, as well as a proof of 
the Lebesgue Dominated Convergence Theorem. 
 
Prerequisites 
Sequences of Sets 
Set Functions in Measure Theory 
Simple Functions in Public Health 
Measure Based Integration 
 
Deficiencies 
We have previously discussed outer and inner measure.  If we define measure (better described 
as Lebesgue measure*) as the length of an interval, then it seems that we have all that we need 

with the notion of outer measure or ( )* ,Aµ  where ( ) ( )*
,

1
inf .i ji j

A A
∞

=

 
=  

 
∑µ µ  However as it turns 

out ( )* Aµ does not satisfy the constraint of additivity. This seems odd, since we motivated the 
concept of additivity by showing how unions of sets cover our set A, and in fact, for many sets, 
outer measure does provide additivity. However, on the real number line, there are some finite 
disjoint sets A and B, such that   

 
( ) ( ) ( )* * * .A B A B∪ ≠ +µ µ µ  

 
Now, such sets are not the sets we deal with commonly on the real line. The most well-known of 
these sets is the Vitali set which is an uncountable set of real numbers that is nonmeasurable. If B 
is a Vitali set, then we see that ( ) ( ) ( )* * * .A B A B∪ ≠ +µ µ µ   

This finding was quite perplexing. As it turns out, the sets that break additivity are those 
that have fuzzy, foggy edges with no clear dividing line between what they contain and they 

                                                 
* One of the reasons that Lebesgue measure is so popular as a didactic tool is that it is the natural counterpart to 
Riemann integration.   
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don’t contain (i.e., they are not intervals). The property of measure confers more measure to 
these sets than they should have.  
 Let’s explore this concept of fuzziness for a second. Consider a collection of songs. If we 
wanted to characterize them by length, e.g. all songs that were less than or equal to four minutes, 
we can come up with the precise identity of each song that meet this criteria.  

Now suppose we wanted to characterize all of these songs not by length, but by ratings , 
e.g., all songs that received three out of five star ratings. This would also be precise. However, as 
we listen to the songs we are constantly reconsidering whether they are three stars, two stars, or 
four stars, so the ratings are constantly changing. Thus, the identities of songs in our sets are 
constantly changing. Even though we think that the three star boundary is precise, from the user 
perspective it is fuzzy. 
 As another example, put a piece in bread in rapid two dimensional motion and ask 
someone to precisely point to the bread piece’s edge. Every attempt fails, because of the rapid 
unpredictable movement of the bread. To the human, the edge of the bread is fuzzy, i.e., it cannot 
be located. Thus, the concept of fuzziness is not new to us, although considering it as a property 
of the real number line is.  

There are uncountably many Vitali sets, i.e., immeasurable sets that themselves contain 
uncountably many real numbers on . Recognizing this, Giuseppe Vitali himself felt 
compelled to conclude that the problem of finding an adequate definition of measure for intervals 
of the real line was unsolvable.* The complexity of the real number line confounds every 
possible definition of measure.   

And, there still is no resolution of this. Measure can either have additive countability and 
not assign measure to all sets, or it can assign measure to all sets and fail the countability 
proposition. When confronted with this, Lebesgue concluded that it was preferable to have the 
countable additivity proposition. Therefore there are some sets (in fact there are an infinite 
number of them) that he conceded must simply have no measure.  

Thus, in the end we settle on the definition that a measurable set is a set whose inner 
measure equals its outer measure.  
 
Carathéodory extension theorem 
The paradigm in which we have been working is that we develop a system of a sample space, σ-
algebra, and a measure, ( ), , µΩ Σ  which governs the measure of sets. However, what if we do 
not have a  σ-algebra? 

In some circumstance we have collections of sets that are closed under pairwise unions 
and intersections, but need not be closed under countable additivity. We will call such collections 
of sets fields, .ℑ  These fields are subsets of σ-algebras. Without a σ-algebra, there can be no 
measure, so the “measure” that we want to use on the field we call a premature or 
pseudomeasure. The pseudomeasure that operate on the field. 

What the Carathéodory extension does is, is to extend ℑ  to the smallest σ-algebra 
generated by the field. Now, if 0µ is countably additive on sets that happen to be countably 
additive in the field ,ℑ  then the measure that operates on the  smallest σ-algebra generated by ,ℑ  
provides the same measure as the premeasure when applied to sets in .ℑ  

The statement of the theorem follows. 
 

                                                 
* One might say that the measure of a clinical trial effect size is “fuzzy” since it has a sampling error component that 
obfuscates the true population effect. 

[ ]0,1
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Carathéodory Extension Theorem.  
Let Ω  be a set and ℑ   a field on it. Let 0µ  be a finite pseudo measure on .ℑ  Then if 0µ  is 
countably additive on sets in ℑ  that happened to be countably additive in ,ℑ  then there is unique 
measure µ  that operates on the smallest σ-algebra generated by ,ℑ  and agrees with the 
pseudomeasure .ℑ  

 
This theorem is useful for extending a measurable function that exists on a collection of 

sets that is not a σ-algebra to a measure on a σ-algebra. 
How does this work? 
Assume that we are working on ( ]0,1 .  We can partition this interval into a finite 

sequence of semiclosed intervals ( ], 1,...,i ia b i n=  such that each is pairwise disjoint and 

( ] ( ]
1

, 0,1 ,
n

i i
i

a b
=

=


 Using a measurable function 0µ (commonly called a pseudo measure or 

premeasure), the result that we  would like is ( ] ( ]( ) ( )0 0
1 1

0,1 , .
n n

i i i i
i i

a b b aµ µ
= =

= = −∑ ∑  

The extension theorem allows us to extend our collection of right semiclosed intervals to 
the σ-algebra on ( ]0,1 , and then convert 0µ  to a true measure .µ   
 
Measurable functions from simple ones 
One of the important consequences of the monotone convergence theorem is that a sequence of 
simple functions can be identified that converges to our commonly used Riemann integrable 
functions.  
Here, we demonstrate how to find such a sequence of simple functions on the real line. Let’s first 
consider ( ),f x  a real valued function which is measurable on intervals of the real number line. 

Develop a collection of intervals ,
1,

2 2n k n n

k k− =  
I  for 21, 2, 3,...2 1,nk = +  and )2

2
,2 1

2 , .n
n

n +
= ∞I  

We see that this collection of intervals is disjoint. For example, let 3.n =  Then the collection of 
semiclosed intervals on [ ]0,1  is  
 

3
1 1 2 2 3 3 4 4 5 5 6 6 7 70, , , , , , , , , , , , , , ,1 .
8 8 8 8 8 8 8 8 8 8 8 8 8 8

               =                              
I   

For a fixed n, the intervals are small in number; as n increases, the intervals decrease in 
width and increase in number. The final interval covers the rest of the positive real number line.   
 We next need to define some measurable sets along the real number line. Since the 
collection of ,n kI  sets are themselves on the real number line, we need to find those sets of x’s 
that ( )f x  maps. Define for each , ,n kI  the set ( )1

, .n kf − I   
   

Now, suppose our continuous  function is ( ) 5 .f x x=  For the first set, what was x such 

that 1( ) 5 ?
8

f x x= =  Clearly, any number in the interval 10,
40

 
 

 was mapped by f to 10, .
8

 
 

Thus 

1 1 10, 0, .
8 40

f −     =       
Similarly, 1 1 2 1 2, , ,

8 8 40 40
f −     =       

 and so on, 

 

Now we are ready to define the convergent sequence of functions, ( ) ( )

2

1
,

2 1

1

1 .
2

1
n

n k
n n f x

k

kf x −

+

⊂
=

−
= ∑ I
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We can see how this process actually works for the well behaved function ( )f x x=  
(Figure 1). 
 

 
 

 

As n increases the intervals ,
1,

2 2n k n n

k k− =  
I  become smaller and smaller, the fewer the number 

of values of x fall in that interval, the more precise the contour of the line becomes.  
 One can also see how Riemann integration works with this square root function as well, 
easily visualizing the rectangles on which the integration is built. However, there is a 
fundamental difference in the two processes. Riemann builds the rectangles first, then finds a 
value of the function within the rectangle’s horizontal vertices. The simple function approach of 
Lebesgue-Stieltjes evaluates the function to see if it falls within intervals. It either falls in them 
or it doesn’t. Here, there is absolutely no area computation.  
 However, one can also see how tenable is the argument that for smooth functions both 
Riemann and Lebesgue-Stieltjes provide the same result.  
 
Riemann and Lebesgue Integration Equivalence 
With the advent of Lebesgue integration, it is comforting to know that when both integrals exist, 
the Lebesgue-Stieltjes integral is equal to the Riemann integral. We can demonstrate this by 
returning to first principles for each integration definition. After these definitions, our goal will 
be to turn the upper and lower Riemann integrals (which are equal if the Riemann integral exists) 
into a sequence of step function and then demonstrate that these are Cauchy sequences and hence 
converge..  

Let’s begin with Riemann. First, define our integral function as ( ).f x  We know that by 
taking a sequence of meshes, we can write the upper Riemann integral for any partition P of an 
interval of the real line as  

( ) ( )

( ) ( )

1,

1,

1
1

1
1

, inf ( )

, sup ( ) .

i i

i i

n

L i ix x xi
n

u i i
x x xi

R f P f x x x

R f P f x x x

−

−

− ∈ =

−
 ∈=  

= −

= −

∑

∑
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And the Riemann integral ( ) ( )( ) lim , lim , .L Un n

f x R f P R f P
→∞ →∞

= =∫R  This is true for any partition kP  
of the x-axis so we may write  

( ) ( )( ) lim , lim , .L k U kk k
f x R f P R f P

→∞ →∞
= =∫R   

We now have to show that this converges to the Lebesgue-Stieltjes integral. Our goal will 
be to define simple functions that both map to the infimum and supremum of the Riemann sums 
and lead to Lebesgue integrals. Let’s define the two functions 

 

( ) ( )

( ) ( )

1
1,

1
1,

1

1

, , inf ( )

, , sup ( ) .

1

1
i i

i i

i i
i i

n

x x xx x xi
n

x x x
x x xi

f P x f x

f P x f x

λ

ω

−
−

−
−

∈ − ∈ =

∈ −
 ∈=  

=

=

∑

∑
 

 
Note that  ( ) ( ), , ( ) , ,f P x f x f P x≤ ≤λ ω  except at the points ix x= (but there are only 

countably many of these).  Also note that these indicator functions covers the same intervals with 
the same mesh endpoints as the Riemann upper and lower sums. Thus the foundation of both the 
Riemann and Lebesgue-Stieltjes integrals is the same interval set of the x-axis in this 
construction.  

Because they are defined on open intervals at the value ,ix x= both ( ), ,f P xλ and 
( ), ,f P xω are each zero at those points and are indicator functions.  Then, we can compute their 

Lebesgue integrals  
 

( ) ( ) ( ) ( ), , , : , , , .L UL f P f P x L f P f P x= =∫ ∫λ ω   

Since ( ), ,kf P xλ and ( ), ,kf P xω  are also functions of the partition of the x-axis, we may consider 

1kP +  a refinement of kP  and the integral based on 1kP +  is closer to ( )f x  than  that built up from kP
we may write. 

( ) ( ) ( ) ( )1 1, , , , ( ) , , , , ,k k k kf P x f P x f x f P x f P x+ +≤ ≤ ≤ ≤λ λ ω ω again at the points ix x= (a countable 
set). Thus, we may write  
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

, , , ,

, , , ,

, ,

k m k k m k

k m k k m k

k m k

f P f P f P f P

f P f P L f P L f P

L f P L f P

+ +

+ +

+

λ − λ = λ − λ

= λ − λ = −

= −

∫ ∫
∫ ∫   

 
Except for the countable set of join points that we know as Lebesgue measure zero.  

As k goes to infinity these terms get as close together as desired, and therefore the 
sequence is a Cauchy sequence and converges.  

Similarly, ( ) ( ), ,k m kf P f P+ω − ω∫ is a Cauchy sequence. Thus the functions  ( ), ,kf P xλ

and ( ), ,kf P xω  converge almost everywhere on the interval [ ],a b  and since ( )f x  is trapped 
between them they both converge to ( ).f x  Thus the limits of these step functions converge to 
the Lebesgue integral of ( ).f x   

Now, we remember that the integrals of these step functions also map to the lower and 
upper Riemann sums (we specifically defined them that way), whose limit is the Riemann 
integral. Thus the step functions converge to the Riemann integral as well, and therefore the 
Riemann and Lebesgue integrals are equal.  
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From the Lebesgue-Stieltjes perspective, a function has a Riemann integral if the set on 
which it is discontinuous has Lebesgue measure 0. If we return to the Dirichlet function defined 
on 0,1, as rational( ) ,1xf x ==  then the set on which ( )f x  is discontinuous has Lebesgue measure 
one, signifying that the Riemann integral does not exist.  

 
Lebesgue measure on countable sets 
In fact, the only set on which the Dirichlet function takes a nonzero value is a set of zero 
Lebesgue measure. To show this, let there be a countable set ,nq  n = 1 to ∞  where the sets are 

disjoint.  We want to show that  
1

0.n
n

qµ
∞

=

 
  
 

=


 The key to the demonstration is to take advantage 

of the disjoint nature of the countable set. Around each point, build an interval from 
2n nq ε

−  to 

.
2n nq ε

+  Since the countable set is disjoint, these intervals are disjoint. Thus, we could write 

1 1
,

2 2n n nn n
n n

q q qµ µ ε ε∞ ∞

= =

    
           

= − +
 

.  

Recall though that the measure is the infimum of the union of these coverings. Now, 
applying Lebesgue measure to each of these intervals, we find that 

1
1 1 01

2 1 1 2 .
2 2 2

,
2 2 n n n

n n n
n nn n

n
q q εµ ε ε εε ε ∞ ∞ ∞

−
= = =

∞

=

  
= = = =     

− + ∑ ∑ ∑


 Since ε  is arbitrarily small, we have 

that 
1

inf 0.n
n

qµ
∞

=

  
      

=


 

 
Dominated convergence theorem 
We have seen that one advantage of Lebesgue-Stieltjes integration is that it is a superset of 
functions that are Riemann integrable. When both integrals exists, they are equal. Plus there are 
functions for whom the Riemann integral does not exists but Lebesgue-Stieltjes does.  

Another advantage of Lebesgue-Stieltjes integration is that for a sequence of convergent 
functions, the limit passes though the integration sign under a different set of conditions.  
 Now, we have seen that the same property holds for functions that are Riemann integral. 
The only condition is that the function must be uniformly convergent on an interval for this to 
take place. However, since by bounding a function on the real number line (such as the function 

( ) nf x x=  on the [ )0,1  ) we can make many functions that are not uniformly convergent on the 
entire real number line uniformly convergent in the interval of interest. If this is the case, then 
limits pass through the Riemann integral on these intervals as well.   

However, for functions that are simply too discontinuous for the Riemann integral to 
exist, we would still like to know what we can pass the limit through the integral sign. The 
statement of this feature is the dominated convergence theorem.  
 The dominated convergence theorem states that if we have pointwise convergence of a 
sequence of functions ( )nf x  to ( )f x , then all that we need for ( )lim ( )nn

f x f x
→∞

=∫ ∫  is for every 

function in the sequence to be less than or equal to (i.e., “dominated”) by a function ( )g x  where 
the function g is measurable.  This is a very useful tool in integration theory.  
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Before we proof it though we need Fatou’s lemma which makes a related statement in 
terms of liminfs. The proof of the dominated convergence theorem is straightforward if we can 
rely on Fatou’s lemma, but the lemma itself is complicated so we will spend some time on it.  
 
Fatou’s Lemma 
For Fatou’s lemma we begin with a sequence of nonnegative measurable functions ( )nf x  on a 
measure space .Ω  Define ( )f x  as ( )liminf ( ).nn

f x f x
→∞

= * Then according to Fatou’s lemma. 

( )liminf ( ).nn
f x f x

→∞
Ω Ω

≥∫ ∫   

 To prove this, begin with a set .E ⊂ Ω  Let ( )xψ  be a non-negative simple function such 
that ( ) ( ).x f xψ ≤  Let’s also let M be the maximum value of ( ).xψ   Is it true that 

( ) ( )liminf nn
E E

f x xψ
→∞

≥∫ ∫ ? We would expect this to be true since ( ) ( )x f xψ ≤ and ( )lim ( ).nn
f x f x

→∞
=   

 Let’s define ( ) ( ) ( ){ }/ 1 .n nA x E f x x n Nε ψ= ∈ > − ∀ ≥  Defined this way nA  is an infinite 
number of increasing sets (since every set contains only those that are at least that far out in the 
sequence) whose union contains .A  Therefore the set nA A−  is a set of decreasing sets whose 

intersection is the empty set. Let’s assume that A has finite measure.† Then since 
1

,n
n

A A
∞

=

=


 then 

( ) ( )lim ,nn
m A m A

→∞
=  which implies that for n N≥ we can write ( ) .n N nm A A ε>∀ − ≤  Therefore,  

( ) ( ) ( ) ( )1 .
n n

n n
E A A

f x f x xε ψ≥ ≥ −∫ ∫ ∫  Also, since ( ) ( ),
E A

x xψ ψ=∫ ∫  (because 
1

,n
n

A A
∞

=

=


) then  we 

know that  
 ( ) ( ) ( ).

n nA A A A

x x xψ ψ ψ
−

= +∫ ∫ ∫   So ( ) ( ) ( ),
n nE A A A

x x xψ ψ ψ
−

= +∫ ∫ ∫ and  

( ) ( ) ( ).
n nA E A A

x x xψ ψ ψ
−

= −∫ ∫ ∫  Multiplying each side by ( )1 ε− we find 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 .
n nA E A A

x x xε ψ ε ψ ε ψ
−

− = − − −∫ ∫ ∫  

 
( ) ( ) ( ) ( ) ( )1 1

n nA E A A

x x xε ψ ε ψ ψ
−

− ≥ − −∫ ∫ ∫ . So we have two inequalities and can now write  

 

                                                 
* Remember for liminfs of a function we find ( )liminf .mk m k

f x
→∞ ≥

the infimums of the tail subsequences beyond each 

value of the index k.  
† Another proof is available for the case where ( ) .m A = ∞   
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

1
n n

n

n

n n
E A A

E A A

E E A A

E E

E E

f x f x x

x x

x x x

x x

x x

ε ψ

ε ψ ψ

ψ ε ψ ψ

ψ ε ψ

ψ ε ψ

−

−

≥ ≥ −

≥ − −

≥ − −

≥ − −

 
≥ − + 

 

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

M

M

 

 
 
Now we let 0ε >  and taking the liminf we have ( ) ( )liminf .nn

E E

f x xψ
→∞

≥∫ ∫  

 
With Fatou’s lemma in place, we can now prove the Lebesgue Dominated Convergence 
Theorem. As we have before, let’s assume that ( )nf x  is a sequence of functions converging 
pointwise to ( ),f x  and that on the set Ω, ( ) ( ).f x g x≤  Then we know that 
 

( ) ( )( ) ( ) 2 ( ).n nf x f x f x f x g x− ≤ + ≤  We also know that ( )limsup ( ) 0.n
n

f x f x
→∞

− =  Thus  

( ) ( )( ) ( ) ( ) ( ) .n n nf x f x f x f x f x f x
Ω Ω Ω Ω

− = − ≤ −∫ ∫ ∫ ∫  

Now, Fatou’s lemma implies  

( ) ( )limsup ( ) limsup ( ) 0.n nn nm n m n
f x f x f x f x

→∞ →∞> >Ω Ω

− ≤ − =∫ ∫  This in turn implies that the limit exists and is 

zero for .x ⊂ Ω  Thus ( )lim ( ) 0,nn
f x f x

→∞
Ω

− =∫  and ( )lim ( )nn
f x f x

→∞
=∫ ∫ . 

 
Return to properties of Lebesgue integrals 
The Lebesgue dominated convergence theorem is a powerful tool, but let’s now turn our 
attention to some other more ordinary but essential features of Lebesgue integrals.  
 First, the expression of a Lebesgue integrable function ( )f x  as a simple function is not 
unique. Simple functions are so flexible that there are many ways to parameterize them. Yet, if 
there are multiple ways to assemble ( )f x  from simple functions, than the value of the integral of 
these different simple functions should be the same. 
 Formally, if ( )f x  is integrable on a closed interval (we can choose [ ]0,1  for 

convenience), and 1
1

( ) ,1
i

n

i x A
i

f x S ∈
=

= = ∑α  and alternatively, 2
1

( ) ,1
j

m

i x B
j

f x S β ∈
=

= = ∑  then ( )
1

n

i i
i

m Aα
=
∑  

should be equal to ( )
1

.
m

j j
j

m Bβ
=

∑ We can show this by partitioning the [ ]0,1  interval into a 

collection of subintervals such that we can we can construct the partitions of 1S  and 2.S  Lets 
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create a new simple function 3

1
1

k

L

k x C
k

S γ ∈
=

= ∑ such that for every set iA  in 1,S  then there exists a 

subcollection of { }kC  (call this { }( )i kC such that 
( )

.
i k

i
n

A C=


 Similarly, for every set jB  in 2 ,S  then 

there exists a subcollection of { }kC  (call this { }( )j kC such that 
( )

.
j k

j
n

B C=


 Now set k iγ = α  if there 

is an i such that
( )i k

i
n

A C=


 and k jγ = β  if there is an j such that
( )

.
j k

j
n

B C=


 Then 
1

( ) .1
k

L

k x C
k

f x ∈
=

= γ∑  

Therefore ( )
1

( ) .
L

k k
k

f x m C
=

= γ∑∫  But ( ) ( ) ( )
( )

( )
1 1 1 1

.
i k

L L L n

k k k i k k i i
k k k in

m C m C m C m A
= = = =

 
γ = γ = γ = α  

 
∑ ∑ ∑ ∑

 

Analogously ( ) ( ) ( )
( )

( )
1 1 1 1

.
j k

L L L m

k k k i k k j j
k k k jn

m C m C m C m B
= = = =

 
γ = γ = γ = β  

 
∑ ∑ ∑ ∑

 

 To show that for example for an integrable function ( ),f x  and a nonzero constant a 
( ) ( ),af x a f x=∫ ∫  we first show that this is true for indicator functions, then simple functions, 

then for the limits of simple function. At that point, we invoke the Monotone Convergence 
Theorem to produce the result that, since integrable functions are the limits of simple functions, 
then any property of the limits of simple functions must hold for integrable functions.  
 So we begin with ( ) .1x Af x α ==  Then  

( ) ,1 1 1x A x A x Aaf x a aα α γ⊂ ⊂ ⊂= = =∫ ∫ ∫ ∫  where .aγ α=  The fact that we recognize ( )1x A m Aγγ ⊂ =∫
now permits us to finish as  

( ) ( )

( )

( ),

1 1 1x A x A x Aaf x a a

m A a m A a f x

α α

γ α

γ⊂ ⊂ ⊂= = =

= = =

∫ ∫ ∫ ∫
∫  

and we have the result for an indicator function.  
 

 To move to simple functions we define 
1

( ) .1
i

n

i x A
i

f x α ⊂
=

= ∑ Then we proceed 

 

( )

( ) ( )

1 1 1 1

1 1

( )

( ).

1 1 1
i i i

n n n n

i x A i x A i x A i i
i i i i

n n

i i i i
i i

af x a a m A

a m A m A a f x

α α

α α

γ γ⊂ ⊂ ⊂
= = = =

= =

= = = =

== = =

∑ ∑ ∑ ∑∫ ∫ ∫ ∫

∑ ∑ ∫
 

 

We now define 
1

( ) lim 1
i

n

i x An i
f x α ⊂→∞

=

= ∑ followed by  

( ) ( )

1 1 1

1 1 1

1 1

( ) lim lim lim

lim lim

lim lim ( ).

1 1 1

1

1 1

i i i

i

i i

n n n

i x A i x A i x An n ni i i
n n n

i x A i i i in ni i i
n n

i x A i x Ann i i

af x a a

m A a m A

a a a f x

α α

α

α α

γ

γ γ

⊂ ⊂ ⊂→∞ →∞ →∞
= = =

⊂→∞ →∞
= = =

⊂ ⊂→∞→∞
= =

= = =

= = =

= = =

∑ ∑ ∑∫ ∫ ∫ ∫

∑ ∑ ∑∫

∑ ∑∫ ∫ ∫

 

 
Note the use of the Lebesgue dominated convergence theorem twice here as we move the limit 
first outside, then inside the integral sign. 
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Let’s also follow the same process for demonstrating that if we have two integrable functions 
( )f x  and ( )g x  then ( ) ( ) ( ) ( ).f x g x f x g x+ = +∫ ∫ ∫  As before, we begin with indicator functions. 

Let ( ) 1x Af x α ⊂= and ( ) .1x Bg x β ⊂=   
 

( )

( ) ( ) ( ) ( )

2 2

1 1

1 1 2 2

( ) ( ) .

( ) ( ).

1 1 1
ix A x B i x C i i

i i
f x g x m C

m C m C m A m B

f x g x

α β γ γ

γ γ α β

⊂ ⊂ ⊂
= =

+ = + = =

= + = +

= +

∑ ∑∫ ∫ ∫

∫ ∫
 

 
Here the integrand is just a simple function and since we know the  measure of simple functions, 
we compute its measure, than rewrite in terms of the original simple functions and integrands. 
 

We now examine this proposition for simple functions. Let 
1

( ) 1
i

n

i x A
i

f x α ⊂
=

= ∑ and 

1
( ) 1

j

m

j x B
j

g x β ⊂
=

= ∑ and proceed. 

 

( ) ( ) ( )
1 1 1

1 1 1

1 1

( ) ( )

( ) ( ).

1 1 1

1 1

i j i

i j

n m L

i x A j x B L x C
i j h

L n m

h h i i j j
h i j

n m

i x A j x B
i j

f x g x

m C m A m A

f x g x

α β

α β

α β

γ

γ

⊂ ⊂ ⊂
= = =

= = =

⊂ ⊂
= =

+ = + =

= = +

= +

= +

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑

∑ ∑∫ ∫

∫ ∫

 

 
This works because of the flexibility simple functions afford. We can rewrite a combination of 
simple functions into another simple function.  

Now for the limits of simple functions we write and 
1

( ) lim 1
i

n

i x An i
f x α ⊂→∞

=

= ∑ and 

1
( ) lim 1

j

m

j x Bm j
g x β ⊂→∞

=

= ∑ and follow with  

 

( ) ( ) ( )

1 1 1

1 1 1

1 1 1

( ) ( ) lim lim lim

lim lim lim

lim lim lim

1 1 1

1 1 1

i j i

i i i

n m L

i x A j x B L x Cn m Li j h

L L L

L x C L x C L x CL L Lh h h
L n m

h h i i j jL n mh i j

f x g x

m C m A m A

α β

α β

γ

γ γ γ

γ

⊂ ⊂ ⊂→∞ →∞ →∞
= = =

⊂ ⊂ ⊂→∞ →∞ →∞
= = =

→∞ →∞ →∞
= = =

 
+ = + = 

 

= = =

= = +

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑

 

 
Again the resilience of simple functions makes all of the difference. Continuing, 
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( ) ( ) ( )
1 1 1

1 1

1 1

lim lim lim

lim lim

lim lim ( ) ( ).

( ) ( ).

1 1

1 1

i j

i j

L n m

h h i i j jL n mh i j

n m

i x A j x Bn mi j

n m

i x A j x Bn mi j

m C m A m A

f x g x

f x g x

α β

α β

α β

γ
→∞ →∞ →∞

= = =

⊂ ⊂→∞ →∞
= =

⊂ ⊂→∞ →∞
= =

= = +

= +

= + = +

= +

∑ ∑ ∑

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫ ∫

∫ ∫

 

 
Lebesgue dominated convergence theorem plays its usual role here. 
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Vitali Sets  
 

When the notion of measurable sets of real numbers appeared, one of its first results was 
that the set of rational numbers, although themselves dense had measure zero. A natural next 
question to ask was whether there were any sets of dense real numbers that were not Lebesgue 
measurable. The Vitali set is one of the most vivid examples of a set of real numbers (not just 
rational numbers) that are both dense and are not Lebesgue measurable*. We will first 
demonstrate how the Vitali set is constructed, and then demonstrate its non-measurable property.  
 
Developing the Vitali set 
 
Rational numbers 
We begin with the assertion that the rational numbers, although dense, are non-measurable. The 
density of the rational numbers simply means that every rational number is either a rationale 
number itself or is as close as we would like it to be to another rational number (that is, within ε
of other rational numbers for any ε arbitrarily small). We may at first think that this means that 
there are “enough” rational numbers to satisfy the measurable criteria. However, because they 
are countable, even though there is are an infinite number of them, there is sufficient “space 

between” them to give the set of rational numbers on [ ]0,1  Lebesgue measure zero. 
Vitali numbers build on this principle. We first develop a collection of classes of Vitali 

numbers on [ ]0,1  and demonstrate that they are dense. We then prove by contradiction that the 
union of these classes of numbers which covers [ ]0,1 cannot be measured.  
 
Vitali numbers 
Actually this is quite simple. For each irrational number r on [ ]0,1 , we create a set of irrational 
numbers { }rb  such that rr b+  is rational.  
 This is quite straightforward process, since the sum of two irrational numbers can be 
rational†.  However, since there is an infinite and countable number of rational numbers, we have 

                                                 
* We are not saying that these sets have Lebesgue measure zero. We are saying that they are not measurable, i.e., we 
do not know how to measure their content.  
† ( )3 31 2 2 1.− + =   
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an infinite and countable collection of 'srb  for each irrational number r.  This is a dense set of 
denumerable irrational numbers.  

Now, since there are uncountably many real numbers on [ ]0,1 , and every real number r 
has an infinite countable set { }rb associated with it there are uncountably many collections of sets 
{ }.rb  Furthermore, since every real number has a collection of sets  { }rb  the union of all these
{ }rb sets covers [ ]0,1 ,  i.e., { } [ ]0,1 .r

r

b ⊃


 The Vitali set is the set composed by selecting one 

element from each of the { }rb . Thus, the Vitali set is an uncountable set of irrational numbers  on 
[ ]0, 1 .   
 
Non-measurability of the Vitali set 
We prove the non-measurability of the Vitali set indirectly. To set this up, remember that the set 
of rationale numbers is countable. Let’s sequence these rational numbers in the interval  [ ]1,1− by 

1 2 3, , , ..., , ...,kq q q q . Now choose a rational number kq  then select a Vitali set { }v and create a 
countably infinite number of sets { }.k kV v q= +  The construction makes the kV  sets pairwise 
disjoint. Now begin with.  
 
[ ] [ ]0,1 1, 2 .k

k

V⊆ ⊆ −


 

 
The first ⊆  comes from the property of Vitali sets. The second ⊆  is from the simple addition of 
the dense set of rationals on [ ]1,1−  to the Vitali set. 
If the Vitali set was measurable, then 

 [ ]( ) [ ]( )0,1 1, 2 .k
k

V 
⊆ ⊆ − 

 


µ µ µ  

Since, ( )
11

,k k
kk

V V
∞ ∞

==

 
= 

 
∑

µ µ  we can write using Lebesgue measure 

( )
1

1 3k
k

V
∞

=

≤ ≤∑µ  

and since the measure is translation invariant, we have  

( )
1

1 3
k

V
∞

=

≤ ≤∑µ  

 
However, how could this be possible? The Lebesgue measure of the Vitali set is a constant, 
therefore its sum is either zero or infinity. Thus, we have a contradiction and the Vitali set must 
be nonmeasurable.  
 So, why is the Vitali set, itself a set of uncountably many irrational numbers not 
measurable? Because the set is linked to rational numbers. Linking each irrational number r to a 
denumerable number of irrational numbers,  i.e., making it countable, introduced enough “space 
between the irrational numbers to undermine measurability. The fact that one has uncountably 
many of these sets does not cure the link to the denumerable rationals. 
 It is easy to see what happens. Let’s say that we have the irrational number 3 0.2 0.585.≈  
Can we fill the interval 3 0.2,1 

   with irrational numbers. Certainly. Simply be adding a set of 

uncountably many irrational numbers, we can fill up the  3 0.2,1 . 
   This would be all of 

irrationals in the interval 30, 1 0.2 . −  However, suppose we “counted the infinite but 
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denumerable set of rational numbers in 3 0.2,1 
  and for each irrational number in this interval, 

added an irrational number to 3 0.2  to produce that rational number. This would reproduce the 
rationals in 30, 1 0.2 −   and, although dense, would not permit the “space” between them to fill 
up. Thus the denumerable infinite set of irrational numbers has measure 0, although we never 
stop adding to them.  
 Up until this section, we knew that the set of rational numbers were both dense and had 
measure zero. Now we know that there are sets of irrational numbers that cover an open interval 
and are nonmeasurable. In fact, since we chose only one member of each of the { }rb  sets to 
create our Vitali set, sand there are uncountably many Vitali sets, there are uncountably many 
collections of dense real numbers that are also nonmeasurable.  
 So, what is so special about the Vitali set? The problem is that it has no sharp edges. Sets 
like intervals (be they open or closed) have clear and well defined boundaries. However the 
complexity of the real number line generates sets of real numbers that are dense, and even 
nondenumerable without clear dividing lines between what is a member and a non-member. The 
Vitali set is one of these, and its presence confounds the assignment of measure.  
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The Basics of Bernoulli Trials- Bernoulli 
Distribution 

 
 

The Bernoulli distribution is among the simplest probability distributions yet is rich enough to 
provide a solid foundation for all of our work with more complicated probability laws.  
 We will introduce and study the Bernoulli distribution in detail, providing definitions and 
computations on which we will rely for all of our deeper discussions of probability.  Note that a 
more advanced treatment of the Bernoulli distribution is also available here.  
 
Prerequisites for the Bernoulli Distribution 
The Notion of Random Events 
Sigma Notation 
Factorials Permutations, and Combinations 
Elementary Set Theory 
Properties of Probability 
Conditional Probability 
Counting Events - Combinatorics 
 
Properties of Bernoulli trials 
In the section that discussed sampling with and without replacement, we set up a series of 
experiments that led to the computation of probability without actually collecting any data. This 
focused on sampling from a particular type of experiment. That experiment had the following 
characteristics: 
 

• The result of the experiment can be dichotomized. Thus only two possible outcomes can 
occur. They are typically characterized as either a  “success” or a “failure”.  

• The probability of a success is a known quantity,  p and the same from experiment to 
experiment.  

• The result of one experiment does not influence the likelihood of a success or failure in 
future experiments. Experimental results are independent of each other.  
 
Experiments that have property 1 are known as Bernoulli trials, named for Jacob 

Bernoulli, from the famed Bernoulli family.  If, in addition they have properties 2  and 3, they 
are known as independent and identically distributed (i.i.d) Bernoulli trials.  
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Bernoulli trials are ubiquitous in our culture. That, and the relative ease of probability 
computations that they induce makes this among the most popular and easily understood 
probability distributions.  

We will introduce the concept of the Bernoulli distribution and use its simplicity to begin 
discussions about probability distributions in general. In addition, using Bernoulli trials will 
allow us to deconstruct complicated events into simple ones that are relatively easy to solve.. 

 
Identifying the Probability Mass Function 
Qualitative characterization of this collection of experiments (each with independent outcomes 
described as success or failure) as Bernoulli trials is a fine start. However, we will also need to 
be able to provide a mathematical characterization as well.  
 In order to completely describe the distribution of probabilities across both  outcomes, we 
will need to characterize the outcome of the experiment.  In the case of the Bernoulli distribution, 
this involves an experiment that produces two outcomes, either success or failure, sometimes 
characterized as a “1” or a “0”.   
 For example, we might characterize the mortality finding of a surgery as follows. Let X  
be the mortality outcome.  If the patient survives the surgery, then we have a success and X = 1. 
If the patient dies, then we have a failure and  X = 0. To characterize a distribution we simply 
need to provide all possible experimental outcomes and the probabilities attached to them.  
 
Random variables 
We are used to the concept of the variable X  as representing an unknown quantity. In standard 
mathematics, this is typically an unknown, fixed quantity. However in probability we will adjust 
this variable to be the result of an experiment.  
 In the prior example we would let iX  reflect the outcome of the ith subject undergoing 
surgery. Before or during the surgery, we do not know whether the patient will survive. Thus, we 
denote the unknown result, subject to influences both known and unknown as iX , calling it a 
random variable. 
 
Mass and cumulative distributions  
For a Bernoulli trial we characterize the possible outcomes as either 0, or 1. We can then write 
 

 
[ ]
[ ]

1

0 1 .

X p

X q p

= =

= = = −

P

P

 
This is all we need to characterize the Bernoulli distribution.  This is the probability mass 
function. Essentially, there are two “masses” of probability, one mass for 0,X =  the other for 

1.X =  All other values of X have probability zero. They are simply impossible under both the 
experimental model and the Bernoulli distribution.  

We can also accumulate probability over different values of .X  The most usful of these 
is the cumulative distribution function, ( ).X xF   It is defined as  

 
( ) .X x X x  = ≤F P  
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In this notation,  X  represents a Bernoulli variable. We call this a random variable because it is 
the outcome of an experiment. Thus we can simply write for the Bernoulli distribution. 
 

( ) 0 for 1
1for 1.

X x x <
x

=
= ≥

F
 

 
Mean and variance definition 
Another quantity of interest is the expected value of X. This is typically known as just the 
“average of” X. Technically it is the weighted accumulation of all possible values of X, the 
weights being the probability of X. Described this way, the formula for the expectation of X , 
denoted as [ ]XE  can be easily written as  

 
 .

All x
X x X x      = =∑E P    

We can compute this easily and directly for the Bernoulli mass function. 
 

[ ] [ ] [ ]0 0 1 1 0 1X X X q p p= = + = = + =E P P   
 
Similarly, we could write 
 
      [ ] [ ]2 2 20 0 1 1 0 1 .X X X q p p  = = + = = + = E P P   
 
A measure of dispersion of X is the variance of X, .X  Var The X  Var  is defined as  
 

 ( )2
X X X         

= −Var E E           

The  is commonly written as σ2, and the standard deviation of X which is the square root of the 
variance, is σ. One advantage of the standard deviation is that it is in the same units as the 
random variable X. 

 The variance with its square term is only zero in the special circumstance when every 
realized value of the random variable X is the same, i.e., iX c=   for all i.  The general solution 
for i.i.d. Bernoulli trials is   
 

( ) [ ] ( )2 2 2 2 1 .

( ) .

X

X

X X X p p p p pq

X pq

σ

σ

 = − = − = − = 

= =

= Var E E

SD
 

 
The expected value, X  E  is a measure of central tendency, X  Var is a measure of 
dispersion. 
 
Sums of Bernoulli random variables 
We can also compute expectations of sums of random variables. For example, if X1 and X2 be 
two random variables, Then we can compute the expectation of the sum of them 1 2W X X= +  as  

1 2 .W X X         = +E E E  
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Similarly, if the random variables are independent, that is knowledge of one does not help us 
with the value of the other, then [ ] [ ] [ ]1 2 1 2 .X X X X+ = +Var Var Var   

Thus, if X1 follows a Bernoulli(p1) and  X2 follows a Bernoulli(p2), then sum of these two 
random variables has a mean of 1 2 ,p p+  and variance 1 1 2 2.p q p q+   
 
 
 
Elementary Track 
Basics of the Binomial Distribution 
Basics of the Poisson Distribution 
Basics of Normal Measure 
 
Advanced Track 
Bernoulli Distribution – In Depth Discussion 
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Bernoulli Measure  
 
 
Required review 
The following is a more advanced treatment of the Bernoulli distribution. It will also be good to 
review the following sections  
 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
 
In the previous section that discussed sampling with and without replacement, we set up a series 
of experiments that led to the computation of probability without actually collecting any data. 
This focused on sampling from a particular type of experiment whose characteristics were as 
follows: 
 

• The result of the experiment could be dichotomized, typically  characterized as either 
“success” or “failure  or “1” or “0”. 

• The probability of a success is the known quantity, p.  
• The probability p does not change its value from experiment to experiment.  
• The result of a prior experiment does not influence the result of a subsequent experiment.  

 
Experiments that have all four properties are known as Bernoulli trials, named for Jacob 

Bernoulli, from the famed Bernoulli family.  
Bernoulli trials are ubiquitous in our culture. That and the ease of probability 

computations based on them makes this among the most popular and easily understood 
probability distributions. We will use the concept of the Bernoulli distribution to introduce us to 
the features of  measures used in probability in general, and move on from there to describe some 
of their characteristics.  

 
Characterizing probability distributions.  
While we can qualitatively describe distributions by the experiment, e.g., Bernoulli trials, we will 
need to be able to provide a mathematical characterization as well, which requires us to detail the 
outcome of the experiment.  Remembering, that this characterization is based on a measurable 
space  (Ω, Σ, P). we describe any particular outcome of the experiment as X(ω). X(ω) we can 
think of as both an event and a measurable function from the σ-algebra. Sometimes, all that is 
required is the qualitative description of the experiment, such as, “death or no death”, a depiction 
that provides all that we need to describe the σ-algebra. To characterize a probability measure, 
we simply need to provide all possible experimental outcomes and the probabilities attached to 
them. 
 
Random variables 
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We have learned to work with variables in mathematics. Typically we think of a variable x as 
being flexible (we can define it anyway we want, hopefully in a way that is helpful), but once 
defined, is fixed (e.g., let x be the height of the new hospital), and of course is initially unknown 
(i.e., we need to  find  or “solve for x”).  

A random variable is the outcome of an experiment whose conduct if fixed but whose 
result is not (i.e., did the patient have a stroke or not). Since its value depends on the outcome of 
an experiment that is in the sample space Ω we call the variable not just x, but  X(ω).  Its reliance 
on members ω ⊂ Ω  make it a measurable function. For the random variable X(ω), we can 
choose and govern the rules by which it is assigned, but we cannot set its value − the outcome of 
the experiment determines that.  

For example, in the Bernoulli model, we may define the experiment as the flip of a fair 
coin. Then the sample space Ω  contains all possible outcomes of the experiment (including the 
null set). This is simply “a head”, “a tail”, or .∅   

The σ-algebra Σ , the set of all unions, complements, and intersections of the members of 
Ω  is also quite simple.  

We now define a random variable, ( )X ω  in a way that it is measurable with respect to 

( ), .Ω Σ  We choose the values  X(ω) = 1 if the result is a head, or X(ω) = 0 if the experiment 
produces a tail.  

Recall that the random variable ( )X ω  is measurable on Ω if every value that ( )X ω   
takes can be mapped back to a member of the  σ-algebra .Σ   In this case X(ω) = 1 maps back the 
result of a “head” and X(ω) = 0 maps back the result of a “tail” which are each members of Σ  
which contain the outcomes of the Bernoulli trial. This feature is the heart of a measurable 
function. We say that ( )X ω is a measurable function of ( ), .Ω Σ   

Note, that once that assignment rule is made, the actual value of X(ω) is determined by 
the experiment. However, although we do not know its value in advance, we will see that we can 
define its average, understand the variability in its possible values, and perhaps even understand 
its long term behavior.  
 For a Bernoulli trial we characterize the possible outcomes X(ω) as either 0, or 1. We can 
then write 
 

 
[ ]
[ ]

1

0 1 .

X p

X q p

= =

= = = −

P

P    

This is all we need to characterize the Bernoulli distribution. Since the argument “(ω)” is implied 
for all random variables we will typically not refer to it explicitly so as to simplify notation, but 
keep in mind that it is a measurable function on ( ), .Ω Σ   
 We can define the function that assigns measure or probability to each value of the 
random variable X  is ( )1 01x xX p p= =   = + −P 1 1  . X  is the random variable, the outcome of 

the experiment in general, and and we define its probability as [ ]XP   for all possible values of 
X.  
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 Note how the indicator function works here. When 1x =  only the value p remains on the 
right hand side of the equation, and [ ] .X p=P  Similarly, when 0,x =    the value  p  disappears 
and 1 p−  emerges.  
 We can use this notation to assure ourselves that probability sums to one over the entire 
sample space. Our intuition tells us this must be so since there are only two possible outcomes,  

( ) 1X ω =  with probability p and ( ) 0X ω =   with probability 1 – p, and, since they are mutually 
exclusive 1 1.p p+ − =   However, we can apply what we learned from measure and integration 
to demonstrate this formally.  
  
Cumulative distribution function  
Once we have this function, [ ] ( )1 01x xX p p= == + −P 1 1 known as a probability mass function,  or a 
measuring tool, there are other quantities that we can compute. One is the cumulative distribution 
function, written as  
 
 [ ]( ) .X x X x= ≤F P    

 
In this notation, X represents the random variable, and the lower case x is any value that the 
random variable X  can take. For example, [ ](4) 4 .X X= ≤F P  Once we know that X follows a 
Bernoulli distribution  we can write 
 

 
( ) 0 for 1

1for 1.
X x x <

x
=
= ≥

F
  

and depict this distribution (Figure 1). Note the discontinuity at  1.x =     

 
 
Expectation 
Another quantity of interest is the expected value of X, which we note as [ ].XE  It is a weighed 
sum of all of the possible values the random variable can take, where the weights are the 
probabilities of these values.  We write this as  
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[ ] .X xd
Ω

= ∫E P  

From our work with the Lebesgue integral, we know how to accumulate  Bernoulli measure over 
this integral. For each value of ,X x=  we multiply by the measure of that value and accumulate, 
then move on to the next value of .X   

For the Bernoulli distribution, this becomes   
 

[ ] [ ] [ ]d 0 0 1 1 0 1
x

X x X X q p p
Ω

= = = + = = + =∫E P P P   

 
The dP component requires us to ignore all values of the random variable X that assigned 
probability 0.  The expected value is a measure of central tendency of the probability distribution 
P.  The expectation itself is commonly referred to by µ. Thus, we see that the expectation, µ is a 
function of the parameter p. 

We can also find the expected value of functions of the random variable.  Let c  be a 
known constant, and compute W cX=  as a new random variable*,  and we should be able to find 

[ ].WE    We write 
 

[ ] [ ] [ ]W cX cX d c X d c X
Ω Ω

= = = =∫ ∫E E P P E  

 
We know from our work on properties of the Lebesgue integral that cX d c X d

Ω Ω

=∫ ∫P P , the 

equations proceeds smoothly.  
 

A simple equality that will give us some practice in manipulating both summations and 
the integral stems from an examination of the quantity [ ].X X− E  Keep in mind that X is 
random, taking on values with probability governed by P. On the other hand, [ ]XE  is not 
random, but fixed, and is a function of the parameters of the probability distribution P, which in 
the case of the Bernoulli distribution, is p.  

So, the quantity [ ]X X− E is also random. Let’s try to find [ ] .X X − E E  If we write 
expectation using summation, we would write 
 

 [ ] [ ] [ ]
all x all x

X X x x X x X x
 

 − = − = =  
 

∑ ∑E E P P     

The key to the simplification here is to see that the expression [ ]
all x

x X x=∑ P  while a sum over x, 

once the sum is taken, is no longer a function of x. In fact, we can just write this as the constant 
µ, simplifying to  
 

                                                 
* Clearly W is measurable, since for every value of  W w=  we can find an 

w

c
 which has a member in the σ-algebra 

.Σ   
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 [ ] [ ] [ ] [ ] [ ]

all x all x
X X x X x x X xµ µ − = − = = − =  ∑ ∑E E P P     

Now we just distribute the summation sign to write 
 

         
[ ] [ ] [ ] [ ] [ ]

[ ] [ ].
all x all x

all x all x

X X x X x x X x

x X x X x

µ µ

µ

 − = − = = − = 

= = − =

∑ ∑

∑ ∑

E E P P

P P
            

  
The first term on the second line of the above equation is µ. The second term involves  µ, but 
since µ is a constant with respect to the sum over all possible values of x, it can be moved to 
outside the summation sign. Thus we have 
 

 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ]

all x all x

all x all x

all x

X X x X x x X x

x X x X x

X x

µ µ

µ

µ µ

 − = − = = − = 

= = − =

= − =

∑ ∑

∑ ∑

∑

E E P P

P P

P

   

Observing that [ ] 1
all x

X x= =∑P permits us to finish the derivation. 

 

 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ]

0.

all x all x

all x all x

all x

X X x X x x X x

x X x X x

X x

µ µ

µ

µ µ

µ µ

 − = − = = − = 

= = − =

= − =

= −
=

∑ ∑

∑ ∑

∑

E E P P

P P

P    

 
We can also approach [ ]X X − E E  using our notion of the integral from measure theory. 
Remembering that the mean is a constant with respect to dP,   we can say that  
 

[ ] [ ]( )

( )

d d d

d d d d 0.
x x x

x x x x

X X x X x x

x xµ µ µ µ µ µ

Ω Ω Ω

Ω Ω Ω Ω

 
 − = − = −    

 

= − = − = − = − =

∫ ∫ ∫

∫ ∫ ∫ ∫

E E E P P P

P P P P

 
Use of the probability measure dP ensures that we only consider values of X with non-zero 
probability.* 

One way to think about the zero value for this expression [ ] [ ]X X X µ − = − E E E   is 
that, since X  is random, values of X   can be larger than µ  while other values of X  can be 
smaller. In the long term, that is for large sample sizes, we might expect these large values of X 

                                                 
* This computation assumes that exixts. We will see later that some probability distributions are so disbursed 
that they do not even have this expectation.  

[ ]XE
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to be balanced by small values of X. Thus, their long run average will be [ ],XE and  

[ ]X X − E E  will be zero.*  
 
Following in the same vein, we can write 

              [ ] [ ]2 2 2d 0 0 1 1 0 1
x

X x X X q p p
Ω

  = = = + = = + =  ∫E P P P  

We call [ ]XE and 2X  E as the first and second moments of the random variable X. For the 
Bernoulli distribution, they happen to be equal. 
 
Variance 

[ ]XE  is an important measure of a central tendency. A useful measure of dispersion of X is 
called the variance of X, [ ]XVar , The [ ]XVar   is defined as  
 
 [ ] ( )2X X µ = − Var E           

[ ]XVar  commonly written as σ2, and the standard deviation of X  is the square root of the 
variance, is σ. One advantage of the standard deviation is that its units are the same as the units 
of the original random variable. 

We already know that [ ] 0.X µ− =E   The variance with its square term is only zero in the 
special circumstance when every realized value of the random variable X is the same, i.e., xi = c 
for all i. In general, we can write  
 
 ( ) ( )2 2 22 .X X X Xµ µ µ   = − = − +  Var E E                  
 
Passing the expectation through the terms on the right hand side we find 
 

( ) ( )2 2 2

2 2 2

2 2

2

2

.

X X X X

X

X

µ µ µ

µ µ

µ

   = − = − +  
 = − + 
 = − 

Var E E

E

E

 

 
This is one of the most useful formulas for [ ].XVar   To find the variance for the Bernoulli 

distribution we first need to find the 2 .X  E  We saw earlier that 
 

[ ] [ ] [ ]

[ ] [ ]2 2 2

d 0 0 1 1 0 1

d 0 0 1 1 0 1
x

x

X x X X q p p

X x X X q p p

Ω

Ω

= = = + = = + =

  = = = + = = + = 

∫

∫

E P P P

E P P P
  

 
so we may write  
                                                 
* We will have a lot more to say about long run averages when we discuss asymptotic theory.  
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( ) ( )2 2 2 2 1 .

( ) .

X

X

X X p p p p pq

X pq

σ µ

σ

 = − = − = − = 

= =

= Var E

SD
 

 
A the expected value, [ ]XE  is a measure of central tendency, ( )XVar is a measure of 
dispersion.  

Assume for example, that we have a Bernoulli distribution with  p = 0.01. This is 
distribution where the 0’s are generating in overwhelming numbers.  We might therefore 
anticipate that the expected value will be small, but also the variance is small as well. We can 
compute 0.01,X p   = =E and ( )( )0.01 0.99 0.0099 0.099.X pqσ = = = =    

 
Now suppose Y is another random variable following the Bernoulli distribution, but this 

time, the parameter p = 0.50. In this case we would expect just as many zeros as ones generated 
with no preponderance of one value over the other. The “spread” of the values is greater than for 
the random variable X. We compute 0.50,Y p   = =E  and its standard deviation

( )( )0.50 0.50 0.50.X pqσ = = = This is almost fifty times the standard deviation of the Bernoulli 
(p=0.01) random variable.  

We can also other quantities that are of interest based on the different expectations or 
moments of the Bernoulli random variable X. We can write skewness as 

 

                               
( )3

3( )
X

S X
µ

σ

 − =
E

  

 
Skewness may be thought of as lack of symmetry of the distribution.  

Kurtosis expresses how heavy the tails of the distribution are. A platykurtic distribution 
has thin tails (i.e., tails that have a relatively small degree of measure), while a leptokurtic 
distribution has tails that are heavier. The formula for kurtosis is* 
 
                             ( )4( ) 3a X X µ = − − K E  
 
Some algebra reveals that the Bernoulli distribution, 
 

( )( ) ,
q p

X
pq
−

=S  and ( )1 6
( ) .a

pq
X

pq
−

=K  

 
Generating functions 
While generating functions are covered in detail, some brief introductory comments will be made 
here.  

Two other concepts useful in characterizing generating functions are the moment 
generating function ( ),X tM  and the probability generating function, .( )X sG Generating 
functions provide an independent track of doing what otherwise would be complicated 
calculations. We should consider these as tools as in our probability tool kit – sometimes they are 
indispensible, while other times we can do the job without them.  

                                                 
* The subtraction of 3 is a correction for the kurtosis of the normal distribution.  
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 ( )X tM  is an expectation of a function of the random variable X, the function being .tXe   
If X follows a Bernoulli(p) distribution, then we simply compute 

 
( ) ( )(0) (1) .( ) 1 1tx t t t

X t e e p e p p pe  = = − + = − +M E    

 
It’s hallmark is that the derivative of the moment generating function, for t= 0 provides the mean 
of the distribution.  In this simple case,    
      

 
( )( )1( ) t

tX
d p ped t pe

dt dt
− +

= =M  

 
which is simply p for t = 0. This may seem to be “the long way around” to find the mean for the 
Bernoulli distribution, but we will see that for complicated distributions, this is a useful way to 
identify its moments.  

Another use of the moment generating function is that it uniquely identities the 
distribution. Once we have the moment generating function, we then have the distribution itself. 
Finally, when we study asymptotic properties of distributions, identifying the large sample 
behavior and ultimately appearance of  ( )X tM  will allow us to identify the distribution itself. 
This is the principle behind the proof of one of the most useful theorems in probability, the 
Central Limit Theorem.  
 
Bernoulli probability generating function 
Another related quantity of interest is the probability generating function. Just as the moment 
generating function generates moments, the probability generating function generates 
probabilities. It is defined as 
 
 ( ) .X

X s s  =G E    

For the Bernoulli distribution, we find  
 

               ( ) ( )0 1( ) 1 1 1 1 .X
X s s p s ps p ps p s = = − + = − + = − − G E

 
 
We will rely on this finding when we get to the probability generating function for the binomial 
distribution. 
 
Addition of Bernoulli random variables 
Finding the probability distribution of the sum of random variables may be complicated. 
However, if all we need are the moments of the sum of two random variables, the work is 
substantially easier. For example, Let X1 and X2 be two random variables. Then we can compute 
the expectation of the sum of them 1 2W X X= +    
 

[ ] ( )

[ ] [ ]

1 2 1 2

1 2 .

W wd x x d x d x d

X X
Ω Ω Ω Ω

= = + = +

= +

∫ ∫ ∫ ∫E P P P P

E E
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What makes this computation work is the reversibility of the integral and the sum in the term 

1 2.x x+  This is a basic property of the Lebesgue integral. This computation works finite and 
infinite* sums of random variables. 

If the random variables are independent, we can also sum their variances. Thus 
 

[ ] [ ] [ ]1 2 1 2 .X X X X+ = +Var Var Var    
 

To see this, let's write 1 2.W X X= +  Then we know  [ ] [ ]2 2 .W W W = − Var E E  
Therefore 

[ ] ( ) [ ] [ ]

[ ] [ ] [ ] [ ]

22
1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 22 2

X X X X X X

X X X X X X X X

   + = + − +  
 = + + − − − 

Var E E E

E E E E E
 

 Since we know expectation passes through sums, we can write 
 

2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2
1 1 2 2 1 2 1 2

1 2

2 2

2 2

2 2

2

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X

                 
                         
                        

      

+ + − − −

= + + − − −

= − + − + −

= + +

E E E E E

E E E E E E E

E E E E E E E

Var Var 1 2 1 22 .X X X X          −E E E

 

  
Since the random variables 1X  and 2X  are independent, [ ] [ ] [ ]1 2 1 2 .X X X XE = E E  Thus the 
variance of a sum of independent random variables is the sum of the variances. 
 
Let’s look at the last of this development involving [ ]1 2 .X XE   

 As we have seen, our solution for [ ]1 2X X+Var becomes easier if 

[ ] [ ] [ ]1 2 1 2 .X X X XE = E E  However, this assertion is not always the case.  

Yet, it is a property of independence. Just as we saw that if [ ] [ ] [ ]1 2 1 2 ,X X X X∩ =P P P  

then similarly [ ] [ ] [ ]1 2 1 2 ,X X X XE = E E  This is because the joint measure of 1X  and 2 , ,X P  
factors into a measure for 1 1,X P  and a measure for 2 2, .X P   Thus 

 
[ ]

[ ] [ ]
1 2

1 2 1 2 1 2 1 2

1 1 2 2 1 2 .

X X X X d X X d d

X d X d X X
Ω Ω

Ω Ω

= =

= =

∫ ∫

∫ ∫

E P P P

P P E E
 

With this final step, we see that the variance of a sum of independent random variables is 
the sum of the variances. 
 Thus, if X1 follows a Bernoulli(p1) and  X2 follows a Bernoulli(p2), then sum of these two 
random variables has a mean of 1 2 ,p p+  and variance 1 1 2 2.p q p q+    
 Suppose we were dealing with not the sum but instead 1 2 ?X X−    Well, the expectations 
subtract as we might expect. However, the finding for the variance is surprising.  
 
                                                 
* By infinite here, we mean k

k
x

∞

∑  where the summands are indexed by the integers. Another way to say this is that 

the summands are countable.  
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[ ] ( ) [ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ]( ) [ ]( ) [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

22
1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2
1 1 2 2 1 2 1 2

1 2 1 2 1 2

2 2

2 2

2 2

2 .

X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X

   − = − −   
 = − − − − + 
   = + − − − +   

   = − + − − +   

 = + − − 

Var E E - E

E E E E E

E E E E E E E

E E E E E E E

Var Var E E E

 

 
If independent, then the variances of the random variables whose difference we wish to take add 
– they do not subtract. However, when there is dependence, substantial reduction in the variance 
can be achieved. 
 
 
 
Practical use of Lebesgue integration 
Let’s assume that a viral epidemic is spreading through a community. This infection can kill, but 
the probability that a patient survives depends on the age of the patient. If the patient is young, 
the probability the patient survives is If they are young or middle aged, this probability 
changes to  Older patients have probability  of survival 

 What is the probability, SP  of survival for a patient?  
 Using a Bernoulli model, the easiest answer to this question is that survival depends on 
the age epoch of the subject,  However, in order to compute the probability of death without 
knowledge of age, we need to know the measures of age, i.e., how likely an individual will be in 
each of these three epochs. Let’s call these probabilities, , ,c mp p and op  respectively.  
 Then if we define our random variable as Bernoulli, we can write our solution as 

[ ]0 .S X= =P P   
 The patient can be a child, and the child survives, or the patient can be young/middle, and 
the patient dies, or the patient can be older, and the child dies. This is a problem in conditional 
probability, and recalling the Law of Total Probability, we can write 1 2 3.S c m Op p p p p p= + +P   

However, we can also examine this as a problem in Bernoulli trials. Recall that Lebesgue 
integration requires that we first aggregate a common event and measure it. The common event 
is survival, be the patient a child, young/middle, or older. These three events are a survival and 
we aggregate them. There probability is ( ) .S X dω= ∫P P  So what are the ways that 1?X =  

( ) ( )1 2 3(1) .S c m OX d p p p p p pω= = + +∫P P  
 
 
The Bernoulli Brothers  
Skewness and Kurtosis for the Bernoulli Distribution. 
Moment Generating and Probability Generating Functions 
 
Basic Probability Distributions  
Basics of Bernoulli Trials.  
Basics of the Binomial Distribution 
Basics of the Poisson Distribution 
Basics of Normal Measure 

1.p

2.p 3p



184              Bernoulli Measure 
 
 
Advanced Probability 
Bernoulli Distribution – In Depth Discussion 
Advanced Binomial Distribution 
Multinomial Distribution 
Hypergeometric Measure 
Geometric and Negative binomial measures 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
Continuous Probability Measure 
Moment and Probability Generating Functions 
Variable Transformations 
Uniform and Beta Measure 
Normal Measure 
Compounding 
F and T Measure 
Ordering Random Variables 
Asymptotics 
Tail Event Measure 
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Moment and Probability Generating 
Functions 

 
 

  
Moment and probability generating functions provide a unique perspective on the use of 
probability distributions. They are quite powerful techniques; however, although the 
mathematics are quite precise, manipulating generating functions can sometimes seem far afield 
and often contribute little insight into understanding the solution for the underlying probability 
question at hand. However, like stepping into the fourth dimension to solve a three dimensional 
problem, these functions bring a new perspective to probability problems. 
 
Prerequisites 
Factorials Permutations, and Combinations 
Binomial Theorem  
The Concept of the Limit 
Convergent Series 
Exponential Functions 
 
Foundation of MGF’s 
The basis of the moment generating function (MGF) is the infinite series expansion of the 
function .txe   We write this as 
 

 ( ) ( )2 3

1 ...
2! 3!

tx tx tx
e tx= + + + + +     

We write ( )X tM  as  
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( ) ( )

( )

[ ]

2 3

0 0 0

2 3
2 3

( ) 1 ...
2! 3!

! ! !

1 ...
2! 3!

x

x x x

tx
X

k k k
k k

k k k

tx tx
t e tx d

tx t td x d x d
k k k

t tt X X X

Ω

∞ ∞ ∞

= = =Ω Ω Ω

 
   = = + + + + +   

 

= = =

   = + + + + +   

∫

∑ ∑ ∑∫ ∫ ∫

M E P

P P P

E E E

  

 
 

This is the heart of the moment generating function. Each term in the final expression involves a 
moment of the distribution of the random variable X. If we take one derivative of ( )X tM  with 
respect to t, we find 
 

[ ]

[ ]

2 3
2 3

1 2
2 3

( ) 1 ...
2! 3!

( ) 2 30 ...
2! 3!

X

X

t tt t X X X

d t t tX X X
dt

   = + + + + +   

   = + + + + +   

M E E E

M E E E
 

 

and, evaluating this derivative where t = 0 we find [ ]
0

( ) .X

t

d t X
dt =

=
M E  A second derivative 

produces 
 

( )2
2 3

2

3 2( ) 2 ...
2! 3!

X td t X X
dt

   = + + +   
M E E  

 

and 
2

2
2

0

( ) .X

t

d t X
dt

=

 =  
M E   

 
Continuing in this fashion, we can find all of the nonnegative integer valued moments of the 
random variable X. This infinite collection of moments is enough to completely specify the 
probability distribution of X, i.e., no two distinct collection of probability distributions can have 
all of their moments the same. Thus, knowing ( )X tM  is mathematically equivalent to knowing 
the probability distribution of X . Also, in some circumstances, taking the derivative of the 

( )X tM  is easier than integrating the probability measure ,P  and provides an alternative 
procedure for identifying the measure’s moments.  
 
Probability generating functions (PGFs) 
The probability generating function ( )X sG  is developed similarly.  

( )
0

( )
x

X X k
X k

k
s s s d s t

∞

=Ω

  = = = ∑∫G E P P  

The derivative with respect to s is  
 

( )
( )0

0

( )
k

X k k
kX

k
k

d s td sd s ds t
ds ds ds ds

∞

∞
=

=

  = = =
∑

∑
PEG P  
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Note the reversal of the derivative and summation sign in 
( )

( )0

0
,

k
k k

k
k

k

d s t
ds t

ds ds

∞

∞
=

=

=
∑

∑
P

P  a procedure 

that is only permissible if the sum ( )
0

k
k

k
s t

∞

=
∑ P is uniformly convergence. However, we can see that 

the uniform continuity of generating functions  is demonstrated by  
 

( ) ( )
0 0

1k
k k

k k
s t t

∞ ∞

= =

≤ =∑ ∑P P  for 0 1.s≤ < *   

We evaluate 1
k

kds ks
ds

−=  which, when evaluated at s = 1 is k. Thus 

 

[ ]
0

( )

x

X

s

d s x d X
ds = Ω

= =∫
G P E  

 
The second moment provides an unusual moment 

 
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) [ ]

12
2

2
0 0

2
2

2
0 11

0

( ) 1

( ) 1

1 ( 1) .

k
kX

k k
k k

kX
k

k ss

k
k

d ksd s t k k s t
ds ds

d s k k s t
ds

k k t x x

−∞ ∞
−

= =

∞
−

= ==

∞

=

= = −

= −

= − −

∑ ∑

∑

∑

G P P

G P

P = E

 

 
So, while successive derivatives of ( )X tM  provide the moments of the random variable X, 
successive derivatives of ( )X sG  provide the factorial moments. We will find these factorial 
moments quite useful for the binomial, Poisson, and negative binomial distributions.  In fact, 
probability generating functions are particularly useful for discrete distributions.  
 
Continuity theorem 
The probability generating function is the basis on which the utility of generating functions rests. 
A theorem known as the Continuity Theorem allows us to link generating functions and 
probability distributions.   Let’s begin this examination by noting another property of ( ).X sG   
 

[ ]
0 0

1 1 0 1 2
0 1 2 3

0

1
0

( )

( ) 0 1 2 3 ...

( ) .

X k k
X k

k k

kX
k

k

X

s

s s s X k s

d s ks s s s s
ds

d s
ds

∞ ∞

= =

∞
− −

=

=

 = = = = 

= = + + + +

=

∑ ∑

∑

G E P P

G P P P P P

G P

   

                                                 
* This assessment is formally known as the Wierstrauss M test. 
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We can take a second derivative to observe  

( )
2

2 2 1 0
0 1 22

0
1

3

2

22
0

( ) 1 0( 1) (1)(0) (2)(1)

(3)(2) ...

( ) 2! .

kX
k

k

X

s

d s k k s s s s
ds

s

d s
ds

∞
− − −

=

=

= − = − + +

+ +

=

∑G P P P P

P

G P

  

In general [ ]
0

( ) .
!

m
X

m
s

d s X m
ds m

=

= =
G P  The entire sequence of probabilities 0 1 2 3, , , , ...P P P P  is 

generated from ( ).X sG  Thus, while successive derivatives identify moments for the moment 
generating function ( ),X tM  they identify probabilities for the probability generating function

( )X sG .   

Now, a result from analysis asserts that if there are two infinite series, say 
0

( ) ,k
k

k
A s s a

∞

=

= ∑  

and 
0

( ) k
k

k
B s s b

∞

=

= ∑  and there is an open interval of set of values of s, such that on that interval 

A(s) = B(s), then the ak’s and bk’s must also match, i.e., k ka b=  for all k ≥ 0. 
This finding from analysis can have wide ranging implications for the practice of 

probability. Now suppose we have two probability generating functions 
0

( ) ,k
X k

k
s s

∞

=

= ∑G P  and 

0
( ) .k

Y k
k

s s
∞

=

= ∑G R  Then, if there exists a region of  s (e.g., -1 < s < 1) in which ( ) ( )X Ys s=G G , then 

k k=P R  for all k ≥ 0.  This is the basis of the continuity theorem.  
 
Generating Function Inversion 
We understand that 

0
( ) .k

X k
k

s s
∞

=

= ∑G P  So given ( ),X sG  we can simply takes its successive 

derivatives for 0s =  in order to identify successive probabilities.  However, in many cases, we 
can actually inspect the functional form of ( )X sG to identify the set of probabilities { }kP  
directly. This process of moving directly from ( )X sG to the set of probabilities is termed 
inversion. 
 Inverting generating functions is typically based on observation and simple deduction. 
Practice facilitates their use.  
 
A first generating function 
We begin with a very simple infinite series, and perhaps the simplest of all generating functions. 

Let 
0

.k

k
S s

∞

=

= ∑  The coefficient of ks  is simply 1 here, i.e. 
0
1 .k

k
S s

∞

=

= ∑  What is the generating 

function?*  
 We can simply write (as appears in the discussion of the  

2 3 4

2 3 4 5 1

1 ... .
...

k
k

k
k

S s s s s s
sS s s s s s s +

= + + + + + +

= + + + + + +
 

                                                 
* This follows the development of Moyé and Kapadia, Difference Equations with Public Health Applications, 
Marcel-Dekker. 2000. 
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Subtract the second partial sum from the first to find   

( ) 1,1 1 k
ks S s +− = −  or ( )

1
.1

1

k

k
sS

s

+−=
−

 Now we take a limit to find 
( )

11 1lim lim
1 1

k

kk k

sS
s s

+

→∞ →∞

 
  
 

−= =
− −

.* 

 

Thus, we write 
0

1( ) .
1

k

k
s s

s

∞

=

= =
− ∑G  The coefficient of ks  for ( )sG  is 1†. We introduce the 

notation   as meaning “generates the family coefficients of ks  as equal to”, and write 
{ }( ) 1 .sG   

 However, suppose our sequence was not 
0

,k

k
S s

∞

=
= ∑  but 

0
.k k

k
S a s

∞

=
= ∑  Then the approach 

above reveals 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 3 4

2 3 4 5 1

1 ... .

...

k
k

k
k

S as as as as as

asS as as as as as as +

= + + + + + +

= + + + + + +
 

 
Subtracting the second partial sum from the first, we have 

( ) ( ) 11 1 k
kas S as +− = − or ( )

( )

11
.

1

k

k
as

S
as

+−
=

−
 Taking limits as before we find 1lim .

1kk
S

as→∞
=

−
 

So, if we are given 1( ) ,
1

s
as

=
−

G  then we can see  that ( ) { },ks aG   that is, the coefficient 

of ks  is .ka   

 For another simple example, let 
0

( ) .k
k

k
s d s

∞

=

= ∑G  Then 
0 0

( ) ,k k
k k

k k
c s c d s cd s

∞ ∞

= =

= =∑ ∑G and 

{ }( ) ( ) .ks c s cd=H G    
 Typically, we will be given a generating function ( )sG  and have to identify the series it 

generates. For example, suppose we are given 1( ) .s
a bs

=
+

G  What is the coefficient of ks

(denoted ka )  for which 
0

( ) ?k
k

k
s a s

∞

=

= ∑G   We write 

1 11 1( ) .
1 1

kba as b ba bs a as s
a a

 −   = = =    −+       + −  
 

G    

                                                 
* Note that the continuity of 

( )
11

1

ks
s

+−
−

permits us to pass the limit through the function to write 

( ) ( )

1
1 1 lim 1

.
1 1

1
lim

1

k

k

k

k

s

s s

s
s

+

→∞

+

→∞

−
= =

− −

−

−

 
 
 

 

† This entire development is for 0 < s < 1 to assure convergence of the series. Also note that this is not a probability 
generating function,  just a generating function. 
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If { }1( ) ,ks aG   and { }2 ( ) ,ks bG   then the addition of coefficients of the same powers of ks  

gets us { }1 2( ) ( ) ( ) .k ks s s a b= + +G G G    
 
Multiplying generating functions 
We can easily invert the product of two generating functions by collecting coefficients.  Let 

{ }1( ) ks aG   and { }2 ( ) .ks bG   Then  

( )( )
1 2

1 1

2 3 2 3
0 1 2 3 0 1 2 3

( ) ( ) ( )

... ... .

k k
k k

k k
s s s a s b s

a a s a s a s b b s b s b s

∞ ∞

= =

  = =   
  

= + + + + + + + +

∑ ∑G G G
  

 
and we simply need to collect coefficients. for example, the coefficient of 0s  is 0 0.a b  The 
coefficient of s  is 0 1 1 0.a b a b+  Continuing in this fashion, we find that  

0
( ) .

k

j k j
j

s a b −
=

 
 
 
∑G   

 
 
Difference equations 
Difference equations are equations that describe the underlying structure or relationship between 
sequence elements; solving this family of equations means using the information about the 
sequence element interrelationship that is contained in the family to reveal the identity of 
members of the sequence.  Generating functions are essential for their solution. 

In its most general form a difference equation can be written as  
      0 1 21 2( ) ( ) ( ) ( ) ( )nk n k n k n ka k y a k y a k y a k y R k+ + − + −+ + + + =         

 
It consists of terms involving members of the { }ky  sequence, and, in addition, coefficients 

( ) ,ja k  which are the coefficients of the { }ky sequence in the equation. These coefficients may 
or may not be functions of k.   

  
Solutions using generating functions 
Generating functions can be quite helpful in solving difference equations. Consider the very 
simple example,  
 

1k ky ay b+ = −     
 

for k = 0 to .∞  While this family of equations can be solved easily by recursion, or induction, 
we will introduce the concept of the generating function approach. 

 Let's first choose a value of s  such that 0 1,s< <  necessary for us to later interchange 
the summation and derivative signs (uniform convergence is required for this interchange), and 
write.  

 
1

k k k
k ks y as y bs+ = −  

 



Solutions using generating functions 191 
 

 
 

for k = 0 to ∞. We are interested in identifying the coefficient of ks  in this equation for all k, so it 

is reasonable to consider solving for the generating function 
0

( ) k
k

k
s s y

∞

=

= ∑G  and invert it.  

We continue by summing both the left and right hand sides of this equation to write.  
 

1
0 0 0

.k k k
k k

k k k
s y a s y b s

∞ ∞ ∞

+
= = =

= −∑ ∑ ∑  

 
The second summation we identify as .( )a sG  The first term we can write as  
 

1 1 1
1 1

0 0 1

1 0 1
0 0

0
( )

k k k
k k k

k k k

k
k

k

s y s s y s s y

s s y s y s s y

∞ ∞ ∞
− + −

+ +
= = =

∞
− −

=

 
      

= =

= − = −

∑ ∑ ∑

∑ G
 

 

and the final term we see as 
0

.
1

k

k

bb s
s

∞

=

=
−∑ We can now write the infinite collection of equations 

involving s as a single equation involving  ( ).sG   

1
0( ) ( ) .

1
bs s y a s

s
−   − = −

−
G G  

 
Solving for ( )sG  reveals 

[ ]

[ ]

( )

( )( )

1
0

0

0

0

( ) ( )
1

( ) ( )
1

( ) 1
1

( )
1 1 1

bs s y a s
s

bss y as s
s

bss as y
s

y bss
as s as

− − = −
−

− = −
−

− = −
−

= −
− − −

G G

G G

G

G

 

 
And, using our tools of inversion, we can write at once 
 

( )( )

( )

0

1

0
0

0

( )
1 1 1

( )

( ) 1
1

k
k j

j

k k

y bss
as s as

s y a b a

bs y a a
a

−

=

= −
− − −

 
− 

 
 − − 

− 

∑

G

G

G





 

 

and the solution is ( )0 1 .
1

k k
k

by y a a
a

= − −
−
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Derivatives of generating functions 
One of the most useful features is the ability to take derivatives (with respect to s) term by term 
of a generating function, and have it be the equivalent to taking the derivative of the generating 
function, i.e.,  
 

0

( ) .
k

k
k

ds d sa
ds ds

∞

=

 
= 

 
∑ G

 

 
This is not an ability that we can take for granted. It makes no sense to attempt this for 

divergent series, and in fact, in general is not true for pointwise convergent series. However, we 
can carry this crucial operation out for series that are uniformly convergent.   

Since s is a variable that we can choose to be as small as we want, and can bound it from 

above. By doing this, we know that  
0

k
k

k
a s

∞

=
∑  will be uniformly convergent, permitting us to take 

its derivative term by term and have the resulting expression be ( )d s
ds
G . 

We can begin with the simple geometric series to show the value of taking derivatives.  

This we have the geometric series, we know that 1( ) .
1

s
s

=
−

G  The kth term of the series is 

simply ,ks  and its derivative 1.
k

kds ks
ds

−=  if we call 
( )1 2

( ) 1( ) ,
1

d ss
ds s

= =
−

GG then 

( ) { }1 1 .s k +G 

*  
We can go one step further, recognizing that  
 

( )
( )2 3

2
1 1 2 3 4 ... 1 ...

1
ks s s k s

s
= + + + + + + +

−
               

 
Multiplying each side by s we get  
 

( )
2 3 4

2 1 2 3 4 ... ...
1

ks s s s ks
s

= + + + + + +
−

 

and we see that 
( )

{ }21
s k
s−
 .  

 
Yet one more derivative generates 
 

( ) ( ) ( )
( )

( )
( )

22 1
3 2 3

2
3

2 1 1 1 ... 1 ...
1 1 1

1
1 ... ...

1

k k

k

s s k s k s
s s s

s s
k s

s

−+
+ = = + + + + +

− − −

+
= + + +

−

 

 

                                                 
* You can multiply the two identical generating functions 

1 1
1 1s s

  
  − −  

 to obtain the same result.  
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and 
( )

( )
{ }2

3

1
( ) .

1
ks s

s k s
s
+

=
−

G   

 
We can continue this development, differentiating each side of the preceding equation to find 
 

 ( )
( )( ) ( )( )

( ) ( )( )

1 2
3

1

2 1 2 3 2 4 3 ...
1

1 2 1 ...k k

s s s
s

k ks k k s−

= + + + +
−

+ + + + + +

 

 
and once more to see  
 

( )
( )( )( )4

(3)(2) ... 3 2 1 ...
1

kk k k s
s

= + + + + + +
−

  

Recognizing that ( ) ( ) ( ) ( )3 !
3 2 1 ,

!
k

k k k
k
+

+ + + =  we can write 

 

( )
( )

4

3 !(3)(2)
!1

k
ks
+

−
  or 

( )
( )

4

33 !1 .
33! !1

kk
ks

++   
=   −   

   

 
A simple induction argument produces 
 

( )
11 .

11 r

k r
rs
+ −  

  −−   
  

 
This will be central to our development of the negative binomial measure.  

 
Collecting coefficients 
Another useful tool for generating function is the process of collecting coefficients. For example, 
let’s say we have the following generating function. 
 

2
1( ) .

1
s

s s
=

− −
G  

 
We could rewrite this as  
 

1 1( )
1 (1 ) 1 s

s
s s sa

= =
− + −

G  

 
Permitting us to write the sequence as  

2 2 3 31 ... .k k
s s s sa s a s a s a s+ + + + +   

However, the problem with just writing { }( ) ks aG 
 is that ka  is a function of s. For 

example ( )33 2 31 1 3 3 ,sa s s s s= + = + + +  so there are additional coefficients of ks  to collect.   
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For this sequence we choose to write ( ){ }( ) 1 ,k
ss s+G  the subscript on the symbol  s  

signifying that the inversion is incomplete, the coefficient of ks  at this point remains a function 
of s.  

We now write the k+1st  term of the series as ( )1 ,k ks s+  expanding this to 
0

k
k j

j

k
s

j
+

=

 
 
 

∑  

through the use of the binomial theorem. 
 
 How does this function accumulate coefficients? For k = 0,  j = 0 and the coefficient of 

0s  is simply 
0

1.
0

 
= 

 
 For k = 1,  and j = 0 we have the coefficient of 1k js s+ =  as

1
.

0
 
 
 

 k = 1 and j 

= 1 generates a coefficient of 1 1 2s s+ = as 
1

.
1

 
 
 

 We continue in this fashion, first increasing k, then 

allowing  j to move from 0 to k, accumulating all of the coefficients of k js +  (Table 1). 
   

 
 
From Table 1, the third column, we see that there is only one way to generate 0s  and 1,s  and we 
already have those coefficients. For the term 2 ,s  we observe that there are two coefficients, and 

we sum them, 
1 2

.
1 0

   
+   

   
 

For 3,s  we create 
2 3

.
1 0

   
+   

   
 For 4 ,s  we compute 

2 3 4
.

2 1 0
     

+ +     
     

 The process is wholly 

mechanical, and we can summarize it by creating a new variable m and writing the coefficient of 
ks  as ka  where  

 

0 0
.1k m

k m j k
m j

m
a

j + =
= =

 
=  

 
∑∑  

 
and we have reached our goal of having the coefficient be free of any terms involving s. 
 For example, if we have the more general generating function  
 

2
1( ) ,s

c bs as
=

− −
G  

 
We proceed as follows. 
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2

1
1 1( )

1

k k
k

s
a bcs s s

a bc bs as c c as s
c a

     = = +    − −        − + 
 

G   

 

To collect coefficients from 
k

kbs s
a

 + 
 

=
0

.
k jk

k j

j

k bs
j a

−
+

=

   
  
  

∑  Following the previous example, the 

collection process yields 
0

1m jk m

m j k
m j

m b
j a

−

+ =
=

  
  
  

∑∑ and 

2
0

1 1( ) 1k m jk m

m j k
m j

ma bs
jc bs as c c a

−

+ =
=

      = =      − −       
∑∑G 
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Skewness and Kurtosis for Bernoulli 

Measure 
 

Prerequisites 
Properties of Probability 
Bernoulli Distribution – In Depth Discussion 

 
We can also compute other quantities that are of interest based on the different expectations or 
moments of the Bernoulli random variable X. We can write skewness as 

 

                           
( )3

3( )
X

S X
µ

σ

 − =
E

  

 
and kurtosis as 
 

                             
( )4

4( ) .
X

K X
µ

σ

 − =
E

 

 
Skewness for Bernoulli distribution 
Some algebra reveals  
 

( )

[ ]

33 3 2 2 3

3 2 2 3

( ) 3 3

3 3 .

S X X X X X

X X X

σ µ µ µ µ

µ µ µ

−    = − = − + −  
   = − + −   

E E

E E E
 

 
Our work is eased by noting that for any positive integer k. 
 

[ ] [ ]d 0 0 1 1 0 1
x

k k k kX x X X q p p
Ω

  = = = + = = + =  ∫E P P P  

Thus 
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( )

[ ]

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )
( )( ) ( )( )

33 3 2 2 3

3 2 2 3

2 3 3 2 3

2 2 3 2

2 2

2 2

( ) 3 3

3 3

3 3 3 2
2 2 (1 ) 2 (1 )

1 2 1 1 2 1 1 2

1 2 1 1 2 1 1 2

1 1 2 1 2

X X X X X

X X X

p p p p p p p
p p p p p p p p

p p p p p p p p p p

p p p p p p p p p p

p p p p p p q p pq

σ µ µ µ µ

µ µ µ

−    = − = − + −  
   = − + −   

= − + − = − +

= − − + = − − −

= − − − = − − = − −

= − − − = − − = − −

= − − = − + − =

S E E

E E E

( ).q p−

Thus  

 
( )

( ) ( ) ( )

3

3

( )

( ) .

S X pq q p

pq q p pq q p q p
S X

pq pq pq

σ

σ

− = −

− − −
= = =

 

 
Kurtosis for Bernoulli distribution 
Following the development for skewness, we write  
 

[ ] ( ) ( )

( )( )

4 2 24

2 2 2 2

4 3 2 2 3 2 2

3 2 2 3 4

4 3 2 2 3 4

( )

2 2

2 2 4

2 2

4 6 4

X X X X

X X X X

X X X X X

X X X

X X X X

σ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

−  = − = − − 
 = − + − + 
 = − + − + 
 + − + − + 
 − + − + 

K E E

E

E

E

= E

   

 
Recalling that ,kX p  = E  we write 

4 4 3 2 2 3 4

2 3 4 4

( ) 4 6 4

4 6 4

X X X X X

p p p p p

σ µ µ µ µ−  = − + − + 
= − + − +

K E
 

 
Which simplifies to 
 

( )

( )( )
( ) ( )( )

( )

4 2 3 4 4

2 3 4

2 2 3 3 4

2

4 6 4

4 6 3
3 3 3 3

1 1 3 3

1 1 3 1

1 3 .

X p p p p p

p p p p
p p p p p p

p p p p

p p p p

pq pq

σ − = − + − +

= − + −

= − − + − −

= − − +

= − − −

= −

K

                

 

Since 2 pqσ =  for the Bernoulli distribution, we write ( )
( )2
(1 3 ) (1 3 ) .pq pq pqX

pqpq
− −

= =K   

Finally,  workers typically subtract 3 from K(X) since this is the average kurtosis, Ka(X). We 
finish by writing 
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( ) (1 3 ) (1 3 ) 3 1 63a
pq pq pq pqX

pq pq pq pq
− − −

= − = − =K  

 
Which is how the kurtosis for the Bernoulli distribution is commonly reported. 
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Basics of the Binomial Distribution  

 
 

The binomial distribution is a simple complication of the Bernoulli distribution. Binomial events 
are merely the sum of Bernoulli events.  
 
Prerequisite 
Properties of Probability 
Counting Events 
Basics of Bernoulli Trials.  
 
Building the Binomial from the Bernoulli 
Recall that we ended the section on the Bernoulli distribution with the expectation and variance 
of the sum of two independent Bernoulli variables. Let’s now assume that two random variables 
X1 and X2 are independent and each come from the same Bernoulli(p) distribution. We call such 
variables i.i.d. for independent and identically distributed.  
 In general, if we have n i.i.d. Bernoulli trials, and W is their sum (often times expressed 
as the number of successes in n i.i.d Bernoulli trials, then  
 

 [ ]
0,I .1

n

k n k
n k

n
W k p q

k
−

=

 
= =  

 
P    

 
This is the binomial distribution probability function.  Unlike Bernoulli random variables 

which take on only the values 0 and 1, random variables that follow the binomial distribution can 
take on any integer value between and including 0 and n. 

The formula itself is made up of two components. The portion k n kp q −   is simply the 
probability of a sequence of n Bernoulli trials in which any k of them are successes.  However, 
there are multiple ways to obtain k successes in n Bernoulli trials, each of them independent of 

the other. The exact number of ways to do this is n
k

 
 
 

 which comes from our section on 

permutations and combinations.  
 
Expectation and variance 
One way to easily find the mean and variance of the binomial distribution is from our previous 
discussion of the Bernoulli distribution. Recall that a binomial (n, p) random variable W is the 
sum of n i.i.d. Bernoulli(p) random variables,  X1,  X2,  X3,  ...,  Xn. Then, if 

1
,

n

i
i

W X
=

= ∑  where 

[ ]iX p=E  and [ ] ,iX pq=Var  then  

[ ] [ ]
1

n

i i
i

W X np
=

= =∑E E  

[ ] [ ]
1

n

i i
i

W X npq
=

= =∑Var Var  
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Similarly, we can see that for 1 2W W+   where W1 binomial (n1, p ) is independent of W2 binomial 
(n2, p).  we know that  1 2W W+  is the sum of n1 + n2 Bernoulli(p) random variables which of 
course is binomial(n1 + n2,  p). 
 
Example: Hurricanes 
Assume that in any given year, the probability that a tropical storm will become a hurricane is 
0.28. If there are fifteen tropical storms in a given year, what can we say about the occurrence of 
hurricanes that year?  
 If we assume that tropical storms occur independently of one another, we can treat the 
generation of a hurricane as a Bernoulli trial. We can then use the binomial distribution to 
compute the probability of  any particular number of hurricanes. If we let k be the number of 
hurricanes, then we know that 0 15,k≤ ≤  and  
 

( ) ( )15
0.28 0.72 .k n kX k

k
− 

    
 

= =P  

 

Thus, the probability of 3 hurricanes is ( ) ( )3 1215
0.28 0.72 0.194.

3
 

= 
 

If we wanted to compute the 

probability of at least three hurricanes, we could compute ( ) ( )
15

3

15
0.28 0.72 0.835,k n k

k k
−

=

 
= 

 
∑  

although it can be easier to compute  
 

( ) ( ) ( ) ( )
15 2

3 0

15 15
0.28 0.72 1 0.28 0.72

1 0.165 0.835.

k n k k n k

k kk k
− −

= =

   
= −   

   
= − =

∑ ∑  

 
The mean number of hurricanes is simply ( )( )15 0.28 4.2.=  The standard deviation is 

( )( )( )15 0.28 0.72 1.74.=   
Now, suppose the occurrence of hurricanes in one year is independent of hurricane 

occurrences in any other year.  In a ten year span, what is the probability that in at least 5 years, 
there were be at least three hurricanes given that there are fifteen storms per year.   
 We know the probability of at least three hurricanes in a given year is 0.835. This is now 
the probability of a success for a new Bernoulli trial, i.e.,  the occurrence of at least three 

hurricanes in a given year. We now compute ( ) ( )
10

5

10
0.835 0.165 0.998.k n k

k k
−

=

 
= 

 
∑  It is a virtual 

certainty that there will be at least five years (not necessarily consecutive) each of which will 
have at least 3 hurricanes.   
 
Elementary Track 
Basics of the Poisson Distribution 
Basics of Normal Measure 
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Binomial Measure 
 
 

The binomial distribution is one of the most ubiquitous distributions in applied probability. 
Based on our experience with the simple Bernoulli model, we will build up the simple 0-1 
random variable to a more intricate reflection of more complex combinations of events and 
measure them.  
 
Prerequisites 
Why Probability 
Factorials Permutations, and Combinations 
Binomial Theorem  
An Introduction to the Concept of Measure 
Elementary Set Theory 
Sequences of Sets 
Measure and its Properties 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Properties of Probability 
Conditional Probability 
Counting Events 
Bernoulli Measure  
 
Building the binomial from the Bernoulli 
It is commonly easier to understand the underlying event to which a measure is applied than to 
simply memorize a formula. Remember that we ended the discussion of the Bernoulli 
distribution with the sum of two Bernoulli random variables to identify the mean and variance of 
this sum. Let’s now assume that two random variables X1 and X2 are independent and each come 
from the same Bernoulli(p) measure. We call such variables i.i.d. for independent and identically 
distributed.  Define 2 1 2.W X X= +   
 What experiment does W represent? Its possible values are 0, 1, or 2, since both X1 and X2 
can only take on values 0 or 1. (Figure 1).  
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We see that 2

2 2W p  = =P   since the only way for the value two to occur is when each of X1 

or X2  is equal to one. Similarly, 2
2 .0W q  = =P  

However, 2 1W  =P  is a little more complicated. W takes on the value 1 when either 1X  

or 2X   is equal to one, but not both. The measure of the event that exactly one of them being one 
is simply pq. However there is more than one way to have a value of one since "1"  could appear 
first or appear second in the 1 2X X  sequence. There are two possible sequences and each 
sequence occurs with measure pq. Since these sequences are mutually exclusive, we write 
 

[ ]2 1 2 .W pq= =P  
 
This is essentially a two-step process. The first step requires us to compute the measure of the 
sequence of zeros and ones (or successes and failures). The second step is to count the number of 
ways this sequence occurs, multiplying by that final number. 
 Assume now that we have five i.i.d. Bernoulli (p) random variables. We want to compute 
the probability that the sum of them is equal to three, i.e., [ ]5 3 .W =P  

The measure of the event that there are three ones (or three successes) in a sequence of 
trials is simply 3 2.p q  Now, how many ways are there to produce these sequences? We could 
simply count 
 

SSSFF, SSFFS, SSFSF, SFFSS, SFSSF,  
SFSFS, FFSSS, FSFSS, FSSFS, FSSSF  

 
A simple way to count these is to think of the process first as permuting the three successes 
through the five trials. However, since we are not ordering successes  (i.e., S1S2S3FF is the same 
to us as S2S3S1FF) we must move to a combination to remove the duplicates. Thus the number of 
ways to count these sequences is to ensure that the order of the successes and failures does not 

matter, as long as we have three successes and two failure. This is 5
10.

3
 

= 
 

 Thus, our solution is  
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[ ] 3 2
5

5
3 .

3
W p q 

= =  
 

P  

 
Note, one of the assumptions that allowed this computation is that the Bernoulli random 
variables have the same parameter p, i.e., wherever the success occurs, the probability of that 
success is always p regardless of the trial number. 
 In general, if we have n i.i.d. Bernoulli trials, and nW  is their sum (often times expressed 
as the number of successes in n i.i.d. Bernoulli trials, then the measure of the event nW k=   
 

 [ ]
0,[ I ].1

n

k n k
n k

n
W k p q

k
−

=

 
= =  

 
P  

   
This is binomial measure. It is our measuring tool to compute the probability of binomial random 
variables. The indicator 

0,[ I ]1
nk =  indicates the function if zero if k is anything but an integer in [0, 

n]. This mechanism permits us to use the measure theory integral for all of our upcoming work, 
following this development for the Bernoulli distribution.  
 
In order to show this is truly a probability measure, we must demonstrate that the probability or 

measure over the entire space 1.d
Ω

=∫ P  Begin by recognizing that  
I0,[ ].1

k n

k n kn
d p q

k =

−

Ω Ω

 
=  

 
∫ ∫P  Here 

0,I
0

.1
n

n
k n k k n k

k
k

n n
p q p q

k k
− −

=
=Ω

   
=   

   
∑∫  

 

The symbology 
0,I1

n

k n k
k

n
p q

k
−

=
Ω

 
 
 

∫ may look strange at first. However, when you recall that the 

symbol 
Ω
∫  is simply our announcement that we will be taking the measure of the set Ω where 

0,I1
n

k n k
k

n
p q

k
−

=
 
 
 

 is the measuring tool, the formulation 
0,I1

n

k n k
k

n
p q

k
−

=
Ω

 
 
 

∫ takes on a rather 

obvious meaning and we can proceed with the computation.  
One of the easiest proofs that this sum is one requires the invocation of the binomial 

theorem, from Blaise Pascal. The binomial theorem states that for any constants a and b, and for 
nonnegative integer n, then  

 

( )
0

n
n k n k

k

n
a b a b

k
−

=

 
+ =  

 
∑  

 
An equality easily proved using induction. We simply need to set a = p and b = q. Applying this 
function to the binomial measure reveals 
 

( )
0

1 .
nn n k n k

k

n
p q p q

k
−

=

 
 
 

+ = = ∑  

 
Computing using binomial measure 
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Unlike Bernoulli random variables which take on only the values 0 and 1, random variables that 
follow the binomial distribution can take on any integer value between 0 and n, allowing for a 
very rich σ-algebra.  
 
Example: satellite clinics 
As an example, assume a clinical trial has a center with twelve clinical satellites recruiting for it. 
The probability that a clinic reaches its recruitment goal of patients is p = 0.75. Let W be the 
number of clinics that reaches their quota.  

Then assuming the clinical centers recruit independently of each other, it is reasonable to 
operate under the assumption that W  follows  binomial measure with parameters n = 12 and p = 
0.75.  Let’s call this random variable ( )12 0.75 .W We can compute the probability that exactly 
nine of the satellites successfully reach their respective goals as  
 

( ) ( ) ( )9 3
12

12
0.75 9 0.75 0.25 0.258.

9
W  

 =  = =  
 

P  

 
This may seem surprisingly low since  p= 0.75.  What is happening here? 

Examining the measuring tool for W provides some illumination (Figure 2) 
 

 
 
We see that most of the measure is concentrated for values of W  ≥ 6. We can 

demonstrate this by computing  
 

[ ] ( ) ( )
12

12
0.75

66

12
6 0.75 0.25 0.986.k k

kW

W d
k

−

=≥

 
≥ = = = 

 
∑∫P P  

 
If the goals were set more ambitiously such that p = 0.25, then ( )12 0.25W would follow a 
binomial (12, 0.25) with a very different appearance (Figure 3). 
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We can also compute the cumulative probability distribution function for each of these 

measures, anticipating that the probabilities will be higher for smaller values of the random 
variable when taken from the binomial measuring rule with the smallest probability p  (Figure 
4). 
 

 
 
Other probabilities based on the binomial distribution are easily available. For example, we can 
compute the probability that between seven and ten clinics meet their goals. This is 
 

( ) ( ) ( )
10

12
12

77 10

12
7 0.75 10 0.75 0.25k k

kW

W d
k

−

=≤ ≤

 
 ≤ ≤  = =   

 
∑∫P P  

 
We can relieve some of the computational burden by seeing that  
 

( )
( ) ( )
12

12 12

7 0.75 10

0.75 10 0.75 7 0.842 0.054 0.788.

W

W W

 ≤ ≤  
 ≤  −  <  = − =   

P

= P P
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Note the strict inequality in ( )12 0.75 7W <  P  to ensure that the interval contains 

( )12 0.75 7 .W =  P The measure of the interval is equal to the difference of two probabilities taken 
from the CDF, a useful tool since  the CDF is easy to compute*.  
 Similarly, we can compute the measure that no more than nine satellite clinics reach their 
goal as simply  
 

( ) ( ) ( )
9

12
12

09

12
0.75 9 0.75 0.25 0.609.k k

kW

W d
k

−

=≤

 
 ≤  = = =  

 
∑∫P P  

These computations demonstrate the ease of calculation with the binomial distribution.  
 
Expectation and variance 
While it may be somewhat difficult to deduce the relationship between the variance  of  

( )0.25nW   and ( )0.75nW  at this point, we might expect that the   ( ) ( )0.25 0.75 .n nW W      <E E
One way to easily find the mean and variance of the binomial distribution is from our discussion 
of mean and variance  of the sum of independent random variables. Recall that a binomial (n, p) 
random variable ( )nW p is the sum of n i.i.d. Bernoulli(p) random variables, X1, X2, X3, ...,  Xn. 
Then if 
 

( )
1

,
n

n i
i

W p X
=

= ∑  where [ ]iX p=E  and [ ] ,iX pq=Var  then  

( ) [ ]
1

n

n i
i

W p X np
=

  = =  ∑E E  

( ) [ ]
1

n

n i
i

W p X npq
=

  = =  ∑Var Var  

 
and we can see that ( ) ( )0.25 (12)(0.25) 3 0.75 (12)(0.75) 9.n nW W  = = <   = =   E E  As it turns out,  
 

( )
( )
0.25 (12)(0.25)(0.75) 2.25

0.75 (12)(0.75)(0.25) 2.25.
n

n

W

W

  = = 
  = = 

Var

Var
 

 
Another way to compute the mean and variance of ( )nW p   is to carry out a direct calculation 
with no reliance on Bernoulli trials. We start with 
 

[ ] [ ]
0 0 1

W

n n n
k n k k n k

k k k

n n
W wd k W k k p q k p q

k k
− −

= = =Ω

   
= = = = =   

   
∑ ∑ ∑∫E P P  

 

We write 
( ) ( ) ( )

( )
( ) ( )

11 !! ! .
1! ! 1 ! ! 1 ! !

n nnkn nk n n
k kk n k k n k k n k

−−   
= = = =   −− − − − −   

  

 
Thus 
                                                 
* For example, Excel and apps for portable devices provides this.  
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( )

1 1

1

1

1
1

1
1

n n
k n k k n k

n
k k

n
k n k

k

n n
W p k p q n p q

k k

n
np p q

k

− −

= =

− −

=

−   
  = =     −   

− 
=  − 

∑ ∑

∑

E
 

 
Now just let 1, 1,j k m n= − = −   and  recognize that the sum on the right hand side of the 
previous expression is the sum of binomial (n  − 1, p) random variable from 0 to n – 1. Thus 

( )
0

.
m

j m j
n

j

m
W p np p q np

j
−

=

 
  = =  

 
∑E  

 
In order to find the ( ) ( ) ( )2 2

n n nW p W p W p   = −      Var E E directly, we will proceed analogously. 

Let’s simplify notation and simply let ( ).nW W p=  We will also focus on the factorial moment, 

( )1 .W W −  E  Write 
 

( ) [ ]21 ,W W W W  −  = −   E E E or reconfigure as ( ) [ ]2 1 .W W W W  =  −  +  E E E  
 
We can write now write 
 

[ ] [ ]
( ) [ ] [ ]

2 2

21

W W W

W W W W

 = − 
=  −  + − 

Var E E

E E E  

 
Since we know the [ ] ,W np=E  we can write 
                            

                           [ ] ( ) 2 21W W W np n p=  −  + − Var E
 

 
We proceed as we did for the direct calculation of the expectation. 
 

( ) ( ) ( ) [ ]
0

0

1 1 1

( 1) .

W

n

k

n
k n k

k

W W w w d k k W k

n
k k p q

k

=Ω

−

=

 −  = − = − = 

 
= −  

 

∑∫

∑

E P P

 

Continuing 
 

( ) ( )

0

2 2

( 1)

2
1 1

2

n
k n k

k

n n
k n k k n k

k k

n
k k p q

k

n n
k k p q n n p q

k k

−

=

− −

= =

 
−  

 
−   

= − = −   −   

∑

∑ ∑
 

( ) ( )

( )

2 2 2

2 0

2

2
1 1

2

1 .

n m
k n k j m j

k j

n m
n n p p q n n p p q

k j

n n p

− − −

= =

−   
= − = −   −   
= −

∑ ∑
 

 
Thus 
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[ ] ( )
( )

( )

2 2

2 2 2

2

1

1

1 .

W W W np n p

n n p np n p

np np
np p

=  −  + − 
= − + −

= −

= −

Var E

 

 
The inclusion of the factorial in the binomial probability function induced us to first find a 
factorial moment.  
 
Skewness 
We can also compute  the skewness and kurtosis for binomial random variables.  Let W follow a 
binomial(n, p) distribution. Then  

( ) ( )
3

3

1 2
( )

W p
X

npq

µ

σ

 − − = =
E

S
 
Note that when p = 0.50, the skewness is zero, indicating a 

symmetric distribution. (Figure 5) 
 
 
 
 
 
 

 
 
 

We can show that kurtosis for a binomial (n, p) random variable is ( ) ( )
( )

1 6 1
.

1
p p

x
np p
− −

=
−

K   

Also note in Figure 5 how when we have enough bars, we can begin to approximate their 
individual heights by a smooth line. Of course, this is an inexact process, since each bar has a 
probability associated with it, while a point on a curve that is not an integer has probability 
according to binomial measure.  

However, we can imagine that if we go far enough out in our mind’s eye, n in the 
hundreds, then the thousands, then the tens of thousands, the bar widths get smaller and smaller. 
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There comes a point where the concept of probability as the height of a bar breaks down and the 
concept of  probability as the area under the curve becomes attractive. In this case the classic 
Riemann integral can substitute for binomial measure to determine probability.  
  Traditionally, this represents a major transition. However, when we use the Lebesgue 
perspective, we see that all we have done is change the tool that we used to accumulate 
probability, approximating binomial measure with a Riemann integrable function. 
   
 
Binomial generating functions 

( )W tM  and ( )W sG  are easily computed for the binomial distribution.  For the moment 
generating function we find that, 

( )

( )
0 0

( )

.

W

n n ktw tw tk k n k t n k
W

k k

nt

n n
t e e d e p q e p q

k k

q pe

− −

= =Ω

    = = = =        

= +

∑ ∑∫M E P
  

The last equality represents a use of the binomial theorem. 
 

The probability generating function calculation proceeds analogously. 

     
( )

( )
0 0

( )

.
W

n n
kW w k k n k n k

W
k k

n

n n
s s s d s p q ps q

k k

q ps

− −

= =Ω

    = = = =        

= +

∑ ∑∫G E P
       

 
Note, however, that these tools permit another generation of the binomial distribution from the 
Bernoulli.  

Remember that we first generate the binomial random variable as the sum of i.i.d. 

Bernoulli trials, i.e., 
1

.
n

i
i

W X
=

= ∑ We can now note that  

1 2 3 ...

1
( ) n i

n
X X X X XW

W
i

s s s s+ + + +

=

        = = = ∏G E E E  

 
However, since the X1, X2,  X3, …, Xn are i.i.d., iXs q ps 

 
= +E for i = 1, 2, 3,…,n. Therefore  

( )
1

( ) .i

n
nX

W
i

s s q ps
=

 = = + ∏G E  

This is a valuable way to identify what otherwise can  be a complicated probability 
distribution analysis of the sums of random variables.  If one random variable’s generating 
function is the product of the generating functions of several random variables, the first random 
variable is the sum of the random variables whose generating functions comprise the product.  

 
Pulling the binomial distribution “out of a hat” 
As an aside, we can commonly identify an inverted generation function as related to the negative 
binomial distribution.  

Lets start with a generating function, ( ) ( ) .n
t s as b= +G  Then rewrite as 

( ) ( ) ( ) ,
n

n n
t

a bs as b a b s
a b a b

 = + = + + + + 
G  which is 
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( ) ( ) ( ) .n n
t s a b ps q= + +G  Inverting this provides the coefficient of X to the K as being a 

binomial probability multiplied by the constant ( ) .na b+   
 

 
Random walk 
Random walks are among one of the simplest of stochastic processes, which themselves are 
changes in random variables over time. Encryption keys, signals through circuit board, radar 
detection, and advanced stealth technology, are each examples of the application of complicated 
stochastic processes. However, the simplest process is that of the random walk.  
 
Simple random walk 
We are used to binomial random variables as being the sum of Bernoulli random variables whose 
hallmark is that they take on the value of either one or zero with fixed probabilities. Consider a 
random variable X that takes on the value of 1 with probability p and -1 with probability q such 

that 1.p q+ = *  Then what does 
1

n

n i
i

W X
=

= ∑  look like, assuming that the 'iX s  are each i.i.d?  

 Before we try to find the exact measuring tool of nW ,  we can think of its general 
properties. For each i, nW  either increases or decreases one unit  (Figure 6.)  

While it is possible that it could always increase, or always decrease it is likely to 
meander, increasing for a time then decreasing for a time. The likelihood that it increases 
depends on the value of p. 
 We will use the probability generating function to discover the actual probability 
distribution for .nW  But first, let’s see if we can identify some of its characteristics. We begin by 
noting that [ ]1iX p= =P    and   

 
 

                                                 
* Note that this is not a Bernoulli trial, however it is closely related to one.  
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[ ]1 1 .iX p q= − = − =P  We can then take the next step to compute [ ] 1 1.1 1k kX k p q= =−= = +P    

We can easily satisfy ourselves that 1 1 1.1 1k kd p q p q
∞

= =−
Ω −∞

= + = + =∫ ∫P   We can also compute  

[ ] ( ) ( ) ( )1 1 1 1 .1 1k kX xd k p q p q p q
∞

= =−
Ω −∞

= = + = + − = −∫ ∫E P
  

This value is positive, zero, or negative depending on the relative values of p and q. We can 
proceed to compute [ ]XVar  by first computing   
 

( ) ( ) ( )2 2 2
1 1 1 1 .1 1k kX x d k p q p q p q

∞

= =−
Ω −∞

  = = + = + = +  ∫ ∫E P  

Thus  
[ ] [ ] ( )

( ) ( )

22 2

2 2

1

4 .

X X X p q

p q p q pq

 = − = − − 

= + − − =

Var E E
  

 

Then if 
1

n

n i
i

W X
=

= ∑    then  

[ ] [ ] ( )
1 1

,
n n

n i i
i i

W X X n p q
= −

 = = −  
∑ ∑E E E =  and [ ] [ ]

1 1

n n

n i i
i i

W X X npq
= −

 = =  
∑ ∑Var Var Var = 4

(independence of the 'iX s  from each other permits interchanging the variance and summation 
in this computation). 

We should note that while there is little surprise about the expectation of nW ,  the fact 
that its variance increases over time regardless of the mean is worthy of comment. This is not a 
process that hovers close to its mean as n increases. In fact the longer the random walk is 
permitted to run, the more extreme its excursions, as the variance is unbounded.  

We can now find the probability function for 
1

.
n

n i
i

W X
=

= ∑  Recall that we had a similar 

problem for computing the distribution for the binomial distribution.  There, we found the 
probability generating function for ( ), ,i XX sG  and computed ( ) ( ) .

n
W Xs s=   G G  We proceed 

analogously here, computing ( ) 1
1 1 .1 1x k

X k ks s dP s p q ps qs
∞

−
= =−

Ω −∞

 = = + = + ∫ ∫G  Then 

( ) ( )1 .
n

W s ps qs−= +G  Using the binomial theorem, we can write this as 

 
( ) ( ) ( ) ( )1 1

0

2

0
.

nn n kk
W

k

n
k n k k n

k

n
s ps qs ps qs

k

n
p q s

k

−− −

=

− −

=

 
= + =  

 
 

=  
 

∑

∑

G
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We now have to simply collect the coefficients of s. Let’s now denote k n kn
p q

k
− 

 
 

 as 

( , ).C n k  We can write  ( ) 2

0
( , ) ,

n
k n

W
k

s C k n s −

=

= ∑G and can collect the coefficients that are 

identified with each exponent of s. Let’s begin with n = 4. Then we can quickly see how the 
coefficients of s match with powers of s (Table 1).  
 
 

<Table 1>> 
 
 
And we see that negative exponents of s are entirely legitimate. This is because negative values 
of the random walk are quite possible (indeed, probable for small values of p). However, only 
even values of its exponent (positive or negative) are permitted. Since  

2

0
( )

n
k n k k n

W
k

n
G s p q s

k
− −

=

 
=  

 
∑ we could write [ ] 4

4

4
2 4 ,k kW k p q

k
− 

= − =  
 

P  but this is somewhat 

awkward. Instead we can write 2 4,j k= −  or 4
2

jk +
=  and 44 .

2
jk −

− =  Then we can write 

[ ]
4 4

2 2
4 4, 2, 0,2,4

4
,4

2
1

j j

jW j p qj
+ −

=− − −

 
 = = + 
 

P or of course 

 

[ ]
4 4

2 2
4 4, 2, 0,2,4

4
4

2
1

k k

kW k p qk
+ −

=− − −

 
 = = + 
 

P . We can  

generalize this for any positive even value of n as 
  

[ ] 2 2
, mod 2 0

2

.
2

1
n k n k

n n kn k n

n
W k p qn k

+ −

+
− ≤ ≤ =

 
 = = + 
 

P   

 
This solution also works for odd values of n.  
 
Simple random walk with rest  
A solution is also available for a random walk when there is a resting state, i.e., 0 .iX r  = =P  
Following our development of random walk, we can easily write 

[ ] 1 0 1

(1) (0) ( 1) .

1 1 1k k kX xdP k p r q

p r q p q

∞

= = =−
Ω −∞

 = = + + 

= + + − = −

∫ ∫E
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Similarly, [ ] 4 ,X pq=Var  and as before, if 
1

,
n

n i
k

W X
=

= ∑  then [ ] ( ) ,nW n p q= −E  and 

[ ] 4 .nW npq=Var  Thus, the moments of the original random walk and random walk at rest are 
equivalent.  

We can now find the probability function for 
1

.
n

n i
i

W X
=

= ∑  As before, we write 

( ) ( ) .
n

W Xs s=   G G  We proceed analogously here, computing 

( ) 1 0 1

1 .

1 1 1x k
W k k ks s dP s p r q

ps qs r

∞

= = =−
Ω −∞

−

 = = + + 

= + +

∫ ∫G
  

 
Then ( )1( ) .

n

WG s ps qs r−= + +  Using the multinomial theorem,* we write  
 

( ) ( )

( ) ( )

1

1
0 ,0

0 0

0 ,0
0 0

.

1

1

n

W

n n jk n k j
k n j n

k j

n n
k j n k j k j

k n j n
k j

s ps qs r

n
ps qs r

j k

n
p q r s

j k

−

− − −
≤ ≤ ≤ ≤

= =

− − −
≤ ≤ ≤ ≤

= =

= + +

 
=  

 
 

=  
 

∑∑

∑∑

G

 

 
 
We now do a simple tabulation to see how powers of s are generated (Table 2). 
 

 

                                                 
* This is a generalization of the binomial theorem. 
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In this table k j−  reflects the powers of s. For example, the coefficient of 0s  is 

( ) ( )4,0,0 4,1,1 .C C+  For 1,s  we have ( ) ( )4,1,0 4,2,1 .C C+ For 3s  there is only ( )4,3,0 ,C  and 

the pattern becomes clear. The coefficients of ks  are the sum of all ( ), ,C n m j  for which 
m j n+ ≤  and .k m j= −  We may write this as 
 

[ ] ,
0 0

.1n n
m j n m j

n m j n m j k
m j

n
W k p q r

m k
− −

+ ≤ − =
= =

 
= =  

 
∑∑P  

 
 
In the case of the random walk, the use of generating function permitted us to see how exponents 
of s were assembled. Then, we simply observed the pattern and though the use of the indicator 
function, summarized how to carry out the collection.   
 
Sum of binomial random variables 
The discussion from the previous section tells us how to find the probability distribution of 

1 2W W+  where W1 binomial (n1, p ) is independent of W2 binomial (n2, p).  Since each is itself the 
sum of Bernoulli (p), then we know that 1 2W W+  is the sum of n1 + n2 Bernoulli(p) random 
variables which of course is binomial(n1 + n2,  p). 
 
Example: Satellite clinics (continued) 
From the previous example of satellites clinics, assume that clinic 1 has 12 satellites each of 
which achieves its goal with probability p = 0.75. Clinic 2 has 8 satellites, and Clinic 3 has 7 
satellites that achieve their goal with the same probability. What is the probability that no more 
than 18 satellites reach their goal?  

Each of the satellites represent an i.i.d. Bernoulli trial, and there are 12 + 8 + 7 = 27 
satellites. The probability that 18 reach their goal follows a binomial distribution (27, 0.75). We 
therefore compute 
 

                          
18 18

27

00

27
(0.75) (0.25) 0.214.k k

k

d
k

−

=

= =
 
 
 

∑∫ P    

█ 
The situation is more complicated when we consider the sum of independent binomial 

random variables for whom the probability p is different. To begin to see how to address this, 
let’s begin with two Bernoulli random variables U following Bernoulli p1 and V following 
Bernoulli p2. Then what is the distribution of ?Y U V= +  
 A simple table shows the possible values for the random variable Y (Figure 7) 

Figure 7 provides the complete elaboration of the possible values of Y and the probability 
of those values.  For example,  
 

[ ] [ ] [ ] [ ] 1 20 0 0 0 0Y U V U V q q= = = ∩ = = = = =P P P P  
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The independence of U and V permit us to multiply the probabilities, however, the different 
value of p mean we do not accumulate powers of p, but instead products of the different 
parameters.  We will not be able to get one overarching formula, but will have to have formulas 
for the different possible values of Y. We can write 

 
 

[ ] ( )
21 2 0 1 2 1 2 1 1 2 .1 1 1

kk kY k q q p q q p p p
== == = + +P +  

 
Note the use of the indicator function for each of the possible values of k allows us to write this 
complicated measure function as one function.  It is easy to see that the sum of these 
probabilities is one. So calculating the sum of independent Bernoulli random variables with 
different probability parameters required enumeration, multiplying probabilities, and the use of 
an indicator function. We will use this experience to guide our computation of the sum of 
binomial random variables.  

Let W1 follow a binomial (n, p1), and W2 follow a binomial (n, p2) . Then what does 
1 2W W W= +   look like? We start by noting that the  range of values is 0 2 .k n≤ ≤  It pays to think 

of how values of k ≤ n are produced versus values of k > n.    
 There are several ways that we can generate values of  W1 and W2 such that 

1 2 .W W k n+ = ≤  One is for W1 =0 and W2 = k. We can easily calculate this probability as 
 

[ ]

[ ] [ ]

1 2

0
1 2 1 1 2 2

0

0 .
0

n k n k

W W k

n n
W W k p q p q

k
−

= ∩ =

   
= = = =    

   

P

P P  

However, there are more circumstances where 1 2 .W W k+ =   In fact values of ( )1 2,W W  that meets 
this requirement are (0, k), (1, k −1), (2, k−2), (3, k−3), …(k, n – k).  The probability of these 
possibilities  is 
 

1 1 2 2
0

.
k

j n j k j n k j

j

n n
p q p q

j k j
− − − +

=

   
   −   

∑  

 
However, another set of possibilities are (k, 0), (k −1, 1), (k −2, 2), (k −3, 3), …(n− k, k), 
producing the following probabilities 
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2 2 1 1
0

k
k j n k j j n k j

j

n n
p q p q

j k j
− − + − +

=

   
   −   

∑  

 
Thus we can write  
 

0

1 1 2 2
0

2 2 1 1
0

.1
k n

k
j n j k j n k j

j
k

j n j k j n k j

j

W k

n np q p qj k j
n np q p qj k j

≤ ≤

− − − +

=

− − − +

=

  
    
           
 

    
       
    

= =

−

+
−

∑

∑

P

  

 
For n < k ≤ 2n, we proceed as we did before, identifying pairs of ( )1 2,W W  such that 1 2W W k+ =   
for n < k ≤ 2n.  For example, if n= 8 and k = 13, then one set of collection of different values of
( )1 2,W W  are (5, 8), (6, 7), (7, 6), and (8,5). In general W1 will go from k – n to n, as W2 moves 
down from n to k – n. This is equivalent to saying that W2 values are governed by  n + (k − n) – 
W1  = k – W1 However, since 1 2p p≠  we have to reverse the ( )1 2,W W pairs.  

Thus we can write this probability as  
 

2

1 1 2 2

2 2 1 1

.1
n k n

n
j n j k j n k j

j k n
n

j n j k j n k j

j k n

W k

n np q p qj k j
n np q p qj k j

< ≤

− − − +

= −

− − − +

= −

 
 
    
           
 

    
            

=

−
=

+ −

∑

∑

P

 

 
And our solution is  
  

[ ]

01 1 2 2 2 2 1 1
0 0

1 1 2 2 2 2 1 1

.1
k n

k k
j n j k j n k j j n j k j n k j

j j

n n
j n j k j n k j j n j k j n k j

j k n j k n

W k

n n n n
p q p q p q p q

j k j j k j

n n n n
p q p q p q p q

j k j j k j

≤ ≤

− − − + − − − +

= =

− − − + − − − +

= − = −

=

        
= +        − −        

        
+ +        − −       

∑ ∑

∑ ∑

P

2
1

n k n< ≤





  

 

Difference of binomial random variables.  
Here we will compute the difference of two independent binomial random variables each with a 
different probability of success p, We will develop this probability as we did for the sum of 
binomial random variables by exploring the findings for the Bernoulli random variable.  

To begin to see how to address this, let’s begin with two Bernoulli random variables U 
following Bernoulli p1 and V following Bernoulli p2. Then what is the distribution of ?Y U V= −   

A simple table shows the possible values for the random variable Y (Figure 8). 
Following the work of the previous section, we can write the probability distribution of 

Y U V= −  as 
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[ ] ( )1 2 1 1 2 1 2 0 1 2 1.1 1 1k k kY k q p q q p p p q=− = == = + +P +  
 
We will proceed in this manner for the binomial distribution. Assume W1 follows a binomial 
distribution (n, p1) and W2 follows a binomial distribution (n, p2), and 1 2.W W W= −   We must 
consider two cases, for W < 0 and W ≥ 0.  For W = k  < 0, W2 is greater than W1 and we must 
consider the following  (W1, W2) pairs  (0, −k), (1, −k +1), (2, −k +2)…. (n +k, n). The probability 

of this collection of (W1, W2) pairs is 1 1 2 2
0

.
n k

j n j j k n j k

j

n n
p q p q

j j k

+
− − − +

=

   
   −   

∑  For k  ≥ 0 we must consider 

the following (W1, W2) pairs: (k, 0), (k +1, 1), (k +2, 2), (k +3, 3), …(n, n −k). Their probability is 

1 1 2 2 .
n

j n j j k n j k

j k

n n
p q p q

j j k
− − − +

=

   
   −   

∑  Thus we can write 

 
 
 

 
[ ]1 2 1 1 2 2 0

0

1 1 2 2 0

1
1

n k
j n j j k n j k

k
j

n
j n j j k n j k

k
j k

n n
W W k p q p q

j j k

n n
p q p q

j j k

+
− − − +

<
=

− − − +
≥

=

   
− = =    −   

   
+    −   

∑

∑

P
   

 
Using these probabilities, we can compute the more general probability of the event 1 2.W W≥  
Assuming that n is the same for both group, we might expect that if 1 2 ,p p>  then  1 2W W  ≥P
will tend to be larger as well. We can compute 1 2W W  ≥P by recognizing 

1 2 1 2W W W W k      ≥ = − =P P for all k > 0. Since the events are disjoint for each k, then the 
desired probability 1 2W W  ≥P is simply the sum of 1 2W W k  − =P for each k > 0. Therefore 
 

[ ]1 2 1 1 2 2
0

n n
j n j j k n j k

k j k

n n
W W p q p q

j j k
− − − +

= =

   
≥ =    −   

∑∑P  

 
Conditional binomial measure 



 Conditional binomial measure  219 
 

 
 

We can now apply our earlier discussion of conditional probability to our work with the 
Bernoulli and binomial distribution. Assume we have two independent Bernoulli random 
variables,  X1 distributed Bernoulli(p), and  X2 distributed Bernoulli(p). Assume that 

1 2 1.X X X= + =   What is the probability that 1 1?X =   
 Before we carry out a formal computation, we can try to deduce the solution. There are 
two possibilities for X = 1, either X1 =1 or X2 =1.  Since X1 and X2 are i.i.d., then the probability 

that either is one is the same, so we might expect 1 1| 1X X  = =P  should be 1 .
2

  

 The formal computation proceeds as follows.  
 

[ ] [ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ]

1 1 2
1 1 1 2

1 2

1 2 1 2

1 2 1 2

1 1
1| 1 1| 1

1

1 0 1 0
1 1

1 .
2 2
1

X X X
X X X X X

X X

X X X X
X X X X

pq

pq

= ∩ + =
= = = = + = =

+ =

= ∩ = = =
= =

+ = + =

= =
 
 
 

P
P P

P

P P P
P P

 

 
Note the numerator simplified to the product of probabilities since the value of X1 fixes the value 
of X2, and X1 and X2 are independent.  

We can generalize this problem to find  
 

[ ]
[ ]

[ ]

[ ]
[ ]

1 1 2 3

1 1 2 3

1 2 3

1

1 2 3

11 2 3

1| ... 1

1 ... 1
... 1

1
1 ... 0 0 1 .

... 1
1

n

n

n

n

n

nn

X X X X X

X X X X X
X X X X

n
p q

X X X X
nX X X X n

pq

−

−

= + + + + =

= ∩ + + + + =
=

+ + + + =

− 
 = ∩ + + + =  = = =

+ + + + =  
 
 

P

P
P

P
P

 

 
This is, as before, the solution we might have intuited.  
 We can now proceed with the solution to the following problem. Let W1 be a random 
variable that follow a binomial ( )1, ,n p  and W2 be a random variable that follow a binomial

( )2 , .n p Given than 1 2 ,W W m+ =   what is the probability that W1 = k?  Clearly the probability is 
zero for k < 0 or k > n. For 0 ,k n≤ ≤   we compute, 
 



220                       Binomial Measure 
 
 

[ ] [ ]
[ ]

[ ]
[ ]

( )

1 1 2
1 1 2

1 2

1 2

1 2

1 21 2

1 2

1 2

|

n k m kk n k m k

m n m

W k W W m
W k W W m

W W m

n n
p q p q

W k W m k k m k
n nW W m

p q
m

n n
k m k

n n
m

− − −− −

−

= ∩ + =
= + = =

+ =

   
   = ∩ = − −   = =

++ =  
 
 

  
  −  =

+ 
 
 

P
P

P

P
P

 

This solution we have seen before as the result of sampling without replacement and we will see 
later is the hypergeometric distribution. 
 
Example: Clinical trial recruitment  
Two separate consortiums of clinics recruit subjects to participate in a clinical trial. Consortium 
1 has sixty patients from which it could recruit, and Consortium 2 has seventy patients from 
which it could recruit patients for the study. Each has the same probability of recruiting a subject 
to the study. The total number of subjects recruited by the consortiums combined is 87. What is 
the probability that forty patients came from consortium 1?  
 We can write 
 

( )( )
( )

1 2
15 18

34
1 2

60 70
4.19x10 1.79x1040 47

0.148.
130 5.08 x10
87

n n
k m k

n n
m

     
     −     = = =

+   
   
     

 
Introduction to random variables functions 
These computations that we have just completed for sums and differences of Bernoulli and 
binomial random variables are the introduction to managing not just random variables, but 
functions of random variables.  

Our experience reminds us that we must ensure that the function is measurable, which 
requires us to focus on the σ-algebra.  
 Consider the following elementary example. Let W follow a binomial (n, p). Let Y = −W. 
What is the distribution of the new random variable Y?  
 Before we apply mathematics to this problem, we should think about its construction. We 
know Y cannot follow the binomial distribution, since it is negatively valued. However, 
probabilities for its values are related to the binomial distribution. For example 

[ ] [ ] ( ) 333 3 1 .
3

nn
Y W p p − 

= − = = = − 
 

P P  We can use this relationship to find the probability that Y 

= k, for 0.n k− ≤ ≤   However the Y σ-algebra (which allows no positive values)  is separate and 
distinct from the W based σ-algebra. Thus, in order to compute the probabilities for Y we have to 
first map the Y σ-algebra to W σ-algebra, and use this map to find the probabilities. We begin 
with  
 

[ ] [ ] [ ].Y y W y W y= = − = = = −P P P  
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We can then finish the computation in general. 

[ ] [ ] ( )1 .n kkn
Y k W k p p

k
+− 

= = = − = − − 
P P   

In this case mapping negative integers to positive integers is straightforward, and we actually 
give little thought to mapping the probabilities.  
 Consider though the following mapping. Let W follow a binomial (2, p). If 2 ,Y W=   what 
is the probability distribution of Y? 
 Following the previous example, we can write 
 

[ ] 2Y y W y W y W y

W y

  = = = = = ∩ = −   
 = = 

P P P

P
 

 
The evaluation of Y, due to the nature of W, produces two possible values of Y, but only one has 
nonzero probability.   
 

[ ] 2 .k n k
n

Y k W k W k p q
k

− 
  = = = = = =      

 
P P P  

 
For k = 0, 1, 4. We will build  on this concept of functions of random variables in later sections. 
 
Mixtures of binomial random variables 
We have described several combinations of binomial random variables. However, one additional 
combination is to simply combine the distributions of independent binomial random variables.  

For example, we understand the characteristics of W1 that follows a binomial (20, 0.35) 
distribution, as we do the features of W2 that follows a binomial (20, 0.80) distribution. We can 
compute their moments, and easily provide a graph of both (Figure 9) 
 

 

 
 
Previous sections have shown how to create new random variables from each of W1 and 

W2. However, suppose we wished to actually combine the two distributions. Essentially, we 
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would modify the experiment that generates our outcome. Initially, for example, we select an 
observation from a binomial (20, 0.35).  

However, now, we conduct two experiment. First, select an outcome from a Bernoulli 
experiment. If the outcome is 1, we select a realization of W1. It the outcome is 0, we select the 
random variable W2. This two stage selection process has important implications for the 
distribution of the result, producing  a rich combination of probability distributions (Figure 10).  

How can we even write this mathematically? We could try to write the probability 
function simply as  

 

0 20

20 20
(0.35) (0.65) (0.80) (0.20) 1k n k k n k

kk k
− −

≤ ≤

    
+    

    
 

 
However, this we know does not integrate one. 
 
 

0 20

0 20 0 20

20 20
(0.35) (0.65) (0.80) (0.20)

20 20
(0.35) (0.65) (0.80) (0.20)

1 1 2

1
1 1

k n k k n k
k

k n k k n k
k k

d
k k

k k

− −
≤ ≤

Ω Ω

− −
≤ ≤ ≤ ≤

Ω Ω

    
= +    

    
   

= +   
   

= + =

∫ ∫

∫ ∫

P

 

 
 
We therefore have to include a parameter that ensures the probability function integrates to one. 
We introduce a parameter r, 0 1,r≤ ≤ and write 
 

[ ]

( )

0 20

0 20

20
(0.35) (0.65)

20
1 (0.80) (0.20)

1
1

k n k
k

k n k
k

W k r
k

r
k

−
≤ ≤

−
≤ ≤

 
= =  

 
 

+ −  
 

P
 

and we now have a probability function that integrates to one, using the concept of the Lebesgue 
integral 
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( )

( )

( )

0 20 0 20

0 20 0 20

20 20
(0.35) (0.65) 1 (0.80) (0.20)

20 20
(0.35) (0.65) 1 (0.80) (0.20)

1 1.

1 1
1 1

k n k k n k
k k

k n k k n k
k k

d r r
k k

r r
k k

r r

− −
≤ ≤ ≤ ≤

Ω Ω

− −
≤ ≤ ≤ ≤

Ω Ω

   
= + −   

   
   

= + −   
   

= + − =

∫ ∫

∫ ∫

P

 

 
Example: Contemporaneous cell therapy 
Cardiac cell therapy studied the direct injection of mesenchymal cells into myocardial tissue. 
Consider the following: A subject receives a complete set of twenty injections that can be placed 
either in the scar itself (scar-based) or at the periphery of the scar (border-based).  

The probability that the border based injections generate new cardiac cells is 0.65.  
However, the probability a patient receives border-based injections is 0.35. The likelihood of a 
patient getting scar-based injections is 0.65, and the probability that these injections of produce 
new cells at the injection site is 0.25. What is the probability that there were be at least ten 
injections that produce new cell growth? 

We compute 
 

( )

( )

( )

1 1 2 2
10 10 10

10 10

10

20 20
(1 ) 1 (1 )

20 20
(0.35) (0.65) (0.35) 0.65 (0.25) (0.75)

20 20
(0.35) (0.65) (0.35) 0.65 (0.25) (0.75

k n k k n k

k k k

k n k k n k

k k

k n k k

k

d r p p r p p
k k

k k

k k

− −

≥ ≥ ≥

− −

≥ ≥

−

≥

   
= − + − −   

   
   

= +   
   

   
= +   

   

∫ ∫ ∫

∫ ∫

∫

P

( )
10

)

(0.35)(0.946) 0.65 (0.014)
0.34.

n k

k

−

≥

= +

=

∫      

         █ 
 

Yet another example of the binomial distribution is as the probability distribution of 
survivors from what is classically known as the death process.  

These are just some examples from the rich bounty of the binomial distribution. The 
concepts developed here will be key in our future discussions.  
 
Next Sections 
Multinomial Distribution 
Hypergeometric Measure 
Geometric and Negative binomial measures 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
Continuous Probability Measure 
Moment and Probability Generating Functions 
Variable Transformations 
Uniform and Beta Measure 
Normal Measure 
Compounding 
F and T Measure 



224                       Binomial Measure 
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Asymptotics 
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Skewness and Kurtosis for the Binomial 
Distribution  

 
 

We can also compute  the skewness and kurtosis for binomial random variables.  Let W follow a 
binomial(n, p) distribution. Then we recall that 

( )3

3( ) ,
W

X
µ

σ

 − =
E

S  
and 
 

( ) [ ]

( )

( )( ) ( )

( )

3 3 2 2 3

3 2 3 3

3 2 2 3

3 2 3

33

33 2 2

3 3

3 3

3

3

3

3

W W W W

W W

W W

W

W np npq np

W n p q np

µ µ µ µ

µ µ µ

µ µ µ

µσ µ

     − = − + −    
   = − + −   

   = − − −   

 = − − 

 = − − 

 = − − 

E E E E

E E

E E

E

E

E

  

 
We proceed as we have before for the binomial distribution. 
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( ) 32 .n p−

  

 
We now write

 ( )( ) [ ]3 21 2 3 2 ,W W W W W W    − −  = − +     E E E E  or 

( )( ) [ ]3 21 2 3 2W W W W W W   =  − −  + −    E E E E . We can now write 
 

( )( ) [ ]
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3 2

3 2

1 2 3 2

1 2 3 1 2 .
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Therefore  
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3
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1 2 1 2
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µ
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 − − − = = =
E
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Kurtosis 

We compute  
( )4

4( ) 3.
W

X
µ
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 − = −
E

K  Our computation is aided by observing  
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We can write ( ) ( )3 3 ,W Wµ µ µ µ   − = −   E E and we know  

( ) ( )3 1 2 .W npq pµ − = − E  We now need to compute  
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Since from previous computations, we know that  
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We proceed as we have before for the binomial distribution, computing  
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We now write 
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Continuing, 
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And 
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Which simplifies to  
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Multinomial Measure  
 
 
The multinomial distribution is a generalization of the binomial distribution, an 

observation permitting us to bring the insight from that probability mass function and measure to 
this related probability tool 
 
Prerequisites 
The Notion of Random Events 
Elementary Set Theory 
The Binomial Distribution  
 
 
Developing the trinomial distribution 
The binomial distribution was based on Bernoulli trials, which themselves were quite intuitive. 
However a simple adaptation of the Bernoulli trial opens the door to a host of new probability 
distribution.   
 
Example: Left ventricular assist devices  
The heart is a pump, and when it fails, due to previous heart attacks, infection (myocarditis), or 
chronic disease (e.g., hypertension or diabetes mellitus), it no longer pumps adequate blood 
forward to the brains, kidneys, muscles, and other organs, letting blood back up in the heart. This 
is called heart failure.  

Some patients with severe heart failure currently are treated with left ventricular assist 
devices (LVADs). By carrying out some of the work of the failing heart, they can help to 
improve the heart’s function.  

However, the LVAD is only temporary, leaving three possible outcomes of successful 
LVAD placement. The first is that the patient goes on to die, a death that is postponed but 
eventually occurs. The second is that the patient is sustained long enough to have a heart 
transplant (where the old heart and the LVAD are replaced by another human heart). The third is 
that the patient is able to recover enough heart function with the LVAD and drug therapy that 
they can have the LVAD removed and perform very well (termed rescue therapy).  

Each of these events is mutually exclusive.  Let’s assume that the probability of rescue is 
0.10, the probability of transplant is 0.35, and the probability of death is 0.55. At a major heart 
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failure treatment center, there are 35 patients who will have an LVAD this year. What is the 
likelihood that 20 die, 10 have heart transplants, and the remaining 5 are rescued. 

We will approach this as we did for the binomial solution, breaking the problem into two 
parts. One is computing the probability that in this sequence of 35 patients, we have 20 deaths, 
10 transplants, and 5 rescues. It is reasonable to conclude that one patient’s experience is 
independent of another, we can compute the probability that this occurs as ( ) ( ) ( )20 10 50.55 0.35 0.10 .   
However, there are many sequences of events that will produce this collection of events, and we 
must find a way to count them.   

Fortunately, this is straightforward, and we can rely on our earlier work in counting. 
Beginning with the deaths, we see that there are 35 patients, and any 20 of them can die. We 

count the number of ways this can happen as 35
.

20
 
 
 

 However, once this has occurred, there are 

35 – 20 = 15 patients from whom we select 10 transplants.  So the number of ways to choose 20 

deaths then 10 transplants is 35 15
.

20 10
  
  
  

  

Continuing, we now have five patients left all of whom are to be rescue patients. This 
completes the computation, and we have  

 
35 15 5 35! 15! 5! 35! .
20 10 5 20!15! 10!5! 5!0! 20!10!5!

       = =       
      

 

 
Note that the cancellation that gets us this simple result is not just a property of these particular 
numbers selected for the problem. Selecting  20 transplants leaves us exactly 15 patients left, and 
it is precisely these 15 patients from whom the 10 transplants must be selected. We write this 
result as 
 

3535! ,
2010 520!10!5!

 
=  

 
 

 
and write our final probability as  

 

( ) ( ) ( )20 10 535
0.55 0.35 0.10 0.017

2010 5
 

= 
 

 

 
We observe that this is distribution that requires more than one random variable. It does not 
require three since the three classes of patients must sum to a constant. However, there are two 
random variables whose value is determined by the experiment.  

Thus, if we have n objects, and which to choose k1, k2, k3 …kn objects occurring 
independently of each other (realizations of the random variables Xi, i=  1,…, m)  with 

probability p1, p1, p1, …, pm, such that 
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,
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i
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=∑  and 
1

1,
m

i
i

p
=

=∑  then 

[ ]
31 2

1

1 1 1

1 2 3
1 2 3

, , , ...,

!
...

! ! ! ... !
1m

m

i
i

m

k kk k
m

k mm

k k k k

n
p p p p

k k k k
=

=

 
=  

∑ 

P

.  

 



 Example: Left ventricular assist devices   233 
 

 
 

This is the general form of the multinomial distribution.  Its use is based on the multinomial 

theorem, which states that if there is a collection of { }ix  such that 
1

,
m

i
i

x n
=

=∑  then 

( )
1 2 3

1 2 3
. 11 2 3

... .
...

i

m

m
n k

m i
k k k k n im

n
x x x x x

k k k k+ + + + = =

 
+ + + + =  

 
∑ ∏   

 
We can see that this is a generalization of the binomial theorem. For the example provided in this 

chapter, we rely on the trinomial distribution 31 2

1 2 3

1 2 3
1 2 3

.kk k

k k k n

n
x x x

k k k+ + =

 
 
 

∑  

Note that we can collapse the multinomial distribution to the binomial distribution by simply 
aggregating the objects into two classes.  This allows us to see right away that [ ] ,i iX np=E  and 

[ ] ( )1 .i i iX np p= −Var   
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Hypergeometric Measure 
 

 
Prerequisites 
The Notion of Random Events 
Elementary Set Theory 
The Binomial Distribution 
Counting Events 
 
We are already familiar with hypergeometric measure from working with examples involving 
sampling without replacement. If we suppose there is a population of N objects of which M have 
the trait of interest. We take a sample of size n from the population of size N. How likely is it 
that our smaller sample will contain m of the objects that have this trait?  If X is the random 
variable that is the number of objects with the trait of interest in our smaller sample, then we 
seek .X m  =P    

It is typically helpful when working with hypergeometric measure, to start with the 
sample of interest, drawing its members from the different components of the larger population. 
In our sample of size n, we know that we must have two components; m objects should have the 
trait, and the remaining n – m should not. Thus, our m objects must be selected from all of those 

with the trait; the number of ways to do this is .
M
m

 
 
 

 The remaining n – m objects in our sample 

must be selected from the population members without the trait.  The number of ways to 

accomplish this are .
N M
n m

− 
 − 

  The denominator of this probability is simply the number of 

different possible samples of size n from N. Compute.  
 

[ ] .

M N n
m n m

X m
N
n

−  
  −  = =

 
 
 

P  

 
When we think of this as merely one of counting, computing the probability is straightforward. 
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Example: Diabetes and insulin pumps 
Diabetes mellitus is a disease of abnormal glucose metabolism and affects over twenty-six 
million US subjects. Commonly these patients must progress to insulin injections. In order to 
help stabilize the amount of insulin the body tissues are exposed to, these subjects requiring 
insulin can sometimes be provided an insulin pump, which automatically regulates the amount of 
insulin delivered.  However, not every insulin dependent diabetic subject can have a pump 
inserted. 

In a major diabetes treatment center there are 115 insulin dependent diabetics, 57 of 
which have the insulin pump inserted.  Today, 30 patients are scheduled to be seen.  The clinic 
staff  only has resources to replenish ten pumps. What is the probability that no more than ten of 
these thirty patients have an insulin pump? 

We first find [ ]10 ,X =P   and then compute  [ ]10 .X ≤P  To find this first probability, we 
recognize that ten of our thirty patients must have the pump (and must therefore be selected from 
the 57 in the population who have the insulin pump), and the remaining twenty must not. We 
compute 

 

[ ]

57 58
10 20

10 0.02.
115
30

X

  
  
  = = =

 
 
 

P  

 
We now compute 
 

[ ]
10

0

57 58
30

10 0.031.
115
30

m

m m
X

=

  
  −  ≤ = =

 
 
 

∑P  

The clinic will very likely run out of resources for these patients today. 
 █ 

 
 

The calculation  of the mean and variance of hypergeometric measure involves a computation, 
but we can show that  
 

,nX M
N

   =E  and .
1

Mn N n N MX
N N N

   
      

   

− −=
−

Var   

 
Example: Population Selection Effects 
Hypergeometric measure has many uses. One of the most interesting is its ability to aid in the 
detection of selection bias. Selection bias is the process by which the choice of subjects in a 
study can produce a bias or systematic effect on the research effort’s results.  

 Investigators planning a clinical trial choose the subsets for the study in a sequence of 
selection steps. They first screen patients (screened population) helping them to decide who is 
most likely to satisfy the entry requirements of the study. After obtaining consent, they will then 
test the screened patients to determines to see if these patients meet all of the inclusion and 
exclusion criteria. These patients who satisfy inclusion/exclusion assessments represent the 
eligible population. Then after a period of time that can last from minutes to days, patients are 
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randomized to receive therapy. Once the patient is randomized to the study, the investigators are 
committed to giving the patient the therapy and following them for the duration of the trial. *   
 Thus in our example there are three subsets. The first is the screening subset, the second, 
the eligible subset, and the third the randomized subset. Each subset is wholly contained in the 
other (Figure 1). 
 

> 
  
These selections are not race, ethnicity, or gender specific.  For example consider demographic 
breakdowns of these four subsets in a hypothetical clinical trial (Table 1).  
 

<<Table 1 here>  
 
Table 1 depicts the distribution of subjects in the screened, eligible, and randomized 

subsets of a clinical trial. Of course, the screened subset with its 1010 subjects is the largest of 
the subsets. There were 400 of these subjects selected as eligible, and 210 of these eligible 
subjects who were randomized. The numbers below represent the number of subjects that were 
in each of these subsets 
 The probabilities in the right two columns of Table 1 provide the likelihood that smaller 
subsets contained at most as many subjects with the trait given the findings in the screened 
population. For example, with respect to age, there were 303 older patients in the screened 
population, 140 in the eligible population, and 63 in the randomized population.  

The last two columns represent computations based on hypergeometric measure.  If we 
consider the selection of subjects to be an experiment, then in over  99% of these experiments, 
there would be at least 140 older subjects in the eligible subset. However, given that there are 
140 older subjects in the eligible subset group, it is very unlikely that by chance alone, there 
would only be 63 older subjects in the randomized group reflected by the probability of 0.018. 
While 63 could have occurred by chance alone, the likelihood is so remote that we might suspect 

                                                 
* This is somewhat simplified. In fact there can be six distinct populations (screened, initial eligibility passed, 
consented, final eligibility passed, randomized, and treated) 
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another cause – specifically, that the process of selecting subjects from the eligible to the 
randomized subsets “selects out” older patients. * 
 A review of the other categories suggests no selection difficulties with Asians, but that 
African-Americans are also selected out when going from the eligible to the randomized 
population. Hispanic also appear to be susceptible to the selection process at both stages.  
 While this process can be illuminating when carried out after the randomization process 
has been completed for the trial, it is more helpful to execute this analysis during the active 
screening process, in order to identify and hopefully remove any selection bias issues.  

█ 
 
Example: Assessing clinics 
A clinical trial is facing the demise of its cell processing center and has identified two other cell 
processing facilities. Neither can handle the remaining 80 specimens to be processed (40 to be 
active and 40 to be placebo), so the decision is made to split the cell processing between them, 
each agreeing to prepare product from 40 samples. What is the likelihood that one center 
manufacture all placebo product and the other all active product?  
 Examine this from the perspective of one of the two cell processing facilities. It will 
receive 40 samples and their randomization assignments. There are many different 
configurations of active and placebo assignments of the 40 samples that it can receive. This 

number is exactly 
80

.
40

 
 
 

   Of the facility’s 40 assignments, if all are active, then they must come 

from the population of active assignments in the 80 specimens. This is reflected by 
40

.
40

 
 
 

There 

are no samples that it received from the 40 placebo assignments in the population, represented as 

40
.

0
 
 
 

Thus the probability that it receives all active samples is 24

40 40
40 0 1 9.3 x 10 .

80 80
40 40

−

  
  
   = =

   
   
   

 

Since they may also have received 40 placebo assignments, we double this to find that 
probability that the center receives 40 of the same assignment is 231.9 x 10 .−  
 
Next sections 
Geometric and Negative binomial measures 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
Continuous Probability Measure 
Moment and Probability Generating Functions 
Variable Transformations 
Uniform and Beta Measure 
Normal Measure 
Compounding 
F and T Measure 
                                                 
* It perhaps is helpful to point out that this selection is not deliberately prejudicial, but selects on characteristics that 
this segment of the population may have. For example, investigators may not randomize patients if they are frail and 
therefore likely to have more difficulty returning for future required clinic visits. While younger people may also be 
frail from chronic disease, the elderly are particularly susceptible to this type of selection.  
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Moments of Hypergometric Measure  
 
 
 
The derivation of the moments of hypergeometric measure may seem a daunting task, but we 
will see it is as easy to manipulate this distribution as we did the binomial distribution.  
 

[ ]
[0, ]

.1
nm I

M N n
m n m

X m
N
n

∈

−  
  −  = =

 
 
 

P  

 
Finding the mean 
 
We begin with 

[ ] [ ]
0 0

n n

m m

M N M
m n m

X xd m X m m
N
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= =Ω
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  −  = = = =
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Continuing 
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=
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and we see that 
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Variance 
To compute [ ],XVar  we return to the motif that we used in the binomial distribution to first 
compute ( )1 ,X X −  E  then compute the variance as  

( ) [ ] [ ]21 .X X X X −  + − E E E  We compute the factorial moment as 
 

( ) ( ) ( ) [ ]

( ) ( )

( )
( )
( )

( ) ( )
( )

0

0 2

2

1 1 1

1 1
2
2

2
1 1 12

.
1 2 1

1 2
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n

m

X X x x d m m X m
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We may now write the variance as 
 

[ ] ( ) [ ] [ ]
( ) ( )

( )
( )( )

( )
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2 2

2
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1

1 1
1

.
1

X X X X X
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−
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=
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Geometric and Negative Binomial 
Measures 

 
 
 

We will continue our development of probability distributions based on Bernoulli trials by 
introducing two related distributions; the geometric, and negative binomial measure. Even 
though these are distributions based on Bernoulli trials, their sample spaces have a new property-
the possibility of not just a finite, but an infinite number of values.   

 
Prerequisites 
The Limit Concept 
Properties of Probability 
Conditional Probability 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Measure and its Properties 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Basic Properties of the Lebesgue-Stieltjes Integral 
Working with Measure 
Properties of Probability 
Generating Functions 

 
Geometric measure 
Consider the following scenario. Patients arrive at a clinic independently of each other at a clinic 
that provides immunizations.  It is not uncommon for a patient to require an immunization 
(tetanus toxoid) for tetanus, an event that occurs with probability p. Can we compute the 
probability that k patients are seen before a patient requires the first tetanus shot of the day? 

This problem has elements that are familiar to us. The arrival of independent patients, 
each with the same probability p of “success” (in this case, the need for a tetanus shot) is 
certainly a collection of Bernoulli trials.  

However, here is where the familiarity ends. We are accustomed to computing the 
probability of a great many events around the number of patients who require a tetanus shot (3 
patients, at least 5 patients, no more than 2 patients, etc.). However, here we are told that only 
one patient requires a tetanus shot. We must compute the probability of a number of patients who 
are seen, when we know the actual number who receive a tetanus shot. 

The sample space is altered here. For the Bernoulli and binomial distributions, the 
number of trials is fixed and we have to compute probabilities of a finite number of successes 
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occurring within those trials.  However, in this case, the number of  “successes” is fixed, and we 
must compute the number of trials.  

It is the number of trials that is the random variable. 
The probabilities are not in and of themselves difficult to compute. However, there is an 

important new consideration. Let k be the number of subjects who do not require tetanus-toxoid. 
Then [ ]0k p= =P  since the only way for k to be zero is for the first patient to require the toxoid. 
If the second patient is the first to receive toxoid, then we compute [ ]2 ,k qp= =P  acknowledging 
that the first patient did not require toxoid while the second patient did. We can now compute the 
following sequence of probabilities 

 
[ ]
[ ]
[ ]
[ ]

2

3

0

1

2

3

k p

k qp

k q p

k q p

= =

= =

= =

= =

P

P

P

P

 

 

And we easily see that [ ] I[0, ].1k
kX k q p ∈ ∞= =P *  However, the indicator presents a potential 

problem because it signals that we have to sum over all of the nonnegative integers. Formally, 
 

I[0, ]
0

1?1k k
k

k
d q p q p

∞

∈ ∞
=Ω

= = =∑∫ ∫P  

 
How can an infinite sum of positive numbers be less than infinity since we can never be 

able to stop counting them? And how can it be equal to one? 
 It is clear that for many summands, the infinite sum will definitely be infinity. However, 

must this be the case of all of them? Say that 1 .
2

p =  Then 
0 0

1 1
2 2

k
k

k k
q p

∞ ∞

= =

 =  
 

∑ ∑ . Is possible that 

0

1
2

k

k

∞

=

 
 
 

∑ is finite? 

 
Infinite sums as sequences 
Let’s first take the infinite sum and convert it into an infinite sequence. Define  

  
2 3 4

0

1 1 1 1 1 11 .
2 2 2 2 2 2

k jk

k
j=

S          = + + + + + + =         
         

∑   

 
Then our infinite sum is a sequence progression, S1, S2, S3, …Sk…., each term in the 

sequence representing one more summand added to the growing sum. Then, the question of 

whether 
0

1
2

k

k

∞

=

 
 
 

∑ is finite is converted to the phenomenon of the potential convergence of the 

sequence { }.kS  If it converges to some value L, then we can say 
0

1 .
2

k

k
L

∞

=

  = 
 

∑  

                                                 
*Since there is only one sequence that satisfies the event, namely that the success must occur at the end of the 
sequence, we do not have to count combinatorics as we did for the binomial distribution.  
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Examine the following 
 

2 3 41 1 1 1 11 ...
2 2 2 2 2

k

kS        = + + + + + +       
       

 

  

Then  multiply each side by 1
2

 to find 

 

 
2 3 4 11 1 1 1 1 1...
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k
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+

       = + + + + +       
       

         

 
Subtracting the second from the first equation above  reveals 

  
11 11

2 2

k

kS
+

   = −   
   

 or 

111
2 .
1
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k

kS

+
 −  
 =
 
 
 

                    

So we must find  
1

1
11

12lim lim lim 2 1 .
1 2
2

k

k

kk k k
S

+

+

→∞ →∞ →∞

 −      = = −        
 

 

  It is here were our work with limits and continuity pays a handsome reward.  We know 

that the function 
112 1

2

k +  −     
 is continuous.*  We also know from our discussion on the limits 

of continuous functions, that the limit passes through the function. Thus we write   
 

( )

1

0

1

1 1lim lim 2 1
2 2

12 1 lim 2 1 0 2.
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kk kk

k
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S
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Therefore  ( )
0 0

1 1 1 2 1.
2 2 2

k
k

k k
q p

∞ ∞

= =

   = = =   
   

∑ ∑  

  

In fact, the probability that there are k failures before the first success, when 1
2

p =  and 

written as [ ]
1

I[0, ] I[0, ]
1 1 1
2 2 2

1 1k k

k kk
+

∈ ∞ ∈ ∞
   = =   
   

P  is a probability measure.  

 We write now a concise proof that for any probability of success p, such that 0 < p < 1, 
the [ ] [ ]0,1k

kk q p ∈ ∞=P has measure one over the non-negative integers.  
 

                                                 
* It is not too challenging an exercise to use an ε – δ argument to demonstate the continuity of . 

112 1
2

k +  −     
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Continuing 
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Depending on the value of q, the probability of k failures before the first success can 

congregate early or late (Figure 1). 
 

 
                               
 
Another parameterization of the geometric distribution is to alter it to find, not just the number of 
failures before the first success, but the probability that the kth trial holds the first success. This is 
just the probability that there are k −1 failures before the first success.  Defining W as the random 

variable here, we write this as [ ] 1
I[1, ].1k

kW k q p−
∈ ∞= =P Note now that the lower bound of k is one. 

To see that the measure over the entire sample space is equal to one we write 
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1 11k k k
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∞ ∞
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Probability generating function 
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We can compute the probability generating function of X, xs  E  as  
 

( )I[0, ]
0

( ) .
1

1 kx x k k
X k

k

ps s s d s q p p qs
qs

∞

∈ ∞
=Ω

 = = = = =  −∑∫ ∫G E P  

 
Comparing this to the probability generating function of the negative binomial measure to be 
developed later in this chapter will demonstrate an interesting relationship between these two 
probability functions.  
 
Example: Conditional negative binomial measure 
   
Consider the situation when you know there are k2  failures before r2  successes.What is the 
probabilty that there were k failures before r successes where  and   
 This problem providesa trajectory for the process. Once can identify the probability 
distribution of interim points in the negative binomial process. What we wish to find is  
  

2, , 2|p r p rX k X k = = P  where ,p rX  is a negarive binomial random variable with parameters p 
and r. We begin by writing  
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This is the key to the problems solution. Given that there are k failures bdefore the rth success, 
there must be 2k k−  failures. Before another 2r r−  successes. The recognition that these are 
Bernouli trials justifies taking the product of the joint probablities. Thus, 
 
 
 
Moments of geometric measure 
We begin with the expected value X, the number of failures before the first success.  
 

[ ] I[0, ]
0 0

1k k k
k

k k
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Here we can use what we learned from the Using the generating function approach to infinite 

series.  We want to find what function 
0

.k

k
kq

∞

=
∑G =  Recall that taking derivatives of both sides of 

the geometric series and multiplying both sides by q  that we found that 
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Thus, we have [ ] 2 .q qX p
p p

= =E  This inversion property of many infinite series will be quite 

helpful as we develop this followed by negative binomial measure.   
In order to compute the variance of the geometric disruption, we write  
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The generating function approach permits us to write that  
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The probability of the second success 
Suppose now we asked what is the probability that the kth trial contains the second success? Let 
the relevant random variable be Y, noting that 2.Y ≥   Here there are many possible combinations 
to consider for the occurrence of the second success. In fact for each increase in the value of Y, 
the number of possibilities for the location of the first success increases. Tracking it this way 
becomes unhelpful.  
 However, another way to think of this event is that we really don't care when the first 
success occurred as long as it occurred before the second, and that the second occurred on the 
last trial. But this is the probability that there is one success in n − 1 trials, followed by the nth 
trial that is itself a success. Since Bernoulli trials are independent we write  
 

 [ ] 2 2 2
I[2, ] I[2, ]

1 1
1 1

1 1n n
n n

n n
Y n pq p p q− −

∈ ∞ ∈ ∞

− −
= = =

   
   
   

P   

Another way to write this equation  is so that the random variable is not the number of trials, but 
the number of failures before the second success. One advantage of this is that this random 
variable always has positive probability assigned on each of the nonnegative integers, as opposed 
to Y above. Then, n = k + 2, k = n −2, and rewrite  as 
 

[ ] 2
I[0, ]

1
1

1k k

k
V k p q ∈ ∞

+ 
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P  

 
This is an example of a negative binomial random variable. In general, the measure of the 
number of failures before the rth success is  
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Why “negative” binomial measure? 
This name, negative binomial, comes from the use of the binomial theorem for negative 
integers.* 
 

( )
1 1

1 .
1

kk r k r r
r k k
+ − + − −     

= = −     −     
 

 
However, since negative binomial measure is rarely written in this format, the sobriquet 
“negative” has little meaning for us. If we develop negative binomial measure from a generating 
function approach, then, again, its name is not particularly illuminating. 

We might be better off thinking of this distribution not in terms of its name, but instead 
what its function does. While the binomial distribution focuses on fixing the number of trials, 
and computing the distribution of the number of successes within those trials, negative binomial 
measure fixes the number of successes and computes the distribution of the number of failures 
before the last success occurs on the last trial.  

Use of the generating function approach quickly reveals that the proposed negative 
binomial measure integrates to one over the entire sample space.  
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We know that 
( )0
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k
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k r
q

r q

∞

=

 + − 
 =   − −   

∑  through the use of our work on  infinite series.  

Negative binomial measure has a variety of shapes depending on the parameter values 
(Figure 2). 
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Negative binomial measure moments 
It is a worthwhile using both the moment generating function and the combinatoric approaches to 
compute the mean and variance of the Negative binomial measures. We find that the mean and 

variance of  Y, the number of failures before the rth success is rq
p

 and 2

rq
p

 respectively. 

 
Example: Surveying Pregnant Women: 
A researcher is interested in surveying a community's population of pregnant young women 
(between 15-30 years of age). From census records, they know the probability a pregnant women 
lives in any particular domicile is 0.08. What is the probability that at least 800 domiciles must 
be contacted to reach 75 pregnant women? 
 Here the probability of a success is 0.08, and r = 75. We compute 
 

[ ] 75

800
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800

75 1
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74
0.72.

74

k

k
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k
V p q

k
p q

∞
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= = 

 

∑

∑

P

 

█ 
 
Example: Screening subjects for a clinical trial. 
In order to ensure that clinical trial have the best chance of determining the effectiveness of an 
intervention (commonly termed efficacy) safely, very specific patient populations must be 
identified. As we have seen in another example, these populations are sometimes described as 
screened populations, consented populations, and randomized populations.   

The randomized subjects are selected from the consented population, and consented 
subjects are selected from the screen populations. Assume that there is a 75% chance that any 
consented subjects will be randomized.  The sample size goal (i.e., total number of randomized 
subjects required) is 87. We know the minimum number of consented subjects needed to 
randomize 87 subjects is 87, What is the number of screened subjects required in order to have a 
90% chance that we will be able to select 87 randomized subjects.  
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 Consented subjects can be divided into randomized (success) and nonrandomized (failure 
subjects). We can compute for any number n of consented subjects, the probability that exactly 

cT n=   consented subjects are required to randomize 87 subjects as  
 

[ ] ( ) ( )87 871
0.75 0.25 .

86
n

c

n
T n −− 

= =  
 

P  

 
We want the probability that at most m subjects are required so that the probability that needing 
that many consented subjects or less to randomize 87 subjects is 0.90. That is we must find m 
such that  
 

[ ] ( ) ( )87 87

87

1
0.75 0.25 .

86
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n
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n

n
T m −

=

− 
≤ =  
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We find that 124.cm =    
 Now how many subjects must undergo screening in order to have a 90% chance of, from 
these subjects, identifying 124 screened, consented subjects. In this situation, the probability that 
a patient is successfully screened and consented is 0.13.  Here we compute 
 

[ ] ( ) ( )124 123

124

1
0.13 0.87 0.90.

123
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s s
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n
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=
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and we compute ms = 1058. The screening population must be much larger than the consented 
population because 1) we require more consented subjects than randomized subjects and 2) the 
probability of successfully consenting a screened patient is much lower than the probability of 
randomizing a consented subjects.  
 
Example: Conditional negative binomial measure 
   
Consider the situation when you know there are k2  failures before r2  successes.What is the 
probabilty that there were k failures before r successes where  and   
 This problem providesa trajectory for the process. Once can identify the probability 
distribution of interim points in the negative binomial process. What we wish to find is  
  

 where  is a negarive binomial random variable with parameters p 
and r. We begin by writing  
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Note that  
 

20 k k≤ ≤ 20 ?r r≤ ≤

2, , 2|p r p rX k X k = = P ,p rX
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This is the key to the problems solution. Given that there are k failures bdefore the rth success, 
there must be  failures. Before another  successes. The recognition that these are 
Bernouli trials justifies taking the product of the joint probablities. Thus, 
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We now need to simply to expand the negative binomial probabilities nd then the terms 

involving p to see that 
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Which is similar to a hypergeometric probability. Letting 

2 2 21; 1; 1N k r n r M k r= + − = − = + − and 1,m r= −  and we need to write 
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Which is a constant times a hypergeometric random variable. 
  
Moment analysis of contagion process 
The contagion process is useful for following the growth of pandemics such as the SARS-CoV-
22. However, the evaluation of the mean and variance while having a  satisfying history of utility 
may not be completely sufficient to identify how fast the pandemic is growing. Specifically the 
pandemic expected vale,  while it is an exponential growth. may underestimate the growth of the 
infectiin in the community. Therefore, looking at other moments of the contagion model may 
provide more helpful predictive solutions. Here we will just examine one such alternative model. 
 We recall from the previous section that the contagion process results in anegativre 
binomial distribution, providing [ ],t kP  the probability that there are k patients in the system at 
time t. In the case of the contagion process, this is  
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Where , .tr a p e υλ
υ

−= + =  In this case, a is the number of patients in the system at time 0,t =  λ  

is the arrival rate, and υ  is the rate of spread of the disease from patient to patient. We know 

[ ] .t
rpk
q

=E  The new question for us is what is ( )2 1 ?t k k − E  We can use a generating 

function argument, but let’s first write  
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Let’s use a generating approach. We know that 
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∑  We have to simply 

convert this generating function to the generating function involving ( )2 1 .k k −  Begin by taking 
a derivative with respect to q of each side. 
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An addition derivative reveals  
 

( ) ( )
( )

( )( )( )
( )

2 2
2

0

3

1 1 1
1

1 1

1 2
.

1

k
r

k

r

k r r q r r qdk k q
r dq q

r r q r

q

∞
−

+
=

+

 + − − + + 
− =     − −   
+ +

=
−

∑
  

 
Multiply by 2q  to find 
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Generating moments 
We can identify the probability generating function vs  E  at once for the negative binomial 
measure; 
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 The last statement in the 

argument above ( )
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∑ is based on a generating function argument in 

which derivatives are taken.  So, for negative binomial measure, ( )
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geometric measure  ( ) ,
1X
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=
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G demonstrating  that  for these two distributions 

( )( ) ( ) .r
V Xs s=G G  

 We have seen this type of relationship before, and recall that, if one generating function 
is the product of another, then the random variable for the first is the sum of the random 
variables composed from the summands. Thus, the negative binomial random variable is the sum 
of  r i.i.d. geometric random variables each of which has the same probability of success .p    

We can use this generating function approach to consider another more complicated 
situation in clinical trial recruitment. Consider another screening problem from clinical trials. 
Two centers are recruiting subjects for a clinical trial. Let the number of subjects screened from 
the first clinical trial be denoted as 1X and from the second clinic as 2X . If each of 1X and 2X
follow negative binomial measure, and are independent of each other, under what circumstances 
can we manage the distribution of the total number of subjects screened 1 2 ?W X X= +   

If we assume that the probability of  a screened patient being randomized p is the same 
for both 1X and 2X then we can use a simple generating function approach to compute the 

solution. Since we know ( ) ( )
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which is just the probability generating function of the negative binomial measure with 
parameters p and 2r, i.e., we write 
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 This result should come as no surprise since we were able to build up the negative 

binomial measure from the sum of geometric random variables. 
If we were to now alter the parameters of the distributions for centers 1 and 2, we can still 

compute the distribution of  W with ease. For example, if each of 1X and 2X continue to have 
their same probability of success p but different number of randomized subjects 1r  and 2 ,r then 

we can follow the previous development to write ( ) ( ) ( )
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Matters become more complicated when we consider different probabilities of success 1p and 

2.p In this case ( ) ( ) ( )
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 and we do not see the easy and 

natural simplification to which we have become accustomed.  
However, the inversion of this product is straightforward and we write for 1 2 1r r= =  
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Pulling the neg binomial distribution “out of a hat” 
As an aside, we can commonly identify an inverted generation function as related to the negative 

binomial distribution. Lets start with a generating function, ( ) .t
as

b cs
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=  We will use this when 

modeling the contagion processes.  
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Other sections of interest 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
Continuous Probability Measure 
Moment and Probability Generating Functions 
Variable Transformations 
Uniform and Beta Measure 
Normal Measure 
Compounding 
F and T Measure 
Ordering Random Variables 
Asymptotics 
Tail Event Measure 
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Moments of Negative Binomial Measure  
 
 

Prerequisites 
Negative binomial measure  
Generating functions 
 
Generating function approach  
A hint of the power of the generating function approach is revealed in the identification of the 
moments of the generating function. We wish to find the mean and variance of the negative 
binomial measure, written as 
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and multiply each side by s, observing 
 

                                                 
* The s term outside the braces simply signifies that the term included in the braces is the coefficient of sk. Its 
convenience will be conveyed shortly. 
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To compute the variance, we need 2 .V  E  We can follow the same process to compute this 
quantity. 
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From our work to compute the first moment, we remind ourselves that 
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We now multiply each side by s to find 
 

( )

2 2
2

2

1
( )

11
k

r

k rr s rss k s
rs +

+ −  +
=   −−   

G 
 

 
And we compute 
 

( )

2
I[0, ]

2 2

2 2 2 2
2

2 2
0

1
1

1

1 .1 1

r k
k

r k r
r

k

k r
k p q

r
V v d

k r r q rq r q rqp k q pr pq

∈ ∞
Ω

∞

+
=

        

 
  
 

+ −
−

= =

+ − + += = =
− −

∫∫

∑

E P
 

 
Thus, 



Generating function approach 261 
 

 
 

 

[ ] [ ]2 2

2 2 2 2

2 2

2 .

V V V

r q rq r q
p p

rq
p

 = − 
+

= −

=

Var E E

  

 
 
Without generating functions 
To compute the  [ ],VE  we begin by writing 
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as the probability that there are k failures before the r+1st success. 

The sum of this mass function over the non-negative reals is 1, giving us our result that 

[ ] .rqV
p

=E   

 To compute the ,V  Var  we return to the computation of the factorial moment, 

( )1 .V V −  E  Write 

( ) ( ) ( )

( )

I[0, ]

0

1
1 1 1 .

1

1
1 .

1

1r k
k

r k

k

k r
V V v v d k k p q

r

k r
k k p q

r

∈ ∞
Ω

∞

=

+ − 
− = − = −     − 

+ − 
= −  − 

∫ ∫

∑

E P

 

And we proceed as before 
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When the random variable is not V, the number of failures before the rth success but Y, the trial 

on which the rth success occurs, then ,Y V r= + therefore [ ] ,rq rY r
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Basics of the Poisson Process 
 

Another type of natural experiment on which we can base the construction of probabilities is that 
of independent arrivals. This is an important departure for us because, prior to this, our work in 
random variables focused on the 0-1 “success-failure” model of Bernoulli trials.   
 
Prerequisites 
Why Probability 
The Random Event 
Elementary Set Theory 
Properties of Probability 
Conditional Probability 
Basics of Bernoulli Trials.  
Basics of the Binomial Distribution 
 
Events or Arrivals 
Here we retain interest in our concept of independence. However, we disconnect from the notion 
of an event being either a success or a failure. We are interested now in the concept of an 
“arrival”. An example would be the event that there are exactly seven subjects who arrive to a 
suburban clinic in an hour.   
 If you have not seen the probability function for the Poisson process, it can appear to be 
strange and somewhat “out of the blue”.  For the Poisson process, the probability that there are k  
“arrivals”  in the time interval t is  
 

( ) ( ) .
!

k
t

k

t
t e

k
λλ −=P  

 
We can compute this for all integer values of ,0k ≥ which is clearly an infinite number of events. 
Yet, the sum of all of these probabilities is one. Summing an infinite number of values to obtain 
a finite value can seem a contradiction. It is the property of some sums, that, when summed to 
infinity, their sum is not infinity but actually a finite value.  

Developed by Siméon Poisson, the Poisson distribution has a wide range of uses and 
applications. One of the first demonstrations of its ubiquity was the study of the probability 
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distribution of horse kicks in the 19th century Russian army.* It is also very helpful in the 
consideration of sample spaces composed of rates. More contemporary examples follow.  
 
Example: Arrivals to a clinic 
An emergency center opens for the day. On average, patients arrive at the rate of six per hour. 
What is the probability that there are seven arrivals in the first hour? 

We compute  ( ) ( )7
7

7

6
1 0.138.

7!
e−= =P   

A useful feature of the Poisson distribution is that it scales to different time periods based 
on .λ  If we need to compute the probability for an interval that is different than that from which 
λ  represents, we can readily compute the probability. For example if we change the arrival time 
from one to five hours, and ask what is the probability that 20 subjects arrive in five hours, we 

compute ( ) ( ) ( )( )20

(6)(5)
20

6 (5)
5 0.013.

! 20!

k
tt

e e
k

λλ − −= = =P                        █ 

 
 
Moments of the Poisson process  
The mean of the Poisson process can be computed directly as [ ] .X λ=E  It can also be 

demonstrated that its variance [ ] .X λ=Var  Thus, we have the unusual finding that 

[ ] [ ] .X X λ= =E Var   
 
 
Hypergeometric Measure 
Limits and Continuity 
Probability as a Continuous Function 
Basics of Normal Measure 
 
 
 

 
  

                                                 
* This is an amusing concept to us, but at the time it was a serious issue. Horses were a necessary military tool and 
resource in the 19th century, and horse kicks are violent attacks, commonly fracturing legs, arms and ribs. Add to this 
the poor standard of care for treatment of these injuries, which commonly led to amputation or death, and one can 
appreciate why understanding the expected number of these injuries would be of interest.  
 However, this was not the reason for the application of the probability tool to these accidents. The Czar was 
actually concerned that the Almighty may not sanction his plan for military campaigns, signally His displeasure by 
increasing the number of horse kicks. Poisson was asked whether he could discern a change in the horse kick 
distribution, and therefore God’s will.  
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General Poisson Measure 

 
Thus far our consideration of different probability distributions has been based on the Bernoulli, 
itself the results of independent sequences of successes and failures.  

 However, we will find another type of “natural experiment” generates an entirely new 
and large collection of probabilities that are described with the sobriquet “the Poisson Process.” 
 
Prerequisites 
The Random Event 
Elementary Set Theory 
Factorials Permutations, and Combinations 
The Concept of the Limit 
Convergent Series 
An Introduction to the Concept of Measure 
Set Functions in Measure Theory 
Simple Functions in Public Health 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Basic Properties of the Lebesgue-Stieltjes Integral 
Properties of Probability 
Conditional Probability 
Advanced Binomial Distribution 
 
The basic experiment 
The basis of the Poisson process is the occurrence of one of a sequence of events that occur at 
different frequencies but whose frequency or rate of occurrence can be averaged. The arrival of 
these events are independent of each other.  
 Classic examples are the arrival of patients to an urgent care clinic, the arrival of phone 
calls to a police station, the aggregation of red blood corpuscles in a hemocytometer, or the 
occurrence of misprints on a book page.  

In each case, the events occur independently of each other, and can be classified as 
having arrived at a given average rate. However, the rate need not be time. For example, there 
can be three arrivals to an urgent care clinic per hour, or 0.07 misprints per page.  

What we are interested in is computing the probability of k arrivals in a given period of 
time, for example, what is the probability that there will be seven patients arriving to a suburban 
clinic in an hour?   
 For the Poisson process, this measure is  
 

( ) ( )
0,

.
!

1
k

t
k k I

t
t e

k
λλ

∞

−
 ∈ 

=P  
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Note, that like geometric measure, each of the nonnegative  integers is a possible value of k, so 
that we are relying on the convergence of an infinite sum for this function to have one of the 
principal features of a probability function i.e., that it integrate to one. In this case, we are relying 
on the convergent properties of the exponential function, so we may write 

 ( ) ( ) ( )
0,

0 0
1 1.

! ! !

k k k
t t t t t

k I
k k

t t t
d e e e e e

k k k
λ λ λ λ λλ λ λ

∞

∞ ∞
− − − −

 ∈  = =Ω Ω

= = = = =∑ ∑∫ ∫P  

 
As we discussed in the binomial distribution’s development the integral sign simply announces 
our attempt to take a measure over the integrals limits. The integrand is the measuring tool, 
telling us how to compute the measure.   

Developed by Siméon Poisson, the Poisson distribution has a wide range of uses and 
applications. It has made substantial contributions to computing the likelihood of events 
involving disease rates. 
 
Example: Arrivals to a clinic 
A clinic opens on campus to begin influenza immunizations. Assume subjects arrive at the rate 
of two per hour. Find the probability that  four subjects arrive in the first hour.  

We compute  ( ) ( )4
2

4

2
1 0.092.

4!
e−= =P  

A useful feature of Poisson measure is that it scales ,λ  so that it we need to compute the 
probability for an interval that is different than that from which the value of λ   represents, we 
can readily compute the probability.  For example if we change the arrival time from one to six 
hours, and ask what is the probability that five subjects arrive in six hours, we compute  

 

( ) ( ) ( )5
(2)(6)

5

2(6)
6 0.012.

! 5!

k
tt

e e
k

λλ − −= = =P
       

█ 
 
Example: Spect emissions 
Single-photon emission computed tomography (SPECT) imaging with adenosine infusion over 
four minutes is commonly carried out in order to identify areas of poor heart function during 
exercise. This procedure requires the use of radioactive particles which are emitted and degrade 
over time. Assume five particles are emitted each second on average. What is the probability that 
in six seconds,  thirty or more particles are emitted.  
 Here we assume particles are emitted independently of one another. Then for this 
example, 5,λ = and we compute 

[ ] ( ) (5*6)

30

5* 6
30 0.524.

!

k

k

K e
k

∞
−

=

≥ = =∑P  

 
█ 

 
Example: Cell counts 
Before the advent of technology that automatically counted the number of red cells, a health care 
worker would  place a drop of blood on a slide with grids and then count the number of cells in 
each grid. Assume that blood does not clump and that there are on average three erythrocytes per 
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grid, then what is the probability that a grid will have no cells? We compute 

30 0.05.k e−  = = =P  
This work has modern implications as well. A germane issue in the burgeoning field of 

cell therapy is whether cells arrive into the tissue where they are required. For example, suppose 
cells arrive with an average rate of 7 cells per millisecond.  What is the likelihood that in four 
milliseconds, 30 cells will have arrived. We compute  
 

[ ]
30

282830 0.068.
30!

k e−= = =P  

 
█ 

Example: Misprints 
An senior editor is reviewing the draft of a new book in a proteomics series that will ultimately 
contain ten such books. This book is 495 pages long, and he has been told that a review by the 
author has identified 75 misprints. How likely is it that ten consecutive pages will have at least 
one misprint? 
 Assuming the misprints occur independently of each other, it is reasonable to assume that 
they "arrive" at the rate of 75/495 or 0.15 misprints per page, or 1.5 misprints per ten pages. The 
probability that there is at least one misprint in ten pages is 
 

[ ] [ ] 1.51 1 0 1 0.77.K K e−≥ = − = = − =P P  
 
Note that because they “arrive” independently, the distribution of the pages, (consecutive or not) 
has no impact on the solution. 

█ 
Example: Vacancies of the US Supreme Court. 
Emanuel Parzen in his textbook* presented data on vacancies that occurred in the US Supreme 
Court from 1837 to 1932. He demonstrated that vacancies occurred at a rate of 0.50λ =   
vacancies per year. Accepting this, what is the probability that a US president will have to fill at 
least two vacancies in a four year term? 

We compute this simply as  ( ) ( )
2

4
!

k
t

k

t
e

k
λλ∞

−

=

= ∑P where (0.50)(4) 2.tλ = = Thus 

( ) ( ) 2

2

2
4 0.59.

!

k

k

e
k

∞
−

=

= =∑P  The probability that the president will make at least two appointments in 

eight years is ( ) ( ) 4

2

4
2 0.91.
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k
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∞
−

=

= =∑P  

█ 
 
It is difficult to overstate the omnipresence of the Poisson process. 
 
Moments and generating function  
The mean of the Poisson process can be computed directly as  
 

                                                 
* Parzen E. (1960). Modern Probability and its Applications. Wiley, p 256. 
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To find the variance, we first compute the factorial moment ( )1 .X X  −E  
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So we compute 
[ ] [ ] ( ) [ ] [ ]2 2 2

2 2

1

.

X X X X X X X

λ λ λ λ

 = − =  −  + − =  
= + − =

Var E E E E E
 

 
Thus, we have the unusual finding that [ ] [ ] .X X λ= =Var E  We can also identify the probability 
generating function easily, 
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Manipulation of the generating function leads to a particularly succinct identification of the mean 
and variances.  
 
Motivation for the Poisson process 
Let’s now return to the form of the probability function for the Poisson process in order to 
motivate it.  The Poisson distribution function can actually be derived from first principles. We 
will give just a brief summary of the thought process here, and then refer to the immigration 
process for a series of detailed derivations.  

The process begins with an examination of a system e.g., arrivals of individuals to a 
community. Since multiple arrivals can occur “on top of each other”, we focus on a tiny sliver of 
time, ( ),t t t+ ∆ a slice so thin that one and only one arrival can occur, if it occurs at all. For this 

small time interval ,t∆  ( ), ,t t t+ ∆  we write a difference equation for the process in the small 

time period for ( )k t t+ ∆P  as ( ) ( ) ( ) ( )1 1k k kt t t t t tλ λ−+ ∆ = ∆ + − ∆P P P  for all non-negative 
integers k. This is converted to a system of simple differential equations that is in turn converted 
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to one equation using the generating function approach. Inversion produces the Poisson 
distribution. This entire process can be attributed to Chapman and Kolmogorov. 
 The characterization of the mean value λ   can sometimes suggest that the process is well 
organized and more predictable then is actually the case. The fact that, for example, 4λ =  
patients arriving at an emergency department should not lull us into believing that each hour, 
plan on four patients arriving.  

In fact, the Poisson process is quite chaotic.  It is the Poisson process that leads to 
observations such as patients seem to arrive at a clinic just when it is closing time, or that an 
emergency room can move from quiescence to pandemonium in the space of few minutes. 
Descriptions of average event rates can disguise the true haphazardness of the Poisson process 
 
Sums of independent Poisson processes 
Poisson processes have properties that make it one of the easier distributions to work with. In 
addition to the finding that its mean is also its variance which is simply its parameter ,λ  we will 
now see that sum of Poisson processes is also Poisson.  
 One quick way to see this is just to carry out the operation on the probability generating 
functions. Assume that X is Poisson( 1λ ) and Y, independent of  X, follows a Poisson ( 2λ ) 
process. Then define Z= X + Y, and write 
 

( ) ( )1 21 2 ( 1)( 1) ( 1)( ) .X Y ss sX Y
Z s s s s e e e λ λλ λ+ + −− −     = = = =    G E E E    

which we recognize as the Poisson process ( )1 2 .λ λ+   Note the assumption of independence is 
key since it permitted us to break the joint expectation of a function of X and Y into the product 
of the expectations.  
 Perhaps another more revealing proof of this assertion is to examine the sum directly. We 
can use the fact that if X + Y = n, and X = k, then Y must be n − k. This self-evident observation 
permits the following; 
 

[ ] [ ] [ ]
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Again, independence permits us to write the joint probability of X and Y into the product of 
probabilities, one involving X, the other Y.  
 The assertion is true for any value of k lying between 0 and n, so we now write. 
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The appearance of the combinatoric in the denominator suggests a familiar pattern. Proceeding 
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However, 1 2

0 1 2 1 2
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k
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λ λ
λ λ λ λ

−
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     + +    

∑ is just the sum over all possible values of k of a binomial 

random variable with probability of "success" 1

1 2

.λ
λ λ+

 This sum is one, returning our result for 

the sum of two independent Poisson processes.  
 It may seem surprising for the Poisson process to emerge "out of the blue" like this. 
However we will see that these two different probability distributions are similar enough for 
them to cross each other's path when we are not looking for it.  
 
Example: Intensive care arrivals.  
 A small hospital in an inner city community has one intensive care unit, that accepts patients 
from both the medical service and the surgical service. Assume that patients are admitted to the 
intensive care unit from the medical service at the rate of two per day; post-surgical patients 
arrive at the rate of 3.5 patients per day. What is the probability that 7 patients have arrived in a 
given day? 
 Note we are not interested in the distribution of the 7 patients, i.e., how many are medical 
and how many are surgical, only in the total number of patients. We simply sum the averages 
and compute; 

( ) ( )7
5.55.5

7 0.123.
7!

e−= =P  

 
However, suppose we were interested in the probability that, given there are seven patients in 
intensive care, 2 of them were from medical service. In general, we would like 

| .X k X Y n 
 = + =P  We proceed as follows: 
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The numerator is the key. We write this as  
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Independence is again critical. You might have a clue what is coming. 
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and we see the solution is binomial measure. We compute 

[ ]
2 57 2 3.52 | 7

2 5.5 5.5
(21)(0.132)(0.104) 0.288.

X X Y     = + = =     
    

= =

P
  

 
Expectations and “Layered Cake”  
And interesting and useful relationship between the expectation and cumulative distribution 
function of a nonnegative valued random variable is the relationship 

[ ] [ ]
0

1 ( )XX F x dx
∞

= −∫E  

which for discrete measure is simply 
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The proof is more of a demonstration and is straightforward. Simply write 
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We simply now expand each of these lines out to write 
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Note that each succeeding summation is one term shorter than the preceding one, like pieces of 
cake that are progressively shorter as they get closer and closer to the top (although here, the 
cake is of infinite height!). 
 
And now we simply count like terms to write 
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There is also a continuous analogue for the layered cake equality.  
 
Queuing Theory 
The applicability of the Poisson processes is just an introduction to the rich world of stochastic 
processes.  

A stochastic process is a process that is probabilistic in time. We have motivated and seen 
how patients arriving to a clinic follows a Poisson process. This required us to model the arrival 
of patients entering the system.  

But suppose that we also watched these patients’ departure times as well. That process is 
also stochastic, and a Poisson process could be built to manage their departure. Furthermore, the 
simultaneous management of both arrivals and departures (emigration) would allow one to 
compute the distribution of the number of patients actually in the clinic at a given time.  

The management of these complex operations is the introduction to probabilistic systems 
management  Another use of this system is governing the queuing process. In the 1970’s many 
service delivery systems (e.g., banks, airline ticketing) required waiting on lines (or in the 
parlance of the field “queuing up”) changed from having each server have a line of customers to 
a system where there was a single line and multiple servers. This change was made because the 
multi-server, single queue system had a shorter average wait time then the multi-line alternative. 
This change was motivated by and a consequence of the findings of the Poisson process  applied 
to queuing theory.  
 Other applications include epidemiology, in which disease can enter  and then spread 
through a community.  
  
 
Mixing the Poisson with other measures  
In another demonstration of the utility of the Poisson distribution, consider the following random 
variable  W X Y= +  where X follows a Poisson distribution with mean λ   and Y follows an 
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independent geometric distribution with parameter p, i.e., [ ] .jY j pq= =P  Note that both 
random variables have positive probability on the nonnegative integers. To find the distribution 
of W we write 
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which continuing is 
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Simplifying reveals 
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Which is just the cumulative probability function of a Poisson ( q

λ ) scaled by .k qpq e−  

 
Example: Health care worker census: 
Probability problems are commonly best approach by reducing the problem to its simplest 
elements. When this simplest solution is obtained, then, using the new found intuition gained 
from providing this initial solution, we can add layer upon layer of required complexity until the 
final solution is achieved. 

Consider a county public health care team required to assess the number of health care 
workers who report to their clinic on a  given day The clinics are of two types. The first reports 
the actual number of health care workers that it has working that day. The second reports only 
whether it is fully staffed or not.  The management team needs to know the probability 
distribution of the number of health care workers reporting. Full staffed means there are four 
health care workers who have reported to work. 

Let’s approach this based on a set of simple assumptions. Assume there is one clinic of 
each of these two types. We let X be the number of health care workers at the first clinic. This 
follows a Poisson distribution with parameter .λ  The random variable X  can theoretically take 

on values 0 to infinity, and [ ]
!

1
k

k NX k e
k

λλ −
⊂= =P  where N is a natural number.  

This would be our solution if we only had to assess the first clinic. However, the second 
clinic adds 4 staff or no staff. The likelihood that these four staff workers are added or not 
follows a modified Bernoulli distribution, [ ] 41kY k p ⊂= =P . The possible values of the random 
variable Y are only 0 and 4.* 

What can we now say about the event ?X Y k+ =  It is the event where 4Y =  and 
4,X k= −  or 0Y =  and .X k=  This is the key observation. In one circumstance we can use the 

                                                 
* This assumes a worst case scenario where if no report is made, then no health care workers come to work. 
Solutions are available for the other assumpions of 1, 2, or 3 appearing. 
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Poisson distribution by itself. However, for the event  that the second clinic does have four health 
care workers appear, we only need 4k −  workers from the Poisson random variable. 

Since these events are mutually exclusive and exhaust the space, we can write

[ ] ( ) ( )
4

4 1 .
4 ! !

1 1
k k

k k NX Y k p e p e
k k

λ λλ λ−
− −

> ⊂+ = = + −
−

P     

Now assume that there are three such clinics, the first reporting as a Poisson random 
variable, the second two reporting as a modified Bernoulli random variable with the same 
probability p of being fully staffed with 4 health care workers.  

Before we begin our cerebration, consider that the sum of Bernoulli random variables 
with the same probability of success is a binomial random variable. If there were standard 

Bernoulli random variables we would write [ ] ( )1 2 0,1,2

2
1 .1n kk

kY Y k p p
k

−
⊂

 
+ = = − 

 
P   

However,  since the values of modified Bernoulli random variables are 0,1, or 2, the 
values of the now modified binomial random variables are 0, 4, and 8. We write the modified 
binomial random variable as  

[ ] ( ) 14 4
1 2 0,4,8

2
1 .

4
1

k k

kY Y k p pk
−

⊂

 
 + = = −
 
 

P since the function 
4
k  maps 0, 4, 8 to 0, 1, 2.  

Thus the probability that [ ]1 2X Y Y m+ + =P  is ( ) ( )
42

2

0

2
1

4 !

m k
kk

k
p p e

k m k
λλ −

− −

=

 
−  − 

∑   

Generalizing to n such clinics we have  
 

     ( ) ( )
4

1 0
1 .

4 !

m kn n
n kk

j
j k

n
X Y m p p e

k m k
λλ −

− −

= =

   
+ = = −    −  
∑ ∑P  

 
Finally, if we have L clinics that report the actual number of health care workers who 

appear, each clinic following its own Poisson process with parameter , 1, 2,3... ,i i Lλ =  Since, the 
sum of independent Poisson random variables follows Poisson measure, and its parameters is the 
sum of the individual parameters, then the probability distribution of the number of health care 
workers in the system on a given day is  

 

( ) ( )
1

1 1

4

1

0
1 .

4 !

L

i
i

L n

i j
i j

m kL

in
n k ik

k

X Y m

n
p p e

k m k

λ
λ

=

= =

−

−
− =

=

 
+ = 

 

 
  ∑   = −  − 

∑ ∑

∑
∑

P

 
 

The solution is available through Lebesgue integration theory as well. Recall that d∫ P  
requires us to move through the domain of k, accumulating measure based on the circumstances 
of the measure (which is neither binomial nor Poisson). For 0,k =  we have no events coming 
from the dichotomous reporting clinics and no events coming from the Poisson reporting clinics. 
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This occurs with probability [ ] ( ) 10 1 .
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i
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np e
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=

−∑
= −P  We have one event with probability 

[ ] ( ) 1

1
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∑P  Analogously 
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[ ]4P  presents a complication. One of the dichotomously reporting clinics reports that they are 

fully staffed, or none of them report a full staff and all health care workers are reported from the 
Poisson reporting clinics. We write this as 
 

[ ] ( ) ( )1 1

4

1 14 1 1 .
1 4!

L L

i i
i i

L

i
n n in

p p e p e
λ λ

λ
= =

− −
− =

  
  ∑ ∑    = − + −      
  

∑
P  

And we see that we can accumulate probability as we move through the values of .k   It can 
sometimes be easier to take this approach rather than our first heuristic one, and in the process 
develop a new measure.  

  █ 
 
Other uses of Poisson measure 
The Poisson can sometimes be applied to processes that we know ultimately are not random at 
all. One example, is the arrival and departure of planes in the airspace around an airport. At first 
blush this seems like a natural application of the Poisson process, because planes appear to 
appear randomly in the airspace, with others departing randomly. We envision the construction 
of an average number of arrivals and departures in a unit time and compute probabilities in 
accordance with the Poisson process. 
  However, isn’t airspace tightly controlled? The terminal radar approach control 
(TRACON) facilities are the controllers who tightly monitored what occurs in the airspace 
surrounding major airports. Airplanes file flight plans, and most commonly arrive in accordance 
with those flight plans. Similarly, planes take off according to tight schedules. In fact, there is 
very little random about planes entering and leaving airspace. Who among us would fly if it was 
random? 
 What has happened here is the combination of events each of which is strictly controlled. 
Every small aspect of the management of airplane movement (either on the ground or in the air) 
is tightly controlled and nonrandom, yet the sum or gestalt of all of these features produces a 
process which has the appearance of randomness.  
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Similarly for the appearance of hurricanes and typhoons. We understand now that these 
storms are complex interactions between water, and atmosphere, where the right combination of 
heat, wind, water, and barometric pressure can produce killer typhoons and super hurricanes. 
There is nothing random about the meteorology that produces these storms, the sum of 
innumerable effects.  Yet the Poisson (and negative binomial) processes do quite well in 
predicting these storms. The complex ensemble of deterministic events commonly appears to be 
random. 

In addition, the Poisson distribution can be used to approximate both the binomial 
distribution and the negative binomial measure. In turn, the Poisson distribution can be 
approximated by normal measure. These and other useful approximations will be covered in the 
asymptotics chapter. 

 
Alternative Derivation of Poisson Moments  
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Alternative Derivation of Poisson 
Moments  

 
 

A quicker way to identify the moments of the Poisson distribution requires the use of 
derivative and uniform convergence  

We require [ ]
0 0

.
! !
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k k
X k e e k

k k
λ λλ λ∞ ∞
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= =

= =∑ ∑E This is a power function for .λ  We know 
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k
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=∑   The uniform convergence of the exponential series of ( )s tG permits us to take a 

derivative with respect to λ   of each side of this equation and equate them. Thus. 
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and multiplying both sizes by λ  reveals 
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=∑  Returning to our original statement we 

have   
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To find the variance  we can avoid the factorial argument used in the derivation referred 

to in the Poisson process by writing 2 2 2

0 0
.
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And the variance is simply 2 2 .λ λ λ λ+ − =  
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 Poisson Arrival Departure Models  
 
The Poisson process is commonly referred to as an immigration process. We will now 
demonstrate this from first principles using a line of reasoning that will be useful for expanding 
this derivation to processes of epidemiologic significance.  
 
Prerequisites 
 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
The Mean Value Theorem 
Polar Coordinates 
Exponential Limit 
The Exponential and Gamma Functions 
Properties of Probability 
General Poisson Process 
Moment and Probability Generating Functions 
 
 
Process of immigration  
Consider an emergency department (ED) that accepts the random arrival of patients. Let’s 
assume that at time t = 0, there are no patients. As time moves ahead, patients arrive at the ED 
independently of each other.  We will assume for this example that patients do not leave the ED 
(we will relax this assumption in a later discussion). Then as time goes on, the number k of 
patients in the ED can either stay the same, or increase. We ultimately want to find the 
probability that there are k systems in the emergency department at time t, a probability that we 
will denote at ( ).k tP   
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 Let us assume that the average arrival rate of patients over time is λt. It may be for 
example six patients per hour. Then how many patients are in the system at time ?t t+ ∆  
 In order to examine this, let’s conduct a “thought experiment”. Suppose we can actually 
slow the passage of  time down, to the point where minutes seems to us like days. This permits 
us to observe the arrival of patients in a very small fragment of time, .t∆   In this experiment, we 
can squeeze ,t∆  allowing it to be so small that we can avoid the circumstance where more than 
one patient arrives in the time interval .t t+ ∆   

 In this small time interval, there are only two possibilities; either a patient arrives, or no 
patient arrives. The probability that a patient arrives in this small time interval is tλ∆   The 
probability that a patient does not arrive is 1 .tλ− ∆   
 We can use this to compute the probability of several important events in this time 
interval .t∆   For example, what is the probability that there are no patients in the system at time 
t t+ ∆   i.e., ( )0 ?t t+ ∆P  Since we assume patients can only arrive, we cannot decrease the 
number of patients to zero in the t∆   interval. The only way that we can have no patients in the 
ED at time t t+ ∆   is to have no patients at time t (an event that occurs with probability ( )0 tP   
and there are no arrivals in time t t+ ∆   Thus, for this small time interval we can write  
 

( ) ( )( )0 0 1 .t t t t+ ∆ = − λ∆P P  
  
 Now, how can we compute the probability that there is one patient in the emergency 
department at time t t+ ∆    i.e., ( )1 ?t t+ ∆P  ln this case, there are two paths to get to one patient 
in the system at time t. We can have no patients in the system at time t, plus an arrival during the 

t∆ time interval. Alternatively, we can have one patient in the system at time t, and then are no 
arrivals in the t∆   interval. We are now ready to write an equation for ( )1 t t+ ∆P  
 

( ) ( ) ( )( )1 0 1 1 .t t t t t t+ ∆ = λ∆ + − λ∆P P P  
 
Similarly, for ( )2 t t+ ∆P we can write  
 

( ) ( ) ( )( )2 1 2 1 .t t t t t t+ ∆ = λ∆ + − λ∆P P P  
 
In general, for k > 0 
 

( ) ( ) ( )( )1 1 .k k kt t t t t t−+ ∆ = λ∆ + − λ∆P P P     
 
Thus, the collection of equations of interest is 
 

         
( ) ( )( )
( ) ( ) ( )( )

0 0

1

1 0

1 0.k k k

t t t t k

t t t t t t k−

+ ∆ = − λ∆ =

+ ∆ = λ∆ + − λ∆ >

P P

P P P
           

 
 

This collection of equations describe in a recursive fashion, the probabilities for all possible 
values of k that are of interest. They represent the set of relationships commonly known as the 
Chapman-Kolmogorov equations named for Sydney Chapman and Andrey Kolmogorov.  
 Beginning with ( ) ( )( )0 0 1t t t t+ ∆ = − λ∆P P , we can write 
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+ ∆ = − λ∆
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= −λ

∆

P P

P P P

P - P
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We can now take the limit as 0t∆ →   to find 
 

 
( ) ( ) ( ) ( )0 0 0

00
lim

t

t t t d t
t

t dt∆ →

+ ∆
= − λ

∆
P - P P

P    

 
This is a first order differential equation for ( )0 .tP   
 We know return to the equation for ( )k tP   and follow the same approach 
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+ ∆ − = λ∆ − λ∆

+ ∆ −
= λ − λ

∆
+ ∆ −

= λ − λ
∆

P P P

P P P P

P P
P P

P P P
= P P

 

 
We now have two differential equations, one for k = 0, the other for k > 0. 
 

( ) ( )

( ) ( ) ( )

0
0

1

0

0k
k k

d t
t k

dt
d t

t t k
dt −

− λ =

λ − λ >

P
P

P
= P P

 

 
The generating function argument 
Note that this system consists of an infinite number of equations. Our approach will be to 
collapse this infinite set of equations into a single equation involving a probability generating 
function, solve for the generating function, and then finally invert it.  

Multiplying each side of both equation sets by the appropriate value of ,ks   
 

( ) ( )

( ) ( ) ( )

0 00
0

1
k k kk

k k

d t
s s t

dt
d t

s s t s t
dt −

− λ

λ − λ

P
P

P
= P P

 

 
and we can now add these equations to see 
 

( ) ( ) ( )1
0 1 0

kk k k
k k

k k k

d t
s s t s t

dt

∞ ∞ ∞

−
= = =

= λ − λ∑ ∑ ∑
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P P  for 0.k ≥   
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Notice the starting value of the indices differ from summand to summand.  

We have collapsed an infinite set of equations into one equation, setting up a generating 

function argument.  Define ( )
0

( ) .k
s k

k
t s t

∞

=

= ∑G P  The goal is to solve for ( )s tG , and then invert it, in 

order to identify ( ).k tP     

We take these terms one at a time.  ( )
0

kk

k

d t
s

dt

∞

=
∑

P  can be reduced as follows; 

 

( ) ( ) ( )
0

0 0

( ) .

k
k k

k kk k s

k k

d s td t d s t d ts
dt dt dt dt

∞

∞ ∞
=
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= = =
∑
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PP P G  

 
Note how we switched the derivative and summation sign in the second equality sign. This is 
justified only if the infinite sum satisfies the property of uniform convergence, a property that we 
have demonstrated for the probability generating function. Managing the remaining terms are 
well within our skills. We write 
 

  ( ) ( ) ( )1
1 1

1 1 0
( ),k k k

k k k s
k k k

s t s s t s s t s tλ λ λ λ
∞ ∞ ∞

−
− −

= = =

= = =∑ ∑ ∑P P P G   

Our equation is now  
 

( )( ) ( ) ( ) ( ) 1 .s
s s s

d t s t t t s
dt

λ λ λ= − = −
G G G G  

 
which is a very simple first order differential equation that we can readily solve. 
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Where C is the constant of integration. We use the state of the system at the beginning to 
determine its value. At t = 0, the only nonzero probability is ( )0 1.t =P   Thus ( )0

0(0) 0 1.s s= =G P  
Thus, C = 0 and we can conclude 

( ) ( )ln ( ) 1s t t sλ= −G or ( )1( ) .t s
s t eλ −=G  The inversion from our study of the Poisson process 

generating function reveals ( ) ( ) .
!

k
t

k

t
t e

k
λλ −=P  

 How does the solution change if we have not zero but a number of patients, say a, in the 
system at time t = 0. The guiding Chapman-Kolmogorov equations don’t change (although the 
interval of interest for k does. However, the boundary condition changes for which we find the 
constant of integration C. Thus, at t = 0, ( ) .0 a

s s=G  since ( )0 1.a =P   Thus as=C   and we can 

conclude ( ) ( )ln ( ) 1 a
s t t s sλ= − +G or ( )1( ) .t sa

s t s eλ −=G  The inversion requires us to draw only 
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coefficients of k as −  from the ( )1t seλ − component ( )s tG . Thus ( ) ( )
( )

.
!

k a
t

k
t

t e
k a

λλ −
−=

−
P  In order to have k 

patients in the department at time t, we only need to experience k a−   arrivals. 
 
Emigration model 
Of course patients when they complete their treatment, leave the emergency department. Let us 
assume no new arrivals are accepted after midnight. What is the probability that there are k 
patients in the emergency room at time t after midnight, given the rate at which they leave or 
emigrate is μ.  
 Some simple observations speed the solution. If there are a patients in the emergency 
department at midnight, then no more than a patients can emigrate; thus 0 .k a≤ ≤   Also, if you 
divide the system into emergency department and elsewhere, then departures from the 
emergency department at rate μ actually represent arrivals elsewhere with an arrival rate μ. Thus, 
the probability that there are k patients in the emergency room at time t is the probability of a – k 
arrivals elsewhere or  
 

( )
( ) 0 .( )
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1a k
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k k a
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t e

a k
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−
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−
P  

  
The generating function approach will support this conclusion, although it is more complicated.  

We begin with the Chapman-Kolmogorov equations.  As before we focus on the time 
interval from t to .t t+ ∆   allowing t∆  to get smaller and smaller so that only one departure can 
take place in that interval. Then beginning with the probability that, if there are a patients in the 
system at time t, than there are a patients at the end of the t t+ ∆  is  
 

( ) ( )( )1 .a at t t tµ+ ∆ = − ∆P P  
 

Following our previous work on the immigration model, we can write 
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For 0 k a≤ <  we have 
 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1

1

lim

k k k

k k
k k

k k k
k kt

t t t t t t

t t t
t t

t
t t t d t

t t
t dt

µ µ

µ µ

µ µ

+

+

+∆ →∞

+ ∆ = ∆ + − ∆

+ ∆ −
= −

∆
+ ∆ −

= = −
∆

P P P

P P
P P

P P P
P P

 

 
Therefore 
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Multiplying the first equation by ks and the second by as  produces 
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and finally, summing these a + 1 equations produces 
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Defining ( )
0

( ) ,
a

k
s k

k
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= ∑G P we, being guided by our experience with the immigration process, 

can write  
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And the 1a +  equations collapse to  
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Let’s assume that the ED departure rate is relatively small compared to the number of individuals 
in the system so that the probability we actually get down to no individuals left, ( )0 tP  is zero. 

Thus, ( )1( ) ( ) 1s
s

d t t s
d t

µ −= −
G G  and we proceed as we did for the immigration process.  
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Examination of the boundary conditions reveals that when t = 0, k = a. Thus  (0) ,a

s s=G and 
ln .as=C  Therefore 
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Emigration process inversion 
Let’s focus on the generating function ( )1 1* ( ) .t s

s t eµ − −
=G Suppose we have a probability function 

identical to the Poisson distribution, but defined on the negative integers, i.e., 
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−∑ ∑  The generating function for this probability function is 
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We might define the probability generating function with generating function * ( )s tG as the 

negative Poisson distribution, i.e., [ ] ( )
!

k
utt

Y k e
k

µ −= − =P  for 0 .k< < −∞    

 Now returning to ( )s tG , the probability that k subjects have left the department at time t 

means that we want coefficient of s to the power a k−  or ( )
( )

.
!

a k
utt

e
a k
µ −

−

−
* 

 
Immigration-emigration 
Finally, we will manage both processes simultaneously with arrivals to the Emergency 
Department occurring as a Poisson process with parameter λ and departures with parameter μ per 

                                                 
* If the generating function was ( )1 ,t s ae sµ − the coefficient of ks requires the coefficient of k as −  from the Poisson 

distribution. However, since the distribution is negative valued, we need the coefficient of not k as −  but .a ks −  
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unit time. Let’s also assume that there are a patients in the emergency room at time t = 0. Our 
goal is to find ( ),k tP  the probability that there are k patients in the ED at time t. 
 Before we compute this probability formally using the Chapman-Kolmogorov equations, 
we might try a heuristic approach. Let’s begin with finding ( ),a tP the probability that no change 
has occurred over time t. This event would only take place if the number of arrivals is equal to 
the number of departures. The probability that there were exactly m arrivals and m departures is 

simply ( ) ( ) .
! !

m m
t tt t

e e
m m

λ µλ µ− − We only need sum this probability for all values of m to find  
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which can also be written as  
 
 
 
This last result, while not being easy to calculate, does give some insight into the event. Here, we 
have the probability of 2m Poisson “events” with rate ,t tλ µ+  multiplied by the binomial 
probability that exactly m are arrivals and m are departures. Let’s now generalize to the case 
where k > a, i.e., there have been more arrivals than departures by time t. Then regardless of how 
many departures there were, there  had to be that many arrivals, plus an additional k – a arrivals . 
Thus we may write 
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If k < a, then departures exceed arrivals and, if there were m arrivals, there must be m  + a – k 
departures. We conclude 
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So, we have three formulas for each of three different scenarios. This presages our work with the 
Chapman Kolmogorov equations.  
 Using this approach we, as before, focus on what occurs in the time from t to  t t+ ∆   
where t∆  is so small that only one arrival, one departure, or no change in the number of patients 
can take place. This permits us to write an equation for ( )k t t+ ∆P  as  
 

( ) ( ) ( ) ( )( )1 1 1 .k k k kt t t t t t t t tλ µ λ µ− ++ ∆ = ∆ + ∆ + − ∆ − ∆P P P P  
 

We can rearrange terms to write 
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We then take limits to see 
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= ∑G P and multiply each term  in the above equation by ks  to find 
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and summing over all k, we compute 
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We recognize components of both the immigration and emigration process here, and taking from 
those two developments we find 
 

( ) ( )1( ) 1 1 .sd t s s
dt
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G  

 
Solving this first order differential equation produces 
 

( ) ( )1ln ( ) 1 1s t t s t sλ µ −= − + − +G C  
 

The boundary condition (0) ,a
s s=G  and we conclude 
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Setting aside the boundary condition for a moment, we see that the probability generating 
function for the immigration-emigration model is the product of two generating function 

producing ( ) ,
!

k
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t
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k
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µµ −=  Some examples are provided (Figure 1). 
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Birth Process 
 
Development of the study of probabilities that change over time (stochastic processes) has 
opened a wide field of applications. One of the fields of investigation has been tracking the 
spread of a contagious disease, such as SARS-COV-2where individuals bring a disease into a 
community, spreading the disease to its susceptible members.  
 
Prerequisites 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
The Mean Value Theorem 
Polar Coordinates 
Exponential Limit 
The Exponential and Gamma Functions 
Properties of Probability 
General Poisson Process 
Moment and Probability Generating Functions 
Negative binomial measure 
Binomial distribution 
 
 
Introduction to the birth process 
We begin with a community that is exposed to an infectious disease. At the beginning of the 
observation time period, there are already a subjects in the community with the disease. The 
disease spreads from individual to individual, its rate of spread governed by the parameter υ, i.e., 
the rate of new infections generated by those already infected is .tυ∆  Clearly, the greater this 
rate, the more rapidly the disease spreads through the community. 

However, another source of disease is individuals arriving into the community, by 
airplane, ship, train, bus, or car. These individuals arrive at the rate tλ ∆  in time period .t∆   
Once in the community, they spread the infection at the same rate as those with the disease who 
are already in the community.  It is our goal to identify the probability [ ]k tP  of the number of 
individuals in the community with the disease at time t. 

 For this simple model, we will assume that there are no deaths, no cures, and no people 
who leave the community (or emigrate). With our simplifying assumptions, the proportion of 
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patients with the disease will only increase,* an increase based solely on the immigration and 
birth rates.    

However, even in this relatively straightforward process, computing [ ]k tP can seem like 
a daunting task with the disease being regularly transmitted from one community member to 
another (who themselves can spread the disease deeper into the populace) in addition to new 
arrivals who are equally capable of spreading disease. To help manage this process, we will look 
at what can happen to the disease in a small sliver of time that we denote .t∆  

In our analysis, we will drive the t∆  to be so small that only one of two events can 
happen, either 1) one and only one new case of disease appears or 2) no new cases appears.  

Continuing with this scenario a new case occurs from the cases already present in the 
population.  In this small interval of time, the probability of the disease being spread to a new 
individual is .tυ∆  

With this as background, we can now address the question,  if there are k affected 
subjects in the community at time t, what is the probability that exactly one of them spreads the 
disease to a susceptible individual and hence generate a new case?  If we assume that each 
affected individual spreads the disease independently of the other, we can use the binominal 
distribution to find.  

( )( ) 1exactly1additional case 1 .
1

kk
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We may invoke the binomial theorem on the term ( ) 11 ktυ −− ∆ to write   
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However, since tυ∆  is so small, we can safely assume that higher order terms are negligible and 
can be ignored. We therefore write ( )exactly1additional case .k tυ   ∆P -

 Thus the more 
subjects with the disease, the greater the likelihood that an additional patient will contract the 
illness. This is the “birth” part of the immigration-birth process. 

The driving force for spreading the number of cases in the community is really powered 
by the number of cases already there. This “birth force” grows ever stronger as the number of 
cases in the system increases.  

Immigration, on the other hand is an influence that is not proportional to the number of 
cases outside the community. This leads us to believe that, even if λ  and υ  are close, the major 
source of the new cases will still come from within the community, since the driving force is not 
υ  but .kυ    
 With this result, we can ask, how can we progress to their being k affected individuals or 
cases in the system at time t t+ ∆  if the time interval t∆  is so small that we only permit one event 
to occur in this interval?  Since we have cases in the system at time 0, there are only two ways 
for this to happen; 1) there are k − 1 in the system at time t and a new case occurred in interval 
                                                 
* More realistic discussions are referred to at the end of this section.  
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,t t+ ∆  by an arrival, or by its spread from an infected person to an uninfected patient, or 2) there 
were already k patients in the system and no new cases occurred during this time interval. We 
formally write this as. 
 

[ ] [ ]( ) [ ]( )1 1 1 .k k kt t t k t t kv tυ−+ ∆ = − ∆ + − ∆P P P  
This holds for k a≥  where a is the number of patients in the community at time 0.t =   We can 
reformulate the previous equation as  
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It we let t∆  get smaller and smaller, taking the limit as t∆ goes to zero, we write  
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that is 
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We will use the generating function approach to collapse this infinite collection of equations into 

one equation. Let’s define ( ) .k
s k

k a
t s t

∞

=
  = ∑G P  Ultimately we want to find the value of k t  P  for 

k a≥ . Multiplying each side of the previous equation by ks  produces 
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From our work on the immigration process, we see that this produces.  
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Thus we have collapsed an infinite number of equations into one. While in general, these 
equations can be a challenge to solve, we will see that we can solve this equation without too 
much difficulty.  

This type of partial differential equation has been discussed. A useful tool for the solution 
of differential equations is that, it one is written as  

 
( , ) ( , ) ,F x y F x yP Q R
x y

∂ ∂
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Then a useful collection of equalities is  
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Our equation, written as 
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 is of this form and therefore we may write 
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We will use these equalities in combination with the state of the system at time t =0 to identify 
the generating function ( )s tG  and then invert.  Begin with  
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Now we just manipulate the constant 
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We can now write ( )1( ) ,
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G  

Thus our work reveals ( ) .
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t
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We can now invoke our boundary conditions to identify the final form of ( ).s tG  At t = 0, 
k = a, leading to  
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Simplifying, we find.  
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But this we recognize as the probability generating function for negative binomial 
measure.scaledby .as    Thus,  
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We have seen that the mean and variance of negative binomial measure are rq
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 In the case of the birth process, this translates to  
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Contagion: 
Immigration-Birth Process 

 
Development of the study of probabilities that change over time (stochastic processes) has 
opened a wide field of applications. One of the fields of investigation has been tracking the 
spread of a contagious disease, such as SARS-COV-2where individuals bring a disease into a 
community, spreading the disease to its susceptible members.  
 
Prerequisites 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
The Mean Value Theorem 
Polar Coordinates 
Exponential Limit 
The Exponential and Gamma Functions 
Properties of Probability 
General Poisson Process 
Moment and Probability Generating Functions 
Negative binomial measure 
Binomial distribution 
 
 
 
Current issues 
There is no more contemporary, incisive example than the coronavirus pandemic of 2020-21, 
caused by SARS-CoV-2. In that case, once the virus enters the community, it spreads from 
infected individual to non-infected individual over time. Mathematics and epidemiology were 
ready to apply quantitative tools to predict the spread and growth of epidemics and pandemics.   
 The COVID-19 pandemic has driven these complex models to the public’s awareness. 
Populations around the world that in 2019 knew little to nothing about epidemiology now learn 
about (or at least tolerate) discussions about infectivity coefficients and case fatality rates, 
engaging in discussions about “flattening the curve”. 

 The discussion that follows generates one of the simplest curves, that of the 
immigration-birth or contagion model. Models discussed in public are more advanced 
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generalizations of this approach, but they all have the same weakness. Despite their 
mathematical elegance, each is only as good as the data used to drive the model.  

They are quite elegant examples of the spread of contagion in the past, describing 
influenza outbreaks as well as a burst of suicides within a community [1]. In these 
circumstances, precise retrospective estimates of the necessary parameters were available, 
permitting the model to optimally project..  

The corona virus experience of 2020-21 was different because it required that models 
perform with real time, dynamic parameter estimates. The public demanded the best information 
for planning, yet the best information required by the models was commonly not available. Like 
driving a car in the dark with dim headlights, it’s not surprising that “finding the road” with 
initial model predictions was difficult. However, these models improved over time as their input 
data improved.   
 
Introduction to the contagion process 
We begin with a community that is exposed to an infectious disease. At the beginning of the 
observation time period, there are already a subjects in the community with the disease. The 
disease spreads from individual to individual, its rate of spread governed by the parameter υ, i.e., 
the rate of new infections generated by those already infected is .tυ∆  Clearly, the greater this 
rate, the more rapidly the disease spreads through the community. 

However, another source of disease is individuals arriving into the community, by 
airplane, ship, train, bus, or car. These individuals arrive at the rate tλ ∆  in time period .t∆   
Once in the community, they spread the infection at the same rate as those with the disease who 
are already in the community.  It is our goal to identify the probability [ ]k tP  of the number of 
individuals in the community with the disease at time t. 

 For this simple model, we will assume that there are no deaths, no cures, and no people 
who leave the community (or emigrate). With our simplifying assumptions, the proportion of 
patients with the disease will only increase,* an increase based solely on the immigration and 
birth rates.    

However, even in this relatively straightforward process, computing [ ]k tP can seem like 
a daunting task with the disease being regularly transmitted from one community member to 
another (who themselves can spread the disease deeper into the populace) in addition to new 
arrivals who are equally capable of spreading disease. To help manage this process, we will look 
at what can happen to the disease in a small sliver of time that we denote .t∆  

In our analysis, we will drive the t∆  to be so small that only one of two events can 
happen, either 1) one and only one new case of disease appears or 2) no new cases appears.  

Continuing with this scenario, there are two processes that could produce a single new 
case in time .t∆  One way would be as a new arrival to the community. The probability of this 
event in the small time interval t∆   is .tλ∆   However, it is also possible that a new case occurs 
from the cases already present in the population.  In this small interval of time, the probability of 
the disease being spread to a new individual is .tυ∆  

With this as background, we can now address the question,  if there are k affected 
subjects in the community at time t, what is the probability that exactly one of them spreads the 
disease to a susceptible individual and hence generate a new case?  If we assume that each 
affected individual spreads the disease independently of the other, we can use the binominal 
distribution to find.  

( )( ) 1exactly1additional case 1 .
1

kk
t tυ υ − 

    
 

= ∆ − ∆P    

                                                 
* More realistic discussions are referred to at the end of this section.  
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We may invoke the binomial theorem on the term ( ) 11 ktυ −− ∆ to write   
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However, since tυ∆  is so small, we can safely assume that higher order terms are negligible and 
can be ignored. We therefore write ( )exactly1additional case .k tυ   ∆P -

 Thus the more 
subjects with the disease, the greater the likelihood that an additional patient will contract the 
illness. This is the “birth” part of the immigration-birth process. 

It is essential to understand the distinction between these two ways to produce a case. If 
the newly appearing case is due to arrival, then the probability of one additional case is .tλ∆  if 
by the “birth” or spread of the infection when there are k cases already in the community, then 
the probability is .k tυ∆   

The driving force for spreading the number of cases in the community is really powered 
by the number of cases already there. This “birth force” grows ever stronger as the number of 
cases in the system increases.  

Immigration, on the other hand is an influence that is not proportional to the number of 
cases outside the community. This leads us to believe that, even if λ  and υ  are close, the major 
source of the new cases will still come from within the community, since the driving force is not 
υ  but .kυ    
 With this result, we can ask, how can we progress to their being k affected individuals or 
cases in the system at time t t+ ∆  if the time interval t∆  is so small that we only permit one event 
to occur in this interval?  Since we have cases in the system at time 0, there are only two ways 
for this to happen; 1) there are k − 1 in the system at time t and a new case occurred in interval 

,t t+ ∆ either by an arrival, or by its spread from an infected person to an uninfected patient, or 2) 
there were already k patients in the system and no new cases occurred during this time interval. 
We formally write this as. 
 

[ ] [ ] [ ]( ) [ ]( )1 1 1 1 .k k k kt t t t t k t t kv t tλ υ λ− −+ ∆ = ∆ + − ∆ + − ∆ − ∆P P P P  
 
This holds for k a≥  where a is the number of patients in the community at time 0.t =   We can 
reformulate the previous equation as  
 

[ ] [ ] [ ] [ ] ( ) [ ] [ ]1 11 .k k
k k k k

t t t
t t k t k t

t
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+ ∆ −
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∆
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It we let t∆  get smaller and smaller, taking the limit as t∆ goes to zero, we write  
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that is 
 

[ ] [ ] [ ] ( ) [ ] [ ]1 11k
k k k k

d t
t t k t k t k a

dt
λ λ υ υ− −= − + − − ≥

P
P P P P   

 
We will use the generating function approach to collapse this infinite collection of equations into 

one equation. Let’s define ( ) .k
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  = ∑G P  Ultimately we want to find the value of k t  P  for 
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From our work on the immigration process, we see that this produces.  
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Thus we have collapsed an infinite number of equations into one. While in general, these 
equations can be a challenge to solve, we will see that we can solve this equation without too 
much difficulty.  

This type of partial differential equation has been discussed. A useful tool for the solution 
of differential equations is that, it one is written as  
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Then a useful collection of equalities is  
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Our equation, written as 
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 is of this form and therefore we may write 
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We will use these equalities in combination with the state of the system at time t =0 to identify 
the generating function ( )s tG  and then invert.  Begin with  
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Integrating, we have ( ) ( )ln ( ) ln ,s t s Cλ= − +
υ

G  or ( ).( )s t s C
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Next we work with 
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Now we just manipulate the constant 
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We can now write ( )1( ) ,
1

t
s

st c e
s

−υ = Φ = Φ − 
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Thus our work reveals ( ) .
1

t
s
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s

λ
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We can now invoke our boundary conditions to identify the final form of ( ).s tG  At t = 0, 
k = a, leading to  
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Simplifying, we find.  
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But this we recognize as the probability generating function for negative binomial 
measure.scaledby .as    Thus,  
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Note that the influence of the immigration process is determined not just by ,λ  but the relative 

values of λ  and υ   as determined by .λ
υ

 If this ratio is large, then the contribution of the 

immigration parameter is very much like the number of individuals in the population at time t = 

0.  Small values of the λ
υ

 ratio reduce the impact of the immigration process. We have seen that 

the mean and variance of negative binomial measure are rq
p

 and variance 2 .rq
p

 In the case of the 

birth process, this translates to  
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An evaluation of the mean value as a function of k provides the expected result. The 

exponential growth of this mean value as a function of time that was the basis of the commonly 
used 2020 expression “flatten the curve.” More realistic scenarios handle the arrival and 
departure of individuals from the community with the disease, and the occurrence of deaths 
among the diseased.  
 
Negative binomial bridge 
Seeing that the contagion process is a negative binomial distribution, we can take advantage of 
everything we know about the negative binomial distribution are to apply to contagions e.e, their 
Bernoulli trial properties.  

One interesting notion is to use the contagion process to look backward.  
For example if we know that there were are patients suffering from Covid-19 at the 

beginning of the time process t = 0. We now know how to compute the probability of the number 
of Covid-19 patients in the community at time t.  

But how about if we try to run the process backwards. 
Suppose we know that while there are 2k  patients who have COVI-19 at time 2 ,t t=  what 

is the distributionof patients who have the disease at time t   whete 20 ?t t≤ ≤   
Let [ ]tX k=P  be the probability of k cases in the system at time t. We need to compute 

2 2|t tX k X k = = P  where 20 t t≤ ≤  and 20 k k≤ ≤   
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Using the Bernoulli trial propeert we write 
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The three probabilities on the right are negative binomial probabilities. Thus 
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In this circumstance, this is a simple counting problem. 
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The first quotient is a constant times a hypergeometric probability hypergeometric probability, 
for 20 ,k k≤ ≤  1 20 .r r≤ ≤  Examing the quotient of exponents, we see for the contagion model, 
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Other contagion findings 
Difference in cases between clinics 
Let’s assume that we have two hospital. Each of which are accepting patients with COVID-19 
infections. What’s the probability that at any given point in time, the number of infections 
admitted at one hospital hospital X is greater than the number admitted by hospital Y.  

Our intuition tells us that the answer is going to be related to both the. Infectivity rates ,υ  
the arrival rate ,λ   and the number of cases each has had at the beginning of the pandemic a.  

We have several ways to examine this question. One way to simply produce the expected 
value and variance of the difference, .X Y−  We know that if X follows a negative binomial 

distribution with parameters Xr  and variance ,Xp  then [ ] X X

X

r qX
p

=E  and [ ] 2 .X X

X

r qX
p

=Var  Then 
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If wr assume that the contagin parameter is the same across the two hospitals then ,X Yυ υ υ= =  
then  
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The last line produced under the assumption that .X Yυ υ υ= =   
 We can also approach this problem in the difference in hospital rates by computing 
directly [ ].X Y>P  Lets assume that the parameters are the same for the two distributions. Then, 
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If the parameters of the two distributions are not equal, then we try to compute [ ]X Y>P  direct. 
Whatever value X takes then Y must be nonnegative and less than that value. Thus  
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Conditional negative binomial 
Assume two states X and Y, report a total of n patients with Covid-19.what is the probability that 
k of them are from state X? This is “looking backward” in the negative binomial process. 
 We begin the computation of this conditional probability [ ]| .X k X Y n= + =P   
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We write the numerator as 
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We compute [ ]X Y n+ =P  as [ ] [ ]
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And our solution is 
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Conditioning on the future ‒ the memoryless process 
One interesting conditional probability problem involving the negative binomial distribution is 
conditioning on the future.  
 Let’s suppose that we have at time point 1,t  1n  cases in a county. We eould like to know 
the probability that at some time in the future 2t  of having 2n  cases in the county.  
 Answering this question will bring us face to face to one of the most important 
characteristics of bernoulli trials ‒ the markovian property. The markovian property essentially 
says that in order to condition on the future one simply needs to know the current state of the 
process and not the entire history of the process. 
 Let’s  assume that there are 63  Covid-19 cases in our county at mid month and we want 
to know how likely it is that we will have 200 cases by the end of the month.  This problem is 
indeed very complicated if we have to keep track of not just how many midmonth cases there 
are, but also how many patients there were at 10 days into the month or five days into the month 
or one day end of the month. The problem is more difficult because the probability condition is 
more complicated.  
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 However if the probability of having 2n   patients at time 2t  is based simply on the most 
recent observation (63 patients at midmonth) the problem simplifies at once. This property is the 
memoryless property. It plays a central role in many stochastic processes such as Brownian 
motion. 
 We presume we are at some time  1 0,t >  there are 1n  patients with Covid-19 at that time. 

Then ( )1 1.X t n=  What we need to calculate is ( ) ( )2 2 1 1| .X t n X t n= =  P  We begin with 
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Examining the numerator, ( ) ( )2 2 1 1X t n X t n= =  P  we ask how do we get to ( )2 2 ?X t n=  

There is only one way, and that is to use the remaining time 2 1t t−  to obtain 2 1n n−  cases. Thus  
 

( ) ( ) ( ) ( )2 2 1 1 2 1 2 1 1 1 .X t n X t n X t t n n X t n = = = − = − =    P P    
 
However we assume Covid-19 cases arrive independently, so the arrival pattern of cases after 1t  
is independent of the arrival before 1.t  Similarly, the arrival pattern of cases up to  some time 
prior to 1,t  sat at  such that 10 at t< <  is independent of the cases that occur after time .at  Thus, 

( ) ( )1 1 | a aX t n X t n= =  P  is independent of the the pattern of prior arrival of cases before time 

.at  This is the heart of the Markov process.  
 Acknowledging this property affords us a great simplification. We can now write   
 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

2 2 1 1
2 2 1 1

1 1

2 1 2 1 1 1

1 1

2 1 2 1 1 1

1 1

2 1 2 1

|

.

X t n X t n
X t n X t n

X t n

X t t n n X t n
X t n

X t t n n X t n
X t n

X t t n n

= =  = = =   =  
− = − =  =

=  
− = − =      =

=  
= − = −  

P
P

P

P
P

P P
P

P





  

 
But this last expression is simply a negative binomial probabiliy with probability running from 
time 0t =  to time 2 1.t t t= −  Note that we have essentially restarted the process. At this new 

0,t =  we have 1n  cases in the system. Assuming our usual parametetization of the death ptocess, 
we find 
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The Death Process 
 
We have described how the binomial distribution arises from the consideration of the sums of 
independently and identically distributed Bernoulli trials. It’s use can commonly be predicted 
from consideration of the construction of the event.  

However, an intriguing observation of intrinsic processes is that from these systems can 
spring a  probability distribution that did not suggest its appearance earlier in the problem’s 
consideration. Such is the case with the death process.  
 
Prerequisites 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
The Mean Value Theorem 
Polar Coordinates 
Exponential Limit 
The Exponential and Gamma Functions 
Properties of Probability 
General Poisson Process 
Moment and Probability Generating Functions 
Negative binomial measure 
Binomial distribution 
Binomial probability generating function 
 
Introduction to the death process 
The death process describes a system in which events occur which decrease the number of 
individuals or objects over time. However, so did the emigration process. What is the difference? 
 
Distinguishing emigration from death 
The death process, like the emigration process requires no arrivals into the community, only 
removals. However,  the difference between the emigration process and the death process is 
profound.  
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In the emigration process, arrivals of individuals with the disease occur at a constant 
average rate, regardless of the number of diseased individuals in the community. Whether there 
are 10 individuals, or 1010 individuals in the community, the emigration rate is the same.  

The death process (which might actually be unhelpfully named) describes a process in 
which removals occur, but their rate of removal is dependent upon the number of diseased 
individuals in the community. Removals occur more quickly when there are many more diseased 
subjects in the community then not.  

Thus the death process’s rate dependent removal is more like the birth process whose 
disease dissemination rate is proportional to the number of individuals in the community.  

From a public health perspective, both the emigration process and the “death” process 
can describe the occurrence of deaths. In a large hospice facility that cares for patients at the end 
of their lives, an emigration process may aptly predict the number of deaths in a given time. 
Deaths are not related to the number in the hospice system. As long as there are patients in the 
hospice unit, deaths occur at a constant rate. 

However consider a circumstance in an isolated Emergency Department in an 
underserved community, as the SARS-CoV-2 virus spreads through the community.  The 
number of critically ill subjects increases,  rapidly consuming the resources required for their 
care. In this circumstance, the larger the number of these patients in the system, the fewer 
resources there are to care for them, and the “departure” rate climbs (either through actual deaths 
or transfers).* This is a process where the departures are actually proportional to the number of 
subjects in the clinic.  

Another example of emigration rates that are accelerated by the number in the system 
would be a queuing arrangement when the servers work faster when the number in the system is 
greater, and decrease their performance rate (throughput) as the number in the system decline.  A 
“death process” characterizes this system as well.  
 
Underlying assumptions 
Assume that we are in a facility that is experiencing departures/removals in accordance with a 
death process. The departure/removal rate in at this facility is given by ω for a period of time t. 
For example ω may be 3 departures per week. Our goal is to find the probability distribution for 
the number of remaining patients in the facility at time t, .k t  P  We assume that at the start of 
the observation process, that there are a subjects in the hospice unit.  
 
Developing the difference equations 
Our approach will be to observe the possible changes over time when the time interval that has 
passed is very small. This small change in time constrains the number of possible events that can 
take place to a mathematically manageable level. As before, we will develop a collection of 
difference-differential equations, collapse them to one equation that is based on a probability 
generating function, solve it, and then invert the generating function.  

Let’s begin by watching this process transpire over a very small period of time. In fact, 
this will be a vanishing small period of time, that we will call .t∆  We demand that t∆  be so 
small, that two patients cannot die within it. Therefore, only two events can occur. Either a single 
patient dies, or they do not. In this small slice of time, the probability of departure for each of the 
patients is .tω∆  What is the probability of a single departure in this small time interval?   

If we assume that there are k patients at risk of dying at time t, what is the probability that 
exactly one of them dies in time period ?t t+ ∆  Assuming that departures are independently of 
each other, we can use the binomial distribution to compute.  

                                                 
* This is another reason why the descriptor “death” is not apropos. Perhaps a better descriptor would be “powered 
emigration” versus “static emigration”. 
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= − ∆ + ∆ − ∆ +     
     

∑
 

Therefore 

[ ] ( )( )

( ) ( ) ( )

1

2 3

exactly1death 1
1

1 1 1
1 .. .

1 2 3

kk
t t

k k k
k t t t t

ω ω

ω ω ω ω

− 
= ∆ − ∆ 

 
 − − −     

= ∆ − ∆ + ∆ − ∆ +      
      

P
 

 
However, given that tω∆  is so small, we can safely assume that higher order terms are 
negligible and can be safely ignored. We therefore write  
 

[ ] ( )exactly1death .k tω∆P -   
 
 With this result, we can ask, how can we progress to there being k patients in the system 
at time t t+ ∆  if the time interval t∆  is so small that we only permit one event to occur in this 
interval.  For 0 1,k a≤ ≤ −  there are only two ways for this to happen; 1) there are k+1 patients in 
the system at time t and a departure occurred in interval ,t t+ ∆ or 2) there were already k patients 
in the system and no departure occurred during this time interval. We formally write this as. 
 

( ) ( )1 1 1 .k k kt t t k t t k tω ω+          + ∆ = + ∆ + − ∆P P P  
 
This holds for 0 1.k a≤ ≤ −  Note that this is different than the statement for the emigration 
model in which the force of emigration was not dependent on the current number in the system. 
In the death model, the greater the number of objects in the system, the greater the likelihood that 
one will depart.  

We can reformulate the previous equation as  
 

( ) 11 .k k
k k

t t t
k t k t

t
ω ω+

             
+ ∆ −

= +
∆

P P
P - P  

 
It we let t∆  get smaller and smaller, taking the limit as t∆ goes to zero, we write  
 

[ ] [ ] [ ] ( ) [ ] [ ]10
lim 1k k k

k kt

t t t d t
k t k t

t dt
ω ω+∆ →

+ ∆ −
= = +

∆
P P P

P - P  

 
that is 

( ) 11 0 1k
k k

d t
k t k t k a

dt
ω ω+

         = + ≤ ≤ −
P

P - P  
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For a t t  + ∆P  we have 

( )1 .a at t t a tω      + ∆ = − ∆P P  
or 

0
lim

.

a a
at

a
a

t t t
a t

t
d t

a t
dt

ω

ω

∆ →

         

     

+ ∆ −
= −

∆

= −

P P
P

P
P

 

 
Thus, our system of difference-differential equations is  

 [ ] ( ) [ ] [ ]11 0 1k
k k

d t
k t k t k a

dt
ω ω+= + ≤ ≤ −

P
P - P            

              [ ] [ ].a
a

d t
a t

dt
ω= −

P
P                              

 
We will use the generating function approach to collapse this system of a equations into one 
equation.  

Let’s define 
0

.( )
a

k
s k

k
t s t

=
  = ∑G P  Ultimately we want to find the value of ( )k tP   for 

0 ;k a≤ ≤  Multiplying each side of the above equations by ks  produces 
 

( ) 11 0 1kk k k
k k

d t
s k s t ks t k a

dt
ω ω+

         = + ≤ ≤ −
P

P - P  

 
and summing over the relevant values of k gives 
 

[ ] ( ) [ ] [ ]
1 1 1

1
0 0 0

1 .
a a a

kk k k
k k

k k k

d t
s k s t ks t

dt
ω ω

− − −

+
=− = =

= +∑ ∑ ∑
P

P - P  

 
The next equation simply becomes 

[ ] [ ].aa a
a

d t
s a s t

dt
ω= −

P
P  

Adding these two produces 
 

        [ ] ( ) [ ] [ ]
1

1
0 0 0

1
a a a

kk k k
k k

k k k

d t
s k s t ks t

dt
ω ω

−

+
= = =

= +∑ ∑ ∑
P

P - P   

 

We will simplify each of these, term by term. For [ ]
0

a
kk

k

d t
s

dt=
∑

P we have 

 
[ ] [ ] [ ]

0 0 0

( )ka a a
k kk k s

k
k k k

d t ds t d tds s t
dt dt dt dt= = =

= = =∑ ∑ ∑
P P GP  

 

( ) [ ] [ ]

[ ] [ ] [ ]

11 1

1 1
0 0

0

0
1 0

1
ka a

k
k k

k k
k ka a

k k
k k

dsk s t t
ds
ds ds dst t t
ds ds ds

ω ω

ω ω

+− −

+ +
= =

= =

+ =

= = −

∑ ∑

∑ ∑

P P

P P P
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We will assume that ( )0 0.t =P *  proceeding; 

[ ] [ ] [ ]
0

0 0

( )

a
k

k kka a
k k

k
k k

s

d s tds tds t
ds ds ds

d t
ds

ω ω ω

ω

=

= =

= = =

=

∑
∑ ∑

PP
P

G
 

 

And 
0

a
k

k
k

ks tω
=

  ∑ P is simplified as follows. 

 
1

0 0 0

0

0

( ) .

ka a a
k k

k k k
k k k

a
k

k ka
k k s

k

dsks t s ks t s t
ds

d s tds t d ts s s
ds ds ds

ω ω ω

ω ω ω

−

= = =

=

=

          

    

= =

= = =

∑ ∑ ∑

∑
∑

P P P

PP G
 

 
Thus, we have 
 

( )( ) ( ) ( ) ( )1s s s sd t d t d t d ts s
dt ds ds ds

ω ω ω= − = −
G G G G  

 
But since the derivatives are with respect to two different variables (s and t) we write  
 

 ( )( ) ( )1 .s st ts
t s

ω
∂ ∂

= −
∂ ∂

G G       

 
This is the difference-differential equation that we must solve. 

We have collapsed a equations into one partial differential equation. While in general, 
these equations can be a challenge to solve, this one is relatively easy.  

Recall that if a differential equation is written as  
 

( , ) ( , ) ,F x y F x yP Q R
x y

∂ ∂
+ =

∂ ∂
 

then 

.dx dy dF
P Q R

= =  

  

Our equation, written as ( )( ) ( )1 0s st ts
t s

ω
∂ ∂

− − =
∂ ∂

G G  is of this form which implies that 

  

                                                 
* This is an interesting assumption. Even though only deaths can be produced, ( )0 0t =P  means one never gets to 
the condition that the all patients die. In animal population studies this is called the extinction probability. 
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( ) .
1 (1 ) 0

sd tdt ds
sω

= =
− −

G  

 
We will use these equalities and  the state of the system at time t =0 to identify the generating 

function ( )s tG  and then invert.  Begin with ( ) ,
1 0

sd tdt
=

G or ( ) 0,sd t =G  which implies ( )s tG is a 

constant. We write this constant ( )1 .cΦ  Next we work with 
1 (1 )
dt ds

sω
=

− −
; 

 

( )2

1 (1 )

(1 )

(1 )
ln(1 )

ln(1 )
1 .t

dt ds
s

dsdt
s
dsdt

s
t s C
t s C

C c s e ω

ω

ω

ω

ω
ω

−

=
− −

− =
−

− =
−

− = − − +
− + − =

= = −

∫ ∫  

 
We can now write ( ) ( )( )1( ) 1 ,t

s t c s e−ω= Φ = Φ −G and examine the boundary condition for 
clarification of the form of the function .Φ  We know that there are a subjects in the hospice at 
time t = 0. We can therefore write  
 

( ) (0)(0) 1 (1 )a
s s s e s−ω= = − = Φ −G  

Let 1z s= −  or 1 ,s z= −  and we find ( ) ( )1 .az zΦ = −  This is for t = 0. For any other value of t 
we have  
 

( )( ) ( )( ) 1 1 1 .
at t

s t s e s e−ω −ω  = Φ − = − −G  
 
However, we observe ( )1 1 1t t ts e e se−ω −ω −ω− − = − +  and  

( )( ) 1 .
at t

s t e se−ω −ω= − +G  
 
This is the generating function for the binomial distribution with probability of “success” 

.tp e−ω=  We can write that if there are a patients in the hospice at time t and they die at rate ω 
for unit time, then the probability there are k patients alive at time t is  
 

( ) ( ) 01 .1a kk t t
k k a

a
t e e

k
−− ω −ω

≤ ≤
 
 
 

= −P  

and we know from the moments of the binomial distribution that  
 

( ).; 1k t k t tk ae k ae e− ω − ω −ω      = = −E Var  
 

Figure 1 provides an example of the distribution of the number in the system at different times 
for a single value of 0.20.ω =           
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Binomial bridge 
Seeing that the death process is a binomial distribution, we can take advantage of everything we 
know about the binomial distribution are to apply to this death process. One of them is the notion 
of Bernoulli trials.  

One interesting notion is to use the death process to look backward.  
For example if we know that there were are patients suffering from Covid-19 at the 

beginning of the time process t = 0. We now know how to compute the probability of the number 
of Covid-19 patients who die by time t.  

But how about if we try to run the process backwards. 
Suppose we know that while there are 2n  patients at time 0t =  sand that there are 2k  

patients who have died at time 2 ,t t=  what is the distributionof patients who died at 1,t t=   
whete 1 20 ?t t≤ ≤   

We would expect that the as t move from 0 to 1,t   the expected number of deaths would 
increase; however what do we know about the variance? Estimates at the beginning of 0t =  
should be close to zero and therefore the variance should be small. However when we move 
away from time 0,  then the variance is large as time increases. However, when we get closer and 
closer to time 2t   then, the time where the number of deaths is equal to be our estimates should 
get closer to be and therefore the variance should decrease.   

Let [ ]tX k=P  be the probability of k deaths in the system at time t. We assume that there 

are 2n  subjects in the sysytem at time 0.t =  We need to compute ( ) ( )
21 2 2|t tX n k X n k = = P  

where 10 t t≤ ≤  and 10 k k≤ ≤  and 1 20 .n n≤ ≤  

( ) ( )
( ) ( )

( )
1 2

1 2

2

1 2 2
1 2 2

2 2

| .t t
t t

t

X n k X n k
X n k X n k

X n k

 = ∩ =  = = =   = 

P
P

P
  

Using the Bernoulli trial property we write 
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( ) ( )
( ) ( )

2

2

1 2 2

1 2 1 2

t t

t t t

X n k X n k

X n k X n n k k−

 = ∩ = 
 = = ∩ − = − 

P

P
  

 
 Proceding, 
 

[ ] ( )

( ) ( )( ) ( )( ) ( )
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2

2

2 1 21 2 2 2

2 2
2 2 2

1 2 2
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2 11
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( )( ) ( )

( )

2 1 2
2

2 2
2 2 2

.
1
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n kk t wte e

ω

ω

− − −−

−− −−

 

 
 
The first quotient is a hypergeometric probability. Examing the quotient of exponents, we see 
 

( ) ( )( ) ( )( ) ( )

( )
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2

2 1 21 2 2 2

2 2
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−  
   − − −  =      
 

P
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Observe 
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And the solution is 
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Birth-Death Model 
 
 
Introduction 
 
In this section, the concept of death to the birth model is added.  Each of these two processes has 
a force proportional to the number of cases in the population.   
 
Prerequisites 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
Exponential Limit 
The Exponential and Gamma Functions 
Properties of Probability 
General Poisson Process 
Moment and Probability Generating Functions 
Negative binomial measure 
Binomial distribution 
 
 
Motivation  
The only new cases are due to births in the existing population and the only exits are due to 
death. The disease spreads in the population according to the birth process.  However, the death 
process leads to a moderation in its effect since its force decreases the number of cases  
  
The Chapman-Kolmogorov equations  
 
The process for developing the Chapman-Kolmogorov forward equations will be exactly 
analogous to their development thus far in this chapter.  Begin with an enumeration of the three 
ways the population can have n  diseased patients at time. Let’s allow t∆  to be so small that only 
one event can occur in this short  period of time. Then what types of events can occur? A first 
would be that the number of cases in the population is 1n −   at time t   and there is a “birth” or 
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spread of the disease from time t   to time ,t t+ ∆  an event occurs with probability  ( )1 .n t− υ∆ *   
Alternatively, there may be 1n +   cases of disease  in the population at time t   and a death 
occurs in the population, an event which occurs with probability ( )1 .n t+ ω∆   Finally, there may 
be n  individuals at time t  and neither a birth nor a death  occurs. The probability of the absence 
of these events is  1 .n t n t− υ∆ − ω∆    We assume that υ >> ω (i.e. much greater) such that at no 
time in the system are there are no individuals ( [ ]0 0t =P for 0.t ≥ )  
 Recall that “death” does not mean death of the subject, but death of the infection. While 
this can mean the death of the patient it can also mean that the patient has been cured by therapy. 

With this as background, the Chapman-Kolmogorov forward equations may be written as  
  

[ ]
( ) [ ] ( ) [ ] ( ) [ ]1 1 1

n

n-1 n+1 n

t + t

n t t n t t n t n t t

∆

= − υ∆ + + ω∆ + − υ∆ − ω∆

P

P P P
  

   
  

proceeding to convert equations represented by to the anticipated difference-differential 
equation. 
 

[ ] [ ]
( ) [ ] ( ) [ ]1 1

n n

n-1 n+1

t + t t

n t t n t t n t n t

∆ −

= − υ∆ + + ω∆ − υ∆ − ω∆

P P

P P
   

         
Dividing by t∆  then taking a limit reveals  
  

[ ] [ ]

( ) [ ] ( ) [ ] [ ] [ ]

[ ] [ ]

( ) [ ] ( ) [ ] [ ] [ ]
0

1 1

lim

1 1

n n

n-1 n+1 n n

n n

t

n-1 n+1 n n

t + t t
t

n t n t n t n t

t + t t
t

n t n t n t n t
∆ →

∆ −
∆

= − υ + + ω − υ − ω

∆ −
∆

= − υ + + ω − υ − ω

P P

P P P P

P P

P P P P

  

   
 
Usig the definition of a derivative shows  
  

[ ] ( ) [ ] ( ) [ ] [ ] [ ]d
1 1 .

d
n

n-1 n+1 n n

t
n t n t n t n t

t
= − υ + + ω − υ − ω

P
P P P P  

  
We can now proceed with the application of the generating function. 
 

                                                 
* The probability of at least one new case in time t∆  is ( ) ( )

1
1

n
k n k

k

n
t t

k
−

=

 
υ∆ − υ∆ 

 
∑  which when expanded is n tυ∆  

plus other terms involving highrr powers of t∆  that are much smaller. 
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Gen function for the birth-death model 
Define the generating function as [ ] [ ]

0

n
s n

n
t s t

∞

=

= ∑G P  and multiplying our difference equation by 

ns  reveals  
  

      
( ) ( )d

1 1
d
nn n n n n

n nn-1 n+1
t

s s n t s n t s n t s n t
t
                 = − υ + + ω − υ − ω

P
P P P P  

 
 Taking summations over the range of n demonstrates 
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P P

P
P P

P P

            

 
 

We can take these terms one at a time. Note that for each demonstation, we choose a small 

enough value s such that [ ]
0

n
n

n
s t

∞

=
∑ P  is uniformly convergent. This allows us to exchange the 

derivative and the infinite sum. 
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We may now write   
 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] ( ) [ ]

[ ] ( ) [ ]

2

( 1) (1 )

( 1) (1 )

( 1) (1 ) 0

t t t t t

t t t

t t

t t

s s s s s
s s s

t s s s s
s s s

s s s
t s s

s s
s s s

t s
s s

s s s
t s

∂ ∂ ∂ ∂ ∂
= ν − ν + ω − ω

∂ ∂ ∂ ∂ ∂

= ν − + ω −
∂ ∂ ∂

∂ ∂
= ν − + ω −

∂ ∂
∂ ∂

− ν − + ω − =
∂ ∂

G G G G G

G G G

G G
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which, when simplified, reveals 
 

[ ] ( ) [ ])( 1) 0.t ts s
s w s

t s
∂ ∂

− ν − − =
∂ ∂

G G
    

 
 
This conforms to the form of the partial differential equation to which we are accustomed, and  
can now proceed with outlining first its general solution, then its particular solution. 
 
Solution for birth-death partial differential equation 
 
The solution is a multistep process. First we identify the general solution for [ ],t sG  then using 
the boundary condition, we find a specific solution. We proceed to finding the general solution 
by writing the subsidiary equations from the partial differential equation above as 
 

[ ]
1 ( )( 1) 0

td sdt ds
s s

= =
− ν − ω −

G
 

 
Using the first and third relationships, we see that 

[ ]
1 0

td sdt
=

G
 or [ ] (0)td s dt=G  which means [ ]t sG  is a constant. We write this as 

[ ] [ ].t s c= ΦG  To find what this constant is in its general form, we evaluate 
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1 ( )( 1)
dt ds

s s
=

− ν − ω −
  as follows 

 

1 ( )( 1)

.
( )( 1)

dt ds
s s

dsdt
s s

=
− ν − ω −

− =
ν − ω −∫ ∫

   

Using partial fractions 1
( )( 1) 1

A B
s s s s

= +
ν − ω − ν − ω −

 or ( ) ( )1 1 .A s B s= − + ν − ω  Setting 1s =  

reveals that 1 .B =
υ − ω

 Similarly letting s ω
=

υ
 shows 1 .

1
A υ

= =
ω ω − υ−
υ

 Thus 

( ) ( )

( ) ( )

1

( )( 1) 1
1 1ln 1 ln

1 1ln ln 1

1 ln .
1

dsdt ds
s s s s

s s w

s w s

s w
s

υ
ω − υ υ − ω− = = +

ν − ω − ν − ω −

= − − υ −
υ − ω υ − ω

 = − υ − − − υ − ω υ − ω 
− υ − =  υ − ω − 

∫ ∫ ∫ ∫

  

 
 

This reveals that ( ) ln
1

s wt c
s

υ − υ − ω + =  − 
 or ( ) ln .

1
s wc t
s

υ − = − υ − ω  − 
 Exponentiating 

reveals  
( )

2 1
t sc e

s
− υ−ω υ − ω

=
−

 and [ ] ( ) .
1

t
t

ss e
s

− υ−ω υ − ω = Φ  − 
G   

 
This is the general solution to the partial differental equation for [ ].t sG  We use the boundary 
solution to find the particular solution. Beginning with the observation that there are a cases of 
disease at time 0,t =   we find 
 

                           [ ] ( )0
0 .

1 1
a s ss s e

s s
− υ−ω υ − ω υ − ω   = = Φ = Φ   − −   

G   

 

Letting 
1

sz
s

υ − ω
=

−
 gives zs

z
− ω

=
− υ

  allows [ ] .zz
z

− ω
Φ =

− υ
    

 ( )
0azz

z
− ω Φ =  − ν 

                             

(1.1) 
 
We can now write 



Inversion of Generating Function  323 
 

 
 

[ ] ( )
( )

( )

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( )
( )( ) ( )( )

1
1

1

1
1

1

1

a
t

a
t

t
t

at

t

a
t t

t t

ses ss e ss e
s

e s s
e s s

e s e

e e s

− υ−ω

− υ−ω

− υ−ω

− υ−ω

− υ−ω

− υ−ω − υ−ω

− υ−ω − υ−ω

υ − ω − ω υ − ω  −= Φ =    υ − ω−   − υ
− 

 υ − ω − ω −
=  

υ − ω − υ −  

 υ − ω + ω −
 =
 υ − ω − υ − 

G

  

 
Inversion of t s  G   
W can begin he inversion of [ ]t sG  be first letting 1,a =  and then rewrite this as  
 

[ ]
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

1

1

1
1

1

t t

t t t

t t

t t

e s e
s

e e s

e s e
e e s

− υ−ω − υ−ω

− υ−ω − υ−ω

− υ−ω − υ−ω

− υ−ω − υ−ω

υ − ω + ω −
=

υ − ω − υ −

= υ − ω + ω −
υ − ω − υ −

 
 
 

G

  

 
This reminds us of the convolution of binomial (for 1,a =  the Bernoulli distribution) and 
negative binomial (in its simplest form, the geometric distribution). However we have to identify 
their distribtional probabilities, Bp  and Np  respectively. 

For the Bernoulli distribution, we use a prior result.we have seen that 
[ ] ( )1 .B Bs p s p= + −G  Yet, here 

( )( ) ( )( )1 1.t te e− υ−ω − υ−ωυ − ω + ω − ≠  In fact ( ) ( )( ) ( ) ( )1 .t t te e w e− υ−ω − υ−ω − υ−ωυ − ω + ω − = υ −  Thus 
( )( ) ( )( )

( ) ( )
( )( )

( ) ( )

( )( )
( ) ( )

1

1

t t

t t
t

t t

e s e

e e
w e s

w e w e

− υ−ω − υ−ω

− υ−ω − υ−ω

− υ−ω
− υ−ω − υ−ω

 υ − ω + ω − 
 υ − ω ω −
 = υ − +
 υ − υ −
 

 

and 
( )

( ) ( ) .
t

B t

ep
w e

− υ−ω

− υ−ω

υ − ω
=

υ −
  

The denominator of [ ] ( )( ) ( )( )
1,

1
t t t

s
e e s− υ−ω − υ−ωυ − ω − υ −

G   

can be converted to that of a geometric randon variable .
1

N

N

q
p s−

  We write 

( )( ) ( )( ) ( ) ( )( )
( )

1 1 1
1 1

1
tt t t

t

ee e s e
s

e

− υ−ω− υ−ω − υ−ω − υ−ω

− υ−ω

=
υ − ωυ − ω − υ − υ −

−
υ − ω
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We compute 
 

 

( )( )
( )

( ) ( )( )
( )

( ) ( )

( )

1 1
1

1
.

t t t

N t t

t

t

e e e
q

e e
e

e

− υ−ω − υ−ω − υ−ω

− υ−ω − υ−ω

− υ−ω

− υ−ω

υ − υ − ω − υ −
= − =

υ − ω υ − ω
− ω

=
υ − ω

  

 
And the denominator of [ ]t sG  becomes 
 

( )

( ) ( )

( )

( )( )
( )

1
1

1
1

t

t

t t

t

e
e

e e
s

e

− υ−ω

− υ−ω

− υ−ω − υ−ω

− υ−ω

− ω

υ − ω
υ − ω υ −

−
υ − ω

  

 
Thus, for 0,a >   
 
 
 
 

[ ] ( ) ( )

( )

( )( )
( ) ( )

( )( )
( ) ( )

( ) ( )

( )

( )( )
( )

1

1

1
1

a

t t

t t
t

t t
t

t

t

t

e e
s

w e w ew e
s

e e
e

e
s

e

− υ−ω − υ−ω

− υ−ω − υ−ω
− υ−ω

− υ−ω
− υ−ω

− υ−ω

− υ−ω

− υ−ω

 
 
 

 υ − ω ω − 
 + 
 υ − υ − υ −  =  

 υ − ω − ω  
 υ − ω 
  υ −  −  υ − ω  

G  

 
The mean and variance are available from Bailey* as 
 

( ) ( )

( ) ( ) ( ) ( )( )1 .

t
t

t t
t

X n ae

a
X n e e

υ ω

υ ω υ ωυ ω
υ ω

−

− −

=  
+

= −   −

E

Var
  

Graphs of the mean values of birth, deatth, and the birth death process follows 
 

                                                 
* Bailey NTJ. 1964. The Elements of Stochastic Processes. New York. John Wiley and Sons. 
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Emigration-Death Model  
 
 
The model in this section considers only the possibility of a decrease of the occurrence of disease 
in the population, considering two forces which reduce the size of the population. One is 
independent of the population size. The other is proportional to that size. As before, we expect in 
the derivation of the generating function ( )s tG  the appearance of a partial differential equation 
in both t and s.  Its solution will be straightforward.  
 
Prerequisites 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
Exponential Limit 
The Exponential and Gamma Functions 
Properties of Probability 
General Poisson Process 
Moment and Probability Generating Functions 
Negative binomial measure 
Binomial distribution 
 
Elaboration 
In this circumstance, there are two processes working simultaneously. The first is the force 
which extinguishes the disease in an affected population at a rate that is proportional to the 
population size.  This is either an overwhelming force, or a meager one based on the number of 
individuals in the population.  

The second force is the emigration force, which removes patients from the system at a 
rate independent of the population size. Each of these two forces acts independently of the other.  

An example of this circumstances would be post COVID-19 care. Recovery from this 
disease can be prolonged with ongoing respiratory and neurologic sequela. A community has a 
relatively large number of these impacted patients. A rehabilitative center is available in another 
community, and patients can emigrate there. 

 However, within the community there is a growing number of rehabilitative specialists 
who can successfully treat this disease locally. This force of treatment, more proportional to the 
number of these patients in the system, is better described by a “death process”. 
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Of course, there will be the unfortunate victims of COVID-19 patients who die. The fate 
of these individuals is handled by a death process as well.*  

 
 

Developing the equations  
In establishing the emigration-death differential equations, we return to our mechanism of 
slowing time down sufficiently so that one and only one event can occur in the time period 
( ), .t t t+ ∆  Specifically, how can there be n patients in the system at time ?t t+ ∆  Assume that 
the emigration parameter is µ  and the death parameter is .ω   

Then, this circumstance may occur in one of two ways. The first is that there are 1n +  
patients in the population at time t, and a death occurs, an event which occurs with probability 
( )1 .n tω+   In addition, again with 1n +  patients at time t, a patient could leave the system with 
probability .tµ ∆  .  Finally, there could be n patients in the system with neither a death, nor an 
emigration occurring in time Δt.  Assume that ( )0 0,t =P  and ( )0 1.a =P   The Chapman-
Kolmogorov equations for this system are. 

 

( )
n 1 1( ) ( )( 1) ( )

( ) 1
n n

n

t t t n t t t
t n t t

ω µ
ω µ

+ ++ ∆ = + ∆ + ∆

+ − ∆ − ∆

P P P
P   

 
Collecting all of the terms involving Δt on the left hand side of the equation and take a limit as Δt 
decreases in size to zero. 
 

n n
1 1

n

( ) ( ) ( 1) ( ) ( )

( ) ( )
n n

n

t t

t t

t t t nt
n

ω µ

ω µ
+ +

+ ∆ − = + +∆
− −

P P P P

P P
      

 
And taking a limit we get 
 

t 0

n n
1 1

n

( ) ( ) ( 1) ( ) ( )

( ) ( )
lim n n

n

t t

t t

t t t nt
n

ω µ

ω µ
∆ →

+ +
+ ∆ − = + +∆

− −

P P P P

P P
 

leading to  
 
   

n
n1 1

d ( ) ( 1) ( ) ( ) ( ) ( )d nn nt t t tt n nt ω µ ω µ+ += + + − −P P P P P   

 
Introducing the generating function 
Begin as always by first defining the generating function 
 

 
a

n
n

n 0
( ) ( )s t s t

=
= ∑G P                         

 
                                                 
* The removal rate for those who die will likely be different the rate for those patients who are treated.  
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and move forward with the conversion and consolidation of the equation:  
 

n
n1 1

n
n1 1

d ( ) ( 1) ( ) ( ) ( ) ( )d
d ( ) ( 1) ( ) ( ) ( ) ( ).d

n n n n n

nn n

nn ns s s s s

t t t t

t t t t

t n nt
t n nt

ω µ ω µ

ω µ ω µ

+ +

+ +

= + + − −

= + + − −

P P P P P

P P P P P
        

The next step is to recognize that the last line of equation  represents a system of equations for 
00 ,n a≤ ≤   and write 

 

a

n 0
a a

n 0 n 0
a a

n 0 n 0

a
n

n n 0

1 1

n

d ( )
d ( )

d d
( 1) ( ) ( )

( ) ( )

n

n n

n n

n

n n

n

s

t t

t t

s s

s s

s t
t

t t
n

n

ω µ

ω µ

=

= =

= =

=

+ +=

=

+ +

− −

∑

∑ ∑

∑ ∑

∑ P
P

P P

P P

             

Following our work in the emigration and death processes, we recognize these summands as 
functions of ( )t sG  and write 
 

 

( )

1

1

( ) ( ) ( )( ) ( )

( )(1 ) 1 ( )

t t t
t t

t
t

s s ss s s st s s
ss s ss

ω µ ω µ

ω µ

−

−

∂ ∂ ∂= + − −
∂ ∂ ∂

∂= − + −
∂

G G GG G

G G
  

which becomes 
 
 

( )1( ) ( )(1 ) 1 ( ) 0t s
t t

t
s ss s sω µ −∂ ∂− − − − =

∂ ∂
G G G              

 
 
Solving the partial differential equation 
We can recognize the last line of this equation as a partial differential equation in t and in s, but 
of the form that will allow us to find a general solution using a subsidiary set of equations. Write 
these equations as  
 

 
( )

( )
( ) ( )1

dd d
1 1 1

t

t

st s
s s sω µ −

= =
− − − −

G
G

                              

 
Taking these terms two at a time, we can identify information on the form of the generating 
function ( )t sG  
Using the first and third terms from the previous set of equations   
 

( )
( )

( ) ( )1

dd d
1 1 1

t

t

st s
s s sω µ −

= =
− − − −

G
G

 

 
write  
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( )

( ) ( )1

dd
1 1

t

t

st
s sµ −

=
− −

G
G

     

 
From our emigration model, we see that this is  
 

( ) ( )
1 1

Ce t s
t s

µ  
 
 

− −
Φ=G  

 
Using the first and second equations, we find that  
 

 

( )

( )

( )
( )

( )

d

d d
1 1

d d
1 1

d
1

C ln 1

C ln 1

t

t s
s

t s
s
s
s

t s

t s

ω

ω
ω

ω

ω

=
− −

−=
−

−=
−

+ = −

= − + −

∫ ∫     

 

From which  find ( )2C e 1t sω−= −                  

 

Combining ( ) ( )
1 1

2e Ct s
t s =

µ  
 
 

− −
ΦG  with ( )2C e 1t sω−= −   gives 

 

 ( ) ( )( )
1 1

e 1 .e t s t
t s s

µ ω
 
 
 

− − −= Φ −G                     

 
and we are now ready to identify the specific solution to the death-emigration model. 
 
Specific solution  
Having identified ( ) ( )( )

1 1
e 1 .e t s t

t s s
µ ω

 
 
 

− − −= Φ −G   now pursue a specific solution, beginning with 

the boundary conditions. At 0t = , if there are a patients in the population  
 

( ) ( )a
0 1s s s== Φ −G  

 
Now,  if we let 1z s= − , then 1 .s z= −  and substituting this result into the above equation,   
 

( ) ( )1 az z− = Φ  
 
We can now write 
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( ) ( )( ) ( )( ) a
1 11 1

1e 1 e 1e et s t st t
t s s s

µ µω ω
   
   
   

− −− −− − = −  
= Φ − −G  

 
This is the generating function of the emigration-death process. It remains to invert it.  
 
Inversion 
The inversion of ( )t sG   can be carried out in a straightforward manner.  The first term on the 
right hand side of equation reflects the generating function for the emigration process. The 
remaining term is the  probability generating function of the binomial distribution with .tp e ω−=  
Thus 
 

( ) ( ) .1 e e e 1 e
a

t t a ktk ts
a
k

ω ω ω ω− − −− −
             

− + −
 

 
We only have to address the parameters. In the emigration-death process, the number of subjects 
in the system can only decrease. In order to have n in the system at time t, we can combination of 
a n−  emigrations and deaths. If there are m emigrations, than there must be a n m− −  deaths. 
Thus 
 

( )
0

1
!

( )
a n a n-m-kt k t t

m
n

a n mt e e e
km

t µ ω ωµ− −− − −

=

 
 
 

− −
−= ∑P  
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Immigration-Death Model  
 
 
The model in this particular section considers only the possibility of a decrease of the occurrence 
of disease in the population, considering two forces which reduce the size of the population. One 
is independent of the population size. The other is proportional to that size. As before, we expect 
in the derivation of the generating function ( )s tG  the appearance of a partial differential 
equation in both t and s.  Its solution will be straightforward.  
 
Prerequisites 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
Exponential Functions 
Differential Equations 
Exponential Limit 
The Exponential and Gamma Functions 
Properties of Probability 
General Poisson Process 
Moment and Probability Generating Functions 
Negative binomial measure 
Binomial distribution 
 
Elaboration 
In this circumstance, there are two processes working simultaneously. The first is the process 
that grows the population of single individuals by their simple arrival into the community. These 
are arrivals that are independent of each other and also independent of the number of individuals 
with the disease. This is the immigration process with which we are familiar. However, the 
second is the force which extinguishes affected population at a rate that is proportional to the 
population size.  This is either an overwhelming force, or a meager one based on the number of 
individuals in the population.  
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 It is important to understand that this need not be death. For example a community that 
has new arrivals with  colon cancer. These individuals arrive at a constant rate. However, the 
community, not prepared for the new arrival of these patients, develops a collection of health 
care providers and treatment centers for colon cancer. These new treatment complexes are 
proportional to the total number of patients arriving in the population. Thus, this “treatment 
process”  meets the criteria of our “death process”, i.e., the treatments are independent of each 
other and proportional to the number of colon cancer patients in to the community.  

In addition, each of the immigration and death processes act independently of each other.  
 
Developing the equations  
In establishing the immigration-death differential equations, we return to our mechanism of 
slowing time down sufficiently so that one and only one event can occur in the time period 
( ), .t t t+ ∆  Specifically, how can we have a total n patients in the system at time ?t t+ ∆   

Assume that the emigration parameter is µ  and the death parameter is .ω   
Then, this may occur in one of three ways. The first is that there are 1n +  patients in the 

population at time t, and a death occurs, an event which occurs with probability ( )1 .n tω+   In 
addition, with with 1n −  patients at time t, a patient could enter the system with probability .tλ ∆    
Finally, there could be n patients in the system with neither a death, nor an immigration 
occurring in time Δt.  Assume that ( )0 0,t =P  and ( )0 1.a =P   The Chapman-Kolmogorov 
equations for this system are. 

 

( )
n 1( ) ( )( 1) ( )

( ) 1
n n-1

n

t t t n t t t
t n t t

ω
ω

+ λ+ ∆ = + ∆ + ∆

+ − ∆ − λ∆

P P P
P   

 
Collecting all of the terms involving Δt on the left hand side of the equation and take a limit as Δt 
decreases in size to zero. 
 

n n
1 1

n

( ) ( ) ( 1) ( ) ( )

( ) ( )
n n-

n

t t

t t

t t t nt
n

ω

ω
+ λ
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+ ∆ − = + +∆
− −
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And taking a limit we get 
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1 1

n
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lim n n
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t t

t t

t t t nt
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ω

ω
∆ →

+ +λ
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leading to  
 
   

n
n1 1

d ( ) ( 1) ( ) ( ) ( ) ( )d nn n-t t t tt n nt ω ω+ λ λ= + + − −P P P P P   

 
Introducing the generating function 
Begin as always by first defining the generating function 
 

 
a

n
n

n 0
( ) ( )s t s t

=
= ∑G P                         
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and move forward with the conversion and consolidation of the equation:  
 

n
n1

n
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The next step is to recognize that the last line of equation  represents a system of equations for 
0 ,n≤ ≤ ∞   and write 
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∞ ∞
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Following our work in the immigration and death processes, we recognize these summands as 
functions of ( )t sG  and write 
 

 

( )

s
( ) ( ) ( )( ) ( )

( )(1 ) 1 ( )

t t t
t t

t
t

s s ss s st s s
ss s ss

ω ω

ω

λ λ

λ

∂ ∂ ∂= + − −
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∂
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which becomes 
 
 

( )( ) ( )(1 ) 1 ( ) 0t s
t t

t
s ss s sω λ

∂ ∂− − − − =
∂ ∂

G G G              

 
 
Solving the Partial Differential Equation 
We can recognize the last line of this equation as a partial differential equation in t and in s, but 
of the form that will allow us to find a general solution using a subsidiary set of equations. Write 
these equations as  
 

 
( )

( )
( ) ( )

dd d
1 1 1

t

t

st s
s s sω

= =
− − λ −

G
G

                              

 
Taking these terms two at a time, we can identify information on the form of the generating 
function ( )t sG  

For example, from the first and third terms note 
( )

( ) ( )
dd

1 1
t

t

st
s s

=
λ −

G
G

 

 
Recall from our development of the integration process, we have  
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( ) ( ) ( )1 Ce t s
t s λ − Φ=G  

 
The remaining requirement is to identify the form ( )C .Φ   

Our experience with the death process also reveals that ( )t .C e 1 s−ω  
    

Φ = Φ −  Thus, we can 

write  

( )(s 1) t
t .G (s) e e 1 stλ − −ω 

  
= Φ −  

 
and we are now ready to identify the specific solution to the immigration-death model. 
 
Specific solution  
Having identified ( ) ( ) ( )s 1 e 1 .e t t

t s sωλ − − 
 
 

= Φ −G   now pursue a specific solution, beginning 

with the boundary conditions. At 0t = , if there are a patients in the population  
 

( ) ( )a
0 1s s s== Φ −G  

 
Now,  if we let 1z s= − , then 1 .s z= −  and substituting this result into the above equation,   
 

( ) ( )1 az zΦ = −  
 

or ( ) ( ) .1
a

z zΦ = −  We can now write 

 

( ) ( ) ( )( )s 1 a1 e 1t
t

ts se ω− −λ  −  
= −G  

 
This is the generating function of the immigration-death process. It remains to invert it.  
 
Inversion 
The inversion of ( )t sG   can be carried out in a straightforward manner.  The first term on the 
right hand we recognize as the generating function of a Poisson random variable; the second is 
the  
probability generating function of the binomial distribution with .tp e ω−=  Thus we can write 
that, in order to have n subjects in the system, we have m arrivals, and a m n+ −  departures.   
 

( ) ( ) ( )t

0
e e 1 e( )

m
nt a+m-n t

m
n

t a m
a+ m - nm!

t ω ω
∞

−−λ −

=

λ + 
− 

 
= ∑P  

 
 Note the similarity of this result with that of the emigration-death model. In that case, as here the 
solution was essential one of binomial measure. However, the adjustments are different. In the 
emigration-death model, emigrations decrease the number of subjects who undergo the death 
process. However, in this model, immigration increases the number of subjects available to 
undergo the “death” or “treatment” process. 
 
Mean and variance 
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We can find the expected number of patients in the system at time t, [ ],nE  in a straightforward 
fashion using the concept of double expectation. 
 

[ ] [ ]| .mn n m =  E E E  

[ ]|n mE  is the expected value of a binomial random variable with parameters  ( ), 1 .ta m e ω−+ −

Thus  
[ ] ( )( )| 1 .tn m a m e ω−= + −E  

The final expectation is taken with respect to a Poisson random variable with parameter .λ  We  
can therefore write 

[ ] ( )( )| 1 .tn m a e ωλ −= + −E  
 The variance is also straightforward. We note that 
 

[ ] [ ] [ ]| | .m mn n m n m   = +   Var Var E E Var    
Following the development of the mean, we can compute 
 

[ ] ( )( ) [ ] ( )( )| 1 : | 1 .t t tn m a m e n m a m e eω ω ω− − −= + − = + −E Var  
The next level of moments is taken with respect to the Poisson distribution.  
 

[ ] ( )( )
( )( )

| 1

1 .

t t
m m

t t

n m a m e e

a e e

ω ω

ω ωλ

− −

− −

   = + −   

= + −

E Var E
 

 
[ ] ( )( ) ( )2

| 1 1 .t t
m n m a m e eω ωλ− −  = + − = − Var E  

 
Thus  
 

[ ] ( )( ) ( )
( )

2
1 1

1 .

t t t

t t

n a e e e

ae e

ω ω ω

ω ω

λ λ

λ

− − −

− −

= + − + −

= + −

Var
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Continuous Probability Measure  
 
Prerequisites 
Properties of Real Numbers 
The Concept of the Limit 
Pointwise vs. Uniform Convergence 
Uniform Convergence and Continuity 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Bernoulli Distribution – In Depth Discussion 
Geometric and Negative binomial measures 
General Poisson Process 
 
We have seen a progression in the complexity of probability functions that we have discussed so 
far. Our first distribution, the Bernoulli, set equal values for point mass on each of two values, 0, 
and 1. For us then, manipulating functions of random variables that follow Bernoulli measure 
was simply a matter of managing two point masses.  

Moving to the binomial and then the multinomial distribution complicated the counting 
we had to do, but not the process. Binomial (n, p) measure was simply accumulating the point 
mass using these measures required us to keep track of not just two point masses, but n of them. 

The situation transformed when we came to  geometric, negative binomial and Poisson 
measure.  For each of these distributions, we continue to accrue point mass using either of these 
functions. However, we were no longer confined to accruing this measure over solely finite 
ranges of the nonnegative integers. Computing a probability for a random variable X that 
followed a negative binomial (r, p) such as ( )100X >P  requires consideration and summation of 
an infinite number of events.  

However, since each of these probability distributions converge (i.e., the sum over all 
nonnegative k for each of these point mass functions is finite), we can accumulate measure or 
probability by summing over an infinite number of integers if need be. Thus while the range of 
the summands changed by moving to the negative binomial and Poisson distributions, the 
process by which we accumulated their measure did not; we simply summed the function over 
the relevant integer range, whether it was finite or infinite.  
 However, there  is an entire collection of random variables for which simple summing is 
not the case. In managing this new circumstance, we will stay true to our concept of measure or 
accumulation;  we must simply measure differently. 
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Probability as a limiting process 
Consider a very simple collection of random variable 1 1 1 1, , ...

1 2 3nX
n

 =  
 

each value having 

probability or mass 1 .
n

 For each value of n, nX  represents a proper family of random variables. 

For example, for n = 1, 1 1X =  with probability 1. This random variable poses no problem for our 

concept of or measurement of probability. For n = 2, 2X  is equal to either 1
2

 or 1, each with 

probability 1 .
2

 This also represents no particular challenge to us. Similarly for n = 3, 4, 5, ….   

For any set value of n, we know how to identify each distinct possible value of nX  and 

compute the value of its probability  as simply 1 ,
n

and therefore understand and manage 

probabilities for the entire sample space (for example, the .
1n

nX
n

 ≤ + 
P   

However, extending this practice farther and farther out into this process, we note that the 
number of possible values of the random variable nX  increases, and also, the probability that 
any of these values of nX  decreases. We never get to the point where there are an infinite 
number of possible value of nX or where the [ ]nXP  is zero, but we get close enough to wonder 
how we would ever manage that.  

Also, consider the  [ ]1 .nX ≤P  This is easily computed as [ ]
1

11 .
n

n
k

X
k=

≤ = ∑P  Again, 

initially, this poses no problem for us as [ ] [ ] [ ]1 2 3
1 11 1, 1 2 , 1 3 ,
2 3

X X X   ≤ = ≤ = ≤ =   
   

P P P etc. For 

any finite n, we compute [ ] 11 1.nX n
n

 ≤ = = 
 

P  But what happens when n is infinity? What does 

[ ] 11X ∞
 ≤ = ∞ ∞ 

P  mean? Is this 0? Infinity? 1? Something else?* 

We have identified an infinite sequence of random variables, that, while the behavior of 
any one of them makes perfect sense, we can make no sense out of the behavior of the limiting 
process.  Where is the problem? 

The problem is the concept of point mass as probability.  
 Assigning positive probability to a point has been helpful for us so far because we could 
do that in a way that the total accumulated probability was one. Even when the number of points 

was infinite (e.g., for the Poisson distribution) we could count on [ ]
0

1.
n

n
∞

=

=∑P  However in the 

current example this is not the case.†  
  
An inspection of the concept of probability as point mass (Figure 1) suggests another candidate 
for probability. 
 
                                                 
* Infinity is far too complicated a concept to blithely assume that 1.

∞
=

∞
  

† We know this since the harmonic sequence does not converge.  
1

1
n

A
n

∞

=

= ∑
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From Figure 1, we notice two things 1) the probability for each point gets smaller, and 2) 
there are more points over which to distribute the probability. The thickness of the probability 
increases as it is spread across the real line. This suggests that we assign probability to not just a 
single point, but to an interval of points on the real line.  

This is commonly stated as assigning probability as area.  
Note this is not a change in our concept of measure. We are still very much interested in 

the idea of measure as accumulation. However,  we have always had flexibility in how we 
accumulate measure. In the past, we accumulated measure by simply counting. Now we simply 
need another tool.   
 
  
Measure as an interval 
Suppose that we want to assign probability to an interval of real numbers. We know how to 
determine the length of an interval on the positive real number line; the length of the interval 
[ ]0,1  is simply .b a− *   

What probability that we assign this interval is up to us, just as it was up to us to decide 
what probability we wished to assign to a point (counting measure? Poisson measure?) There are 
many ways to assign measure or probability to an interval. In some circumstances, probability is 
its length (this is commonly known as Lebesgue measure), but we could also assign probability 
as 3 3 .a be e− −−  

It is wholly up to us, as long as we are consistent with the properties of probability. 
However, assigned in accordance with these rules, we will be forced to acknowledge that there 
are some circumstances in which positive probability cannot be provided to individual points. 
While there are important advantages to computing probability over an interval of real numbers, 
a relative disadvantage is that we cannot assign a nonzero value to any particular point unless we 
stipulate that there are particular values that will have positive probability.  
 In fact many commonly used probability measures are based on continuous random 
variables. The uniform, normal, and exponential are just a few of the distributions that we will 
discuss that assign different measure or probability to the real line. In each case, particular values 
of random variables that follow these distributions do not have positive probability assigned to 
                                                 
* Recall that this is what is known as Lebesgue measure.  
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them. In fact, any discrete or countable collection of values for these random variables ( e.g., 

1 ,
8

X =  or X being any integer greater than 5) have no positive value assigned to any of them.* 

While probability can accumulate using interval length, it cannot accumulate by actually 
collecting individual points and trying to “measure” them. As we saw with irrational numbers, 
there are far too many of them to bound the measure of the real line by a finite constant. 

Probability has prospered with the development of this tool using the Riemann integral to 
provide these computations. 
 Consider for example a function 10

2

( ) 21
x

f x
≤ ≤

= . This is a straight horizontal line of 

height two over the real numbers from zero to 1
2

 (Figure 2).  

 

  
 

 
If we replace for a moment the concept of probability as point mass with the notion of 
probability as area, we can assure ourselves of some findings that make us more comfortable 
with the idea of probability as area.  
 First, in this example, what is ?d

Ω
∫ P  We fully expect this quantity should be one. 

Carrying out the measure of this interval, we find 10
2

2 ,1
x

d
≤ ≤

Ω Ω

=∫ ∫P which simplifies to

( )
1
2

0

12 2 1.
2

dx  = = = 
 ∫ † We also note that the closed interval 10,

2
 
  

 has the same probability as the 

open 10,
2

 
 
 

 since the probability of the end points of 0 and 1
2

 are each zero. We also see that 

intervals outside of the interval 10,
2

 
  

have probability zero.  

For an interval ( ),a b   such that 10
2

a b≤ < ≤  we can find the probability [ ].a X b< <P   

                                                 
* We will see later that we can combine random variables mixing discrete and continuous measuring tools 
simultaneously. Here we are only talking about a continuous measuring tool.  
† The other properties of probability discussed in can be shown to be satisfied. 
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[ ] ( )10
2

2 2 2 .1
b b b

x
a a a

a X b d dx dx b a
≤ ≤

< < = = = = −∫ ∫ ∫P P  

 
Another way to handle the probability of interval of the random variable X is to write the 

interval as an element function and takes its expectation. In this case we would write the event 
that a X b< <   as ,1a X b< <  and write  

 

 
( )10 2

1

2 2 2 .

1

1 1

X a X b a x b

b

a x b x a

a X b d

dx dx b a

< < ≤ ≤
Ω

≤ ≤ ≤ ≤Ω

     < < = =

= = = −

∫

∫ ∫

P E P
    

 
 

Note that we used 10
2

1 1 1a X b a X bX< < < <
< <

=  for 10 .
2

a b≤ < ≤   Also note that we expressed the 

expectation as [ ]XE to be clear about the probability distribution whose expectation we 
wanted.  

The above formulation with element functions can be very helpful. Suppose we want the 

expected value of X for 10 .
2

a b≤ < ≤ We can find this by noting that ( ) ( ) ,X g x g x d
Ω

   = ∫E P  

choose ( ) ,1a X bg x x < <=  and write  

2 2
10
2

2 2 .11 1 b

X a X b a X b x
a

x x dx xdx b a< < < < ≤ ≤
Ω

 
  

= = = −∫ ∫E  

 
Cumulative and density functions 
We are already comfortable with the concept of a probability function. We introduced it as the 
probability of a particular point, a definition that served us well in the probability-as-point-mass 
environment. However, this concept does not hold for us all the time. In order to manage this 
new case of continuous random variables, we now rename the probability function as a 
probability density function   
 The cumulative distribution function retains its original concept. However, since the 
random variable X is not continuous, the cumulative distribution function is also continuous. 
This continuity is a foundation concept, helping us to now identify a new relationship between 
the cumulative distribution function ( )XF x  and the density function ( ).Xf x  We can now write 

( ) ( ) .
x

X XF x f y dy
−∞

= ∫  

Alternatively, we can write  
 

( )( ) X
X

dF xf x
dx

= *
 

                                                 
* We assume here that the derivative does exist. 
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We will find the ability to shuttle back and forth between the cumulative and density functions 
very helpful for these new continuous random variables.  
 This is one of the advantages of the measure concept. It permits us to discuss the measure 
of an event without differentiating mass function from density function. Measure simply uses a 
tool – that tool can be discrete, continuous, or a combination of both.  
 
Probability as different measures 
As an example of a random variables that has both discrete and continuous properties, consider 

the random variable X  which is continuous on 30, .
2

 
 
 

 It takes on the value one for the interval 

1 , 1
2

 
 
 

 and the value 1
2

 for the other two intervals of equal length. What is the measure in this 

case? We  can write the measure P  as 
 

1 1 30 1 1
2 2 2

1 1 
2 2
1 1 1

x x x< < < < < <
+ +P =  

 
 Figure 3 provides a clue as to how to measure this function. 

The figure tells us how to compute it. We see that the measure that is to be applied to 
each interval depends on the interval itself. Thus we compute 
 

1 1 30 1 1
2 2 2

1 1 30 1 1
2 2 2

1 1 
2 2

1 1 
2 2

1 1 1 1.
4 2 4

1 1 1

1 1 1

x x x

x x x

d dx

dx dx dx

< < < < < <
Ω Ω

< < < < < <
Ω Ω Ω

 
= + + 

 

= + +

= + + =

∫ ∫

∫ ∫ ∫

P

 

 

 
 
 
What worked for us here is dividing the function into regions of the real line such that the value 
of the function was constant. Then we just multiplied the function value by the interval length. 
This elementary example is the heart of Lebesgue integration, and is analogous to the process by 
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which we built up measurable functions from linear combinations of simple functions.  With this 
approach we can combine complicated probability function yet still verify the basic properties 
that they must satisfy, as well as compute probabilities and moments. 
 

To find 5 9 ,
8 8

X < <  
P  we compute 

 
9
8

1 1 30 1 1
5 2 2 2
8

9
1 8

5 1
8

5 9 1 1 
8 8 2 2

1 7 .
2 16

1 1 1
x x x

X dx

dx dx

< < < < < <

  < < = + +     

= + =

∫

∫ ∫

P

 

 
We only have to simplify the function so that we identify sets of the real number line where there 
are common values of the function then multiply the function value by the interval width. So, 
combining these probability functions is a straightforward process using the concept of Lebesgue 
measure.  
 
Probability as area and point mass 
We can take this one step further, and not just combined functions which assign different 
measures to intervals, but we can combine point mass functions (traditionally known as discrete 
functions) with “measure as area” probability functions as well.  
 Consider the following very elementary example 
 

( ) 0 1 1
2

1 1 .
2 2
1 1x x

f x < <
=

= +  

 
Here, probability is measured as both area on (0,1), and as a single point mass with a height of 
one at 1

2
x =  (Figure 4). 
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If we think of probability as only interval measure (sometimes referred to as Lebesgue measure) 
or as only point mass, ( )f x  cannot be a probability function. However, can we allow it to be 
both? How would we accumulate probability in this matter? 
 Remembering our first discussion about the concept of measure theory we can see how 
we might try this. For example to compute d

Ω
∫ P  we can start at 0x =   and accumulate 

probability allowing x to increase.* In this open interval we accumulate probability using the 

measure as area concept to 1 .
2

x =  This gives us 1 1 1 .
2 2 4

   =  
  

 At 1 ,
2

x =  we now switch to point 

mass, accumulating another 1 .
2

 Finally for x = 1
2

 to 1, we return to accumulating  probability as 

area, accruing 1 .
4

 The sum of these probabilities is one after all. 

 
Continuous joint distributions 
We have developed the concept of joint distributions when the probability measure is discrete.  
However, the role of joint distributions when the random variables have continuous measure is 
also of great value and is the topic of the following set of discussions.  In fact many of the 
definitions and concepts proceed similarly to their discrete analog.  
 The joint distribution of two random variables X and Y is simply ( , ).X Yf x y  It defines 
measure not just in the x-domain, but that of y as well.  For example, if we define   

0 1,0 1( , ) ,1XY x yf x y ≤ ≤ ≤ ≤=  
 

then measure is assigned on the unit square, with all other regions of the ( ),x y  plane having 
measure 0 assigned to them. Thus we can show that 
                                                 
* We could start at  and accumulate probability zero all the way to the beginning of the (0, 1) interval as 
well.  

.x = −∞
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, , ,

1 1

0 1,0 1
0 0

( , ) 1.1
x y x y x y

XY x yd f x y dxdy≤ ≤ ≤ ≤
Ω Ω Ω

= = = =∫ ∫ ∫ ∫ ∫P * 

 We can find probabilities on a set A where 1 3, : 0 , 0
4 4

x y x y ≤ ≤ ≤ ≤ 
 

 by simply defining the 

indicator variable 1 30 , 0
4 4

1 1A x y≤ ≤ ≤ ≤
=  and computing 

[ ]
, ,

1 3 0 1,0 10 , 0
4 4

3 1
4 4

0 0

1 3 3 .
4 4 16

1 1 1 1
x y x y

A A x yx y
A d

dxdy

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

Ω Ω

 = =  

  = = =  
  

∫ ∫

∫ ∫

P E P =

 

 
It is not two difficult to see that if each of X and Y follow the uniform distribution on ( )0,1 ,  then 

( , ) ( ) ( ).XY X Yf x y f x f y=  This is the definition of independence, a statement that is the exact 
counterpart to that for discrete random variables.  It also follows that probabilities involving only 
X are based on the measuring tool ( ),Xf x since the marginal distribution of X (or the distribution 
of X by itself) is  
 

, ( , ) ( ) ( ) ( ) ( ) ( ).
Y Y Y

X Y X Y X Y Xf x y f x f y f x f y f x
Ω Ω Ω

= = =∫ ∫ ∫  

  

Thus [ ]1X ≤P we see to be 1 ,
2

a probability that we can compute without giving any 

consideration to the random variable Y. 
However, suppose the joint measuring tool for two continuous random variables X and Y 

was 0 2
1( , ) .
2
1XY x yf x y ≤ ≤ <=  This is a probability density for which X is clearly dependent on Y and 

is confined to a smaller region that the original independent random variables (Figure 1). 
We can convince ourselves easily that 

,

1
x y

d
Ω

=∫ P  from  

,

22 2 2

0 0 0 0

1 1 4 1.
2 2 4 4

x y

y yd dxdy y dy
Ω

 
= = = = = 

 
∫ ∫ ∫ ∫P  

 
These two densities provide different solutions for the same probabilities. Recall that when X and 

Y were independent, [ ] 11 .
2

X ≤ =P  For this new joint density, the situation is more complicated 

and we must consider the two cases that 1X ≤ when 1Y ≤ or when 1Y >  (Figure 5).  
 
Thus,  
 

                                                 
* Note that we are converting a double integral into two iterated integrals due to Fubini’s theorem. 
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[ ] [ ] [ ]

[ ]

1 2 1

0 2 0 2
0 0 1 0

11 2 2
2

1
0 1 0

1 1 1 1 1

1 1
2 2

1 1 1
2 2 2 2

1 1 31 .
2 2 4

1 1
y

x y x y

X X Y X Y

dxdy dxdy

yy dy dy y

≤ ≤ < ≤ ≤ <

≤ ≤ ≤ + ≤ >

= +

  
 = + = +    

 = + = 
 

∫ ∫ ∫ ∫

∫ ∫

P = P P 

 

 
We can also identify the marginal probability of X. We compute  

 

( )

2

, 0 2 0 2

0 2 0 2

1 1( ) ( , )
2 2

1 2 1 .
2 2

1 1

1 1
y y

X X Y x y x
x

x x

f x f x y dy

xx

≤ ≤ < ≤ <
Ω Ω

≤ < ≤ <

= = =

 = − = − 
 

∫ ∫ ∫
 

 
Note that this density is quite different than that of the random variable X when X and Y were 
independent . 

We can find [ ]1X ≤P directly with no consideration of  the random variable Y. 
 

[ ]
1 1 1

0 2
0 0 0

12

0

1 1 1
2 2

1 31 ,
4 4 4

1 x
x xX d dx

xx

≤ <
   ≤ = = − = −   
   

 
= − = − = 

 

∫ ∫ ∫P P

 

The solution that we obtained previously. Similarly, we can find the marginal distribution of the 
random variable Y.  
 

, 0 2 0 2
0

0 2 0 2

1 1( ) ( , )
2 2

1 .
2 2

1 1

1 1
x x

y

Y X Y x y y

y y

f y f x y dx

yy

≤ ≤ < ≤ <
Ω Ω

≤ < ≤ <

= = =

= =

∫ ∫ ∫
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Note that while the joint distribution of our two random variables seems “similar” to the original 
joint distribution (i.e., uniform on unit square), the marginal distributions in this case are not 
uniform.  

Two important formulas for us are  
 

, ,
| |

( , ) ( , )
( | ) : ( | )

( ) ( )
X Y Y X

X Y Y X
Y X

f x y f x y
f x y f y x

f y f x
= =  

 
This now permits us to compute the conditional distribution of X given the value of the random 
variable Y, | ( | ),X Yf x y as  
 

0 2
,

| 0 2

0 2

1
( , ) 12( | ) .
( )

2

1
1

1
x y

X Y
X Y x y

Y
y

f x y
f x y yf y y

≤ ≤ <

≤ ≤ <

≤ <

= = =  

This is the uniform distribution. We note that | ( | )X Yf x y is a function of not just the random 
variable X but Y as well. In this case the upper bound of the uniform distribution for X is Y, but 
that Y must be less than two. 
 In a similar fashion, 
 

( )
0 2

,
| 0 2

0 2

1
( , ) 12( | ) .
( ) 21

2

1
1

1
x y

Y X
Y X x y

X
x

f x y
f y x

xf x x

≤ ≤ <

≤ ≤ <

≤ <

= = =
− − 

 

 

 
The conditional distribution of the random variable y is also uniformly distributed. The lower 
bound of this distribution is 2 x− and its upper bound is 2. 
 
Joint and conditional expectations 
We can formulate the expectation of a function of the random variables X and Y, ( ),g x y simply 
as  

( ) ( ) ( ) ( )
, ,

,, , , ,
X Y X Y

X Yg x y g x y d g x y f x y
Ω Ω

  =  ∫ ∫E P = . 

For example, if ( ), 0 2
1, ,
2
1X Y x yf x y ≤ ≤ <= and ( ) ( )2, ,g x y y x= − we write 
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( ) ( ) ( ) ( ) ( )

( )
, ,

2 2 2
,

2
2 2

0 2
0 0

2 2 2
2 2

0 0 0 0 0 0

2 2 23 3
3

0 0 0

, ,

1 2
2

1 2
2

1 2
2 2 3

1 4 24 4 .
2 3 3

1
X Y X Y

X Y

y

x y

y y y

g x y y x y x d y x f x y

y xy x dxdy

y dxdy y x dxdy x dxdy

y yy dy dy dy

Ω Ω

≤ ≤ <

   = − − −   

= − +

 
= − + 

  
 

= − + 
 
 = − + =  

∫ ∫

∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

E E P =

 

 
However, we can also compute conditional expectations. To follow our development, we write 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

| |

| |

|

|
X X

Y Y

X Y X Y

Y X Y X

g x g x d g x f x y

g y g y d g y f y x
Ω Ω

Ω Ω

  = 

  = 

∫ ∫

∫ ∫

E P =

E P =
 

 
From our previous work in this section and our knowledge of the moments of the uniform 

distribution, we compute [ ] [ ]| |, 1.
2 2X Y Y X
y xx x= = +E E

 
 
Double expectations 
A concept of interest that commonly simplifies our work in computing expectations for joint 
probabilities is that of taking sequential expectations. We know that that 
 

( ) ( ) ( ) ( )
, ,

,, , , ,
X Y X Y

X Yg x y g x y d g x y f x y
Ω Ω

  =  ∫ ∫E P = . 

 

Since ( ) ( )
( )

,
|

,
| ,X Y

X Y
Y

f x y
f x y

f y
= or ( ) ( ) ( ), |, | ,X Y X Y Yf x y f x y f y= so we may write 

( ) ( ) ( ) ( )
,

|, , | .
X Y

X Y Yg x y g x y f x y f y
Ω

  =  ∫E We now simply expand the integration to see 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

,

|

|

|

|

|

, , |

, |

,

,

X Y

Y X Y

Y

X Y Y

X Y Y

X Y Y

Y X Y

g x y g x y f x y f y

g x y f x y f y

g x y f y

g x y

Ω

Ω Ω

Ω

  = 

 
 =
  

=   

 =    

∫

∫ ∫

∫

E

E

E E
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This result that ( ) ( )|, ,Y X Yg x y g x y   =      E E E or equivalently ( )| ,X Y X g x y    E E can provide 
important simplifications in our calculations for example, when we identify the distribution of a 
matrix determinant.  
 
The concept of double expectation argument also applies to computing the variance. We may 
write  
 

[ ] [ ] [ ]| | .X XX Y X Y X   = +   Var Var E E Var  We will apply this to stochastic processes, e.g., 
the immigration-death model 
 
Example: Myocardial infarction and death 
One of the sequela of a heart attack or myocardial infarction is death. When deaths occur 
following a heart attack they are more likely to be earlier rather than later, that is, the six month 
post myocardial infarction rate is greater than the six month to one year rate, which is greater 
than the subsequent six month rate, etc.  

A study is being conducted that follows patients at elevated risk of a heart attack   Let R 
be the random variable reflecting the time from the beginning of the study until the time suffers a 
heart attack. Let S be the survival time of the patient up to time T which is the time the follow-up 
period ends.  Then let’s define the joint distribution of R and S as   

 
( ) ( ) ( )

, 0, 1s r
R S r sf r s e λ µλ µ λ − +

≤ ≤ ≤∞= +  
 

Since the time to infarct must precede the survival time which is terminated at the end of the 
study, we are required to restrict the region of positive measure to 0 .1 r s≤ ≤ ≤∞  We can demonstrate 
 

( ) ( ) ( )

( )
, , ,

, 0

0 0 0

,

1

1 1

1
R S R S R S

s r
R S r s

s
s r s s

d f r s e

e ds e dr e e ds

λ µ

λ µ λ µ

λ µ λ

λ µ λ µλ µ λ
µ µ

λ µ λ λ µ µ
µ λ µ µ λ µ

− +
≤ ≤ ≤∞

Ω Ω Ω

∞ ∞
− − − −

= = +

+ +
= = −

   + +
= − = =   + +   

∫ ∫ ∫

∫ ∫ ∫

P

  

 
We can also find the marginal density of R as  
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

, 0

0 0

0

,

.

1

1 1
1

S S

s r
R R S r s

r s r r
r r

r

r
r

f r f r s e

e e ds e e

e

λ µ

µ λ µ λ

λ µ

λ µ λ

λ µ λ λ µ

λ µ

− +
≤ ≤ ≤∞

Ω Ω

∞
− − − −

≤ ≤∞ ≤ ≤∞

− +
≤ ≤∞

= = +

= + = +

= +

∫ ∫

∫   

 
Thus, R follows a negative exponential measure with parameter .λ µ+  We can easily compute 
that a heart attack occurs in the [ ]0,T  interval as  

( )1 .Te λ µ− +−  The marginal survival distribution, ( )Sf s  can also be computed, 
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( ) ( ) ( ) ( )
, 0, 1

S R

s r
S R S r sf s f r s e dr dsλ µλ µ λ − +

≤ ≤ ≤∞
Ω Ω

= = +∫ ∫  

 
Continuing, 
 

( )

( ) ( )

0 0
0

0

1

1 .

1 1

1

s
s r s s

s s

s s
s

e e dr e e

e e

λ µ λ µ

λ µ

λ µ λ µλ µ λ
µ µ

λ λ µ
µ

− − − −
≤ ≤∞ ≤ ≤∞

− −
≤ ≤∞

+ +
= = −

= + −

∫
  

We can compute [ ]SE  as 
 

[ ] ( ) ( )

( ) ( )

( ) ( )

( )
( )

0

0 0

0 0

22

1 ds

1 1

1
S S

s s
s

ss

ss

S sd s e e

se ds se ds

se ds se ds

λ µ

λ µλ

λ µλ

λ λ µ
µ

λ λ µ
µ

λ λ µ
µ

λ λ µ
µ λ λ µ

− −
≤ ≤∞

Ω Ω

∞ ∞
− +−

∞ ∞
− +−

= = + −

 
= + − 

 
 

= + − 
 
 

= + − 
+  

∫ ∫

∫ ∫

∫ ∫

E P

  

 
relying on what we know about the gamma function. We can compute the probability a death 
occurs in time [ ]0,T  as  

[ ] ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

0

1

1 1

1 1 .

T
s s

TT

TT

S T e e ds

e e

e e

λ µ

λ µλ

λ µλ

λ λ µ
µ

λ µ λλ
µ λ µ

λ µ λ
µ µ

− −

− +−

− +−

≤ = + −

+  
= − − − + 

+
= − − −

∫P

 

With these marginal results available to us, we can compute the conditional probability density 
functions. For example the rule that governs the probability of a death given the infarct time or 

( )| |S Rf s r  is 
 

( ) ( )
( )

( ) ( )

( ) ( )
( ), 0

| .

0

,
| =

1 11
s r

s rR S r s
S R r sr

R r

f r s e
f s r e

f r e

λ µ
λ

λ µ

λ µ λ
λ

λ µ

− +
− −≤ ≤ ≤∞

≤ <∞− +
≤ ≤∞

+
= =

+
  

This is a negative exponential random variable, with its lower bound truncated at .s r=  The 
conditional distribution of ( )| |R Sf r s is 

( ) ( )
( )

( ) ( )

( ) ( )

( )

, 0
|

0

0

,
|

1

= .
1

1
1

1

s r
R S r s

R S
s sS

s

r

r ss

f r s e
f r s

f s e e

e
e

λ µ

λ µ

µ

µ

λ µ λ
λ λ µ
µ

µ

− +
≤ ≤ ≤∞

− −
≤ ≤∞

−

≤ ≤−

+
= =

+ −
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This is another truncated negative exponential distribution, “trapped” between 0 and s. It is these 
types of distributions that are commonly used in designing clinical trials where the probabilities 
of events must be estimated to compute the minimum number of subjects required for the study.  
 
Next sections 
Uniform and Beta Measure 
Cauchy, Laplace, and Double Exponential 
Ordering Random Variables 
Normal Measure 
Compounding 
F and T Measure 
Asymptotics 
Tail Event Measure 



  352 
 

 
 
 
 
 
 
 

Uniform and Beta Measure  
 
 
The uniform probability distribution is perhaps one of the easiest distributions using the concept 
of measure as interval length, and is a natural one to start with.  We will begin with some simple 
concepts first, providing some examples of how this function is used. In doing so, we will 
provide an introduction to what is commonly known as the transformation of variables, and also 
begin to work with some simple linear combination of random variables. We will then introduce 
the family of beta distributions, a family of probability functions of which the uniform 
distribution is a member. 
 
Prerequisites 
Properties of Probability 
Gamma Function 
Measurable Functions 
Measure and Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Introduction to Continuous Probability Functions 
 
Introduction 
The hallmark of the uniform probability distribution is the observation that intervals of equal 
length have equal probability (Figure 1).*  
 

 

                                                 
* This is Lebesgue measure. 
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We define uniform measure (the probability function) as  
 

1( ) 1X a x bf x
b a ≤ ≤=

−
 

 
and say that X follows a U(a, b) distribution. We can see at once that  
 

1 1 1 1.1 1 b

a x b a x b
a

b ad dx
b a b a b a b a≤ ≤ ≤ ≤

Ω Ω Ω

−
= = = = =

− − − −∫ ∫ ∫ ∫P  

 
 
Probability and cumulative distribution function 
In order to find c X d  < <P  when a c d b≤ < ≤   we write a 1X c X d< <

 
 E  and compute 

1 1

1 1 1

.

1 1 1 1

1 1

1X c X d c X d a x b c X d a x b

d

c X d c X d
c

dx dx
b a b a

dx dx dx
b a b a b a
d c
b a

< < < < ≤ ≤ < < ≤ ≤
Ω Ω

< < < <
Ω Ω

  = =  − −

= = =
− − −

−
=

−

∫ ∫

∫ ∫ ∫

E

  

 
Use of the element functions may appear a bit tedious, but they help us by keeping the regions of 
measure clear and unambiguous.  Expanding on the previous example, we can see that the 

cumulative distribution function ( )XF x  is simply ( ) 1X a x b
x aF x
b a < <

−=
−

 and is a linear function of 

x. 
 
Example – Laceration lengths 
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Assume in a rural emergency department that the lacerations of patients arriving for wound 
repair are uniformly distribution between 1 and 6 cms. What is the probability that lacerations 
are greater than 4 cms in length?  

This is simply  

4 6 4 6 4 6 1 6

6

4

14 6
5

1 2.
5 5

1 1 1 1x x x xx d dx

dx

< < < < < < < <
Ω Ω

     < < = = =

= =

∫ ∫

∫

P E P
 

If we assume that laceration lengths are independent of each other, what is the probability that of 
the next twelve patients, no more than five have lacerations as long or longer than 4 cms? 
 For this probability we return to the binomial distribution, where a “success” is defined as 
a laceration of at least four cms in length.  The uniform distribution supplies this probability and 
we write 
 

[ ] ( ) ( )
5

5 12

0

12
5 0.40 0.60 0.665.k

k
Y

k
−

=

 
≤ = = 

 
∑P  

 
While we saw that the ultimate probability problem to be solved was one involving a binomial 
random variable, its probability needed to be supplied by the uniform distribution. 

█ 
 

Moments of the uniform distribution 
Means and variances from the uniform distribution are readily available. To compute ,X  E  we 
simply write 
 

( )
2 2

1 1

22

1 b

a x b
a

X xd x xdx
b a b a

b a b a
b a

≤ ≤
Ω Ω

   = = =
− −

− += =
−

∫ ∫ ∫E P
  

 

The variance requires some additional algebra but can be shown to be ( )2

.
12

b a−
  

 
Layered cake:  Continuous variables 
Recall that we demonstrated for nonnegative discrete random variables, [ ] [ ]

0
.

k
X X k

∞

=

= >∑E P  The  

analogue for continuous nonnegative random variables is [ ]
0

1 ( ) .XX F x dx
∞

= −∫E   

The proof is based on the observation that there are multiple (in this circumstance, there 
are two relevant) ways to take the measure of a region. Begin by writing  

0 0

1 ( ) ( ) .X X
t

F x dx dt f x dx
∞ ∞ ∞

− =∫ ∫ ∫  This divides the region of nonnegative reals into two region, 

,t x≤ ≤ ∞  and 0 .t≤ ≤ ∞   Also note the difference in the measures. The random variable  X is 
using its probability density as the measuring tool, but t is simply using Lebesgue measure, or 
measure as interval length.  
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Yet, the same region may be mapped as 0 x t≤ ≤  and 0 .x≤ ≤ ∞  Thus, we may continue 
by writing 
           

0 0 0 0

1 ( ) ( ) ( ) .
x

X X X
t

F x dx dt f x dx f x dx dt
∞ ∞ ∞ ∞

− = =∫ ∫ ∫ ∫ ∫  

 
The measuring tools have stayed the same, but the regions have changed. We may finish as  

[ ]

0 0 0 0

0

1 ( ) ( ) ( )

( ) .

x

X X X
t

X

F x dx dt f x dx f x dx dt

xf x dx X

∞ ∞ ∞ ∞

∞

− = =

= =

∫ ∫ ∫ ∫ ∫

∫ E  

And we have the layered cake demonstration for continuous random variables.* 
 
Transformation of  random variables 
Commonly we will find that we are not ultimately interested in a random variables whose 
probability function we know, but instead in a random variable related to one that we know. In 
order to obtain the function in which we have interest, we must become facile with converting or 
transforming one random variable to another.  
 Let’s start with the random variable X that follows a U(0,2) distribution, allowing us to 
write 0 2

1( ) .
2
1X xf x < <=  This measuring tool has all of the properties that we have demonstrated 

thus far in this section. Now suppose we have a new random variable, 3 .Y X=  What is the 
probability distribution of , ( )?YY f y   
 Before we begin a formal evaluation, we can think through what we would expect. The 
minimum value of Y will be zero, since this is the minimum value of x. However, the maximum 
value will be (3)(2) = 6, three times the maximum value of X. Nothing about this transformation 
suggest that we will get away from intervals of equal length having equal probability, but the 
probability will need to be spread out covering not just (0, 2) interval but the (0, 6) interval.  
 Now, how can we demonstrate that? There two new ways that we will explore in this 
section.† The first is to remember that if we find the cumulative distribution function ( )YF y  and it 
is continuous, we only need differentiate it to obtain the probability density function.  
Remembering that for 3 ,Y X=  we begin 
 

( ) 3 .YF y Y y X y     = ≤ = ≤P P  
   
Note here that we have changed the random variable that we are working with from Y to X. 
Continuing, we have  
 

[ ]3 .
3 3X
y yX y X F   ≤ = ≤ =      

P P  

 
                                                 
* If it is true that  the measure theoretic approach covers both discrete and continuous random variables, then it 
stands to reason that one measure theoretic approach to the layered cake observation would suffice. This is the case.  
† A third way is to find the moment generating function of the new randon variables Y that we have already 
discussed 
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So we now have the relationship ( ) .
3Y X
yF y F  =  

 
  

 
We know though that if W is U(a, b) then the cumulative distribution function  that 

( ) .1W a W b
w aF w
b a < <

−
=

−
In this case 0 2( ) ,

2
1X X

xF x < <=  and therefore 0 6.3 6
1X Y

y yF < <
  = 
 

 Note how the 

region of the element function changed now that we are writing  the cumulative distribution 
function as a function of y. Since 0 6( ) .

6
1Y Y

yF y < <=  is a smooth function with existing derivatives 

on 0 6,y≤ ≤  we write 0 6
( ) 1( )

6
1Y

Y Y
dF yf y

dy ≤ ≤= =  

Which is the density for a U(0,6) random variable.  
 

Another approach is to use the following helpful formula from transformation of variable  
 

[ ]( ) ( )Y X x yf y f y dx dy  = → Ω → Ω   
 

This is a transformation from X to Y. It contains three components. The first is to write the 
probability density in X in terms of Y. The second is to include the derivative, which is the scale 
factor. The third component changes the set on which X has positive probability to that which 
has Y. In this example we have  
 

0 6 0 6
1 1 1( ) ( )
2 3 6

1 1Y X y yf y f x < < < <= = =  

 
As another example, assume X follows a U(0,1) distribution. Let ( ) .Y a b a X= + −  If we use the 

density approach we begin with 0 1( ) .1X xf x < <=  Consider first the new range of y. For 0,x =  then 

,y a=  and for 1, .x y b= =  Also, Y aX
b a

−
=

−
  then .dYdX

b a
=

−
   We now have 

1( ) ,1Y a Y bf y
b a < <=

−
and we have seen how we can convert a U(0,1) to a U(a, b).  

 As another example, let X follow a U(0,1) distribution. Let Y X= +  so the 
transformation is one to one. What then is ( )?yf y  

The X+  is between 0 and 1 for 0 1,X< < so the region does not change. Since 2X Y=  
then 2dX Ydy=   and we write ( ) 0 12 .1Y yf y y < <=  We can see that this integrates to one on (0,1).  

 However, suppose we let ?W X=  Although X is nonnegative, W is not. A methodologic 
approach is to find the density for 0y ≥  and 0,y <  and then make the adjustment for the two 
different mappings.  

We already have the solution for positive  Y > 0. For Y < 0, we note that , 1 0,Y− ≤ ≤  

( )2 ,X Y= −  2 ,dX Y dy=  and we would have ( ) 1 02 .1Y yf y y − < <= So our first attempt at the solution 
would be  

 

( ) 0 1 1 02 2 ??1 1Y y yf y y y< < − < <= +  
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However, the one to two mapping needs to be taken into account. We do this by halving the 
probability for each region. The ½ is needed to ensure that the measure over the sample space is 
one. We therefore conclude 
 

( ) 0 1 1 0.1 1Y y yf y y y< < − < <= +  
 

Which integrates to one on the set 1 1.Y− ≤ ≤   

 It is very easy to fall into the trap of simply computing ( ) ( )Y X
dxf y f y
dy

= when carrying 

out transformations, implicitly assuming that [ ]( ) ( )Y Xf y f y dx dy= → .  However, without explicit 
consideration of the region, it is all too easy to obtain the wrong result, never being quite sure 
why it was wrong.  In order to be sure that the entire transformation is covered, it is critical to 
consider the region as well, or  

[ ]( ) ( ) .Y X x yf y f y dx dy  = → Ω → Ω   
 
Probability integral transformation 
Perhaps one of the most useful transformation involving the uniform distribution is not the 
transformation away from the uniform distribution but a transform into it. Let X have a 
probability distribution with cumulative distribution function ( ).XF x  Let’s define the new 
random variable ( ).XY F x= What is the actual probability distribution of Y? 

 Here, the experiment is to choose a value of x randomly, then compute ( ).X xF  We know 
at once that 0 1.Y≤ ≤  Is there anything else that we can deduce?  Using the cumulative distribution 
approach, we can calculate 
 

[ ] [ ] ( )
( )( )

1

1

( ) ( )

.

Y y Y y x y x y

y y

−

−

 = ≤ = ≤ = ≤ 

= =

F P P F P F

F F
 

 
This is the cumulative distribution function of the U(0,1) distribution. This transform, known as 
the probability integral transformation, is the basis for converting uniformly distributed random 
variables which are commonly easy to generate into random variables that follow more complex 
distributions.  
 
Sums of uniform random variable 
The distribution function technique just discussed is very helpful when considering the sums of 
uniform random variables. These types of examples afford fine practice in managing the event 
space, which in this case is the region of integration.  Letting  X and Y are i.i.d. U(0,1), the 
complete computations for the probability density function for X + Y, X – Y, XY and X

Y
 are 

available,  Taking the result from this work, we that if ,Z X Y= +  then  
 

( )0 1. 1 2( ) 2 .1 1Z z zf z z z≤ ≤ < ≤= + −  
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We first note that this is not the density for a uniformly distributed random variable. In fact, the 
density increases to a value of 1, then decreases to zero for the largest possible value z = 2. We 
also see that there is a radical departure in the shape of the distribution (Figure 2). 
 

 
 

 
 
 
The uniform distributions from which the random variable Z was formed  provide equal 
probabilities for equal interval lengths, regardless of the location of the interval on [0,1]. 
However, the density of Z is quite different. It places higher probability on intervals closer to 
one, with lower probabilities in the intervals closer to the extremes. For example. If we want to 

find 1 ,
2

Z ≤  
P  we compute

( )1 1 1 0 1. 1 20 0 0
2 2 2

1 1
22 2

0 0

1 2 .
2

1 .
2 8

1 1 1 1 1
x x

z zz z z
Z d z z

zzdz

≤ ≤ < ≤
≤ ≤ ≤ ≤ ≤ ≤

Ω Ω

    ≤ = = = + −       


= = =



∫ ∫

∫

P E P

  

Another interval of equal length is 3 5 .
4 4

x≤ ≤  To compute 3 5 ,
4 4

x ≤ ≤  
P  we find 

 

( )3 5 3 5 3 5 0 1. 1 2
4 4 4 4 4 4

3 5 2
4 4

1 1 1 1 1
x x

z zx x x
x d z z≤ ≤ < ≤

≤ ≤ ≤ ≤ ≤ ≤
Ω Ω

    ≤ ≤ = = = + −       
∫ ∫P E P  

Continuing 

( )
5 5

11 2 24 4

33 1 144

2 2
2 2

1 9 10 25 1 72 .
2 32 4 32 2 16

z zzdz z dz z
  

= + − = + −  
  

     = − + − − − =     
     

∫ ∫
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It’s useful to compare  
3 5

7 164 4 3.5.
1 1 80
2

x

x

 ≤ ≤   = =
 ≤ ≤  

P

P
For intervals of length, the probability of the 

central interval is 3.5 times as large as the probability as the extreme interval. This tendency to 
construct the central movement of probability from probability distributions that have no 
particular property of central tendency is at the heart of the central limit theorem, perhaps the 
most useful probability theorem of them all.  
 
The Beta distribution  
This distribution represents a family of distributions. It is the first of several distributions that we 
will discuss that has two parameters, α and β. It’s probability density function ( )Xf x  is 
 

( )
( ) ( ) ( ) 11

0 1( ) 1 1X xf x x x β−α−
≤ ≤

Γ α + β
= −

Γ α Γ β
 

 
Note that 1α = β =  reduces this to the U(0,1) distribution.  

The demonstration that this function integrates to one requires the use of double integrals 
a transformation and is straightforward. It is worth reviewing as it will take some of the mystery 
out of this distributional form.  
 The distribution has many shapes, governed by its two parameters (Figure 3).This 
flexibility has broadened its use, particularly in Bayesian modeling. 
 

 
 

 
Moments of the beta distribution 
Computation of the moments of the beta distribution are not only useful for their results, but for 
the use of a tool of a great interest in computing probabilities. Let’s begin with the first moment 
of a random variable X that follows a beta (α, β) distribution.  
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[ ] ( )
( ) ( ) ( )

( )
( ) ( ) ( )

1
11

0

1
1

0

1

1

X

X xd x x x dx

x x dx

βα

βα

α β
α β

α β
α β

−−

Ω

−

Γ +
= = −

Γ Γ

Γ +
= −

Γ Γ

∫ ∫

∫

E P
  

 

The “trick” is so see that the term in the integrand ( ) 11x x −− βα  is “almost the density of a beta 

distribution. We  need the constant 
( )

( ) ( )
1

1
Γ + +

Γ + Γ
α β

α β to make it so. Since that is not the constant we 

already have, we simply remove the present constant from the integral, multiplying the resultant 

integrand by  

( )
( ) ( )
( )

( ) ( )

1
1

1
1

Γ + +
Γ + Γ
Γ + +

Γ + Γ

α β
α β
α β

α β

 to keep the equality. Thus,
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( )
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( ) ( ) ( )

( )
( ) ( )
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( )
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1
1
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−

−
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= −

Γ Γ
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= −

Γ Γ

Γ + Γ + Γ Γ + +
= −

Γ Γ Γ + + Γ + Γ

Γ + Γ + Γ
=

Γ Γ Γ + +

Γ + Γ +
=

Γ + + Γ

∫

∫

∫

E βα

βα

βα

α β
α β

α β
α β

α β α β α β
α β α β α β

α β α β
α β α β

α β α
α β α

 

 
And noting that ( ) ( ) ( )1Γ + + = + Γ +α β α β α β and ( ) ( )1 ,Γ + = Γα α α we can further simply to see 

[ ] .X =
+

E α
α β

 

 We can carry out this same style of computation to find 
( )

( )
( )

( )
.k k

X
k

Γ + Γ +
  =  Γ + + Γ

E
α β α

α β α  

Thus 
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( )( ) ( )

( ) ( )
( )

( )
( )( )

2 1
1

1
.

1

X
Γ + + Γ

  =  + + + Γ + Γ

+
=

+ + +

E
α β α α α

α β α β α β α

α α
α β α β

 

 
We now find 
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( )( )

( ) ( )
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1

X X X = − 
+
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+ + + + + +

+ + + +
= −

+ + + + + +

=
+ + +

Var E E
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α β α β α β
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α β α β α β α β
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α β α β α β α β
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Variance of the Uniform Distribution 
 

Let 1( ) .1X a x bf x
b a ≤ ≤=

−
  We already identified the mean of this distribution. To find its variance 

we begin with [ ] [ ]2 2 .X X X = − Var E E  
 

( )
3 3

2 2 2 21 1
3

1 b

a x b
a

b aX x d x x dx
b a b a b a≤ ≤

Ω Ω

−  = = = =  − − −∫ ∫ ∫E P  

 
Noting that ( )( )3 3 2 2 ,b a b a a ab b− = − + +  then 

( )( )
( )

( )2 2 2 2
2 .

3 3
b a a ab b a ab b

X
b a

− + + + +
  = =  −

E  

We can now write 
 

[ ] [ ] ( )

( )

( )

2 2 2
2 2

2 2 2 2

22 2

3 2

4 4 4 3 2
12

2
12 12

a ab b b aX X X

a ab b a b ab

b aa ab b

+ + +  = − = −     

+ + − + +
=

−− +
= =

Var E E
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Functions of Two Uniform Random 
Variables  

 
The following examples are excellent examples of the need to pay attention to pay to the regions 
of interest, as well as in some simple multiple integration. 
 
The sum of two i.i.d. U(0,1) 
Let X and Y be i.i.d. U(0.1) random variables. Our goal is to find the distribution of .Z X Y= +  
We will use the distribution approach to first identify the cumulative distribution function of Z, 

( )ZF z  and then, if a derivative exists, differentiate to obtain the density.  
 Since X and Y are independent, we can write their joint probability density function as the 
product of the individual ones, or ( ), 0 1 0 1, .1 1X Y x yf x y < < < <=   
 Since we are examining a function of two random variables, we will need to conduct not 
just one integral but two. This is called a double integral. We will manage this by essentially 
converting the double integral into an iterated integral, evaluating this system by first integrating 
over one of the variables, keeping the other constant, then finally over the second integral, 
keeping the first constant. The order of the integrals is up to us, and we chose one to simplify the 
evaluations.  This is called Fubini’s Theorem.  A basic example of this conversion from a double 
integral to an iterated integral would be to show that the integral over the uniform square (the 
square with vertices (0, 0), (1,0), (1,1), and (1,0)) is one. We write 
 

[ ] ( ),
( , ) uniform square

1 1

0 1 0 1
( , ) uniform square 0 0

( , ) uniform square ,

1.1 1

X Y
X Y

x y
X Y

X Y f x y

dy dx

⊂

< < < <
⊂

⊂ =

= = =

∫∫

∫∫ ∫ ∫

P

  

 
Note that we converted the iterated integral over the joint region into a double integral, 

one over the region of X, the second over Y. 
Before we proceed with the computation of the cumulative distribution function of the 

sum, do any formal calculations, or sketch out any integrals, we must first understand the region 
that shapes the event.  We will find that this process is critical to performing the correct 
computations.  
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In this particular circumstance, we first realize that while each of X and Y are bounded by 
one, the sum is bounded by two. The distribution approach to identifying the density function of 
the sum requires us to find [ ],X Y Z+ <P  so this region’s configuration is critical to the solution 
of the problem. However, we see the shape of this region depends on the value of Z (Figure 1).  

For any 1,Z ≤  the region is simply a triangle,  and each portion of this region has positive 
probability (Figure 1). Managing this region should pose no difficulty.  

However, the situation is more complicated for 1 2.Z< <    Here, only a portion of the 
region where X Y Z+ <  has positive probability and this area of integration poses a challenge.  
However, it does appear that there is a triangle region that reflects the event .X Y Z+ <  It may 
be best to compute the probability of this region, then compute its complement.  

In any event, at least at first blush, it appears that the geometry of these regions are quite 
different. It may be prudent for us to proceed under the assumption that these two different 
circumstances should be treated as different cases.  We will mark Case 1 as 1.Z ≤   and Case 2 as 
1 2.Z< ≤   
 

 
 
Case 1: 1.Z ≤  
We can examine this circumstance in more detail (Figure 2). 
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The computation for this case is as straightforward as we envision.  Keeping in mind that z is a 
constant, we write 
 

[ ] ( )

( )

, 0 1 0 1
0 0

2 2 2
2

0 0

,

2 2 2

1 1
z yz

X Y x y
X Y Z X Y Z

zz

X Y Z f x y dy dx

y z zz y dy zy z

−

< < < <
+ ≤ + ≤

+ ≤ = = =

 
= − = − = − = 

 

∫∫ ∫∫ ∫ ∫

∫

P

  

 

So 
2

0 1( ) .
2

1Z z
zF z < ≤=  Note that ( )0 0ZF =  which we expect. We also observe that ( ) 11 .

2ZF =   

 
Case 2: 1 2.Z< ≤   
As we discovered earlier, this region bears closer inspection (Figure 3).  
 

 
 

The direct computation of [ ]X Y Z+ ≤P  is complicated by

 
 
 
 
 
 
 
the shape of this region. We will instead compute [ ],X Y Z+ >P and then add the additional step 

[ ] [ ]1 .X Y Z X Y Z+ ≤ = − + >P P  We begin with  

[ ] ( )

( )

1 1

, 0 1 0 1
1

11 2

1 1

,

1 ( 1)
2

1 1X Y x y
X Y Z X Y Z z z y

z z

X Y Z f x y dy dx

yz y dy z y

< < < <
+ > + > − −

− −

+ > = = =

 
= − + = − − 

 

∫∫ ∫∫ ∫ ∫

∫

P

 

Continuing, 
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[ ] ( ) ( ) ( )

( ) ( )

2
2

2

11 1 1
2 2

11 1 .
2 2

z
X Y Z z z

z
z

 −
+ > = − − − − − 

  

−
= + − −

P

 

 
So, our presumptive finding for the cumulative distribution function when Z > 1 is 

( ) ( )2

1 2

11( ) 1
2 2

1Z Z

z
F z z < ≤

 −
= + − − 

  
. Note that ( ) 1ZF z =  for 2,z =  a result that we would expect. 

In addition, ( ) 11
2ZF =  which is what we also found for Case 1. Thus, we write 

 

( ) ( )22

0 1 1 2

11( ) 1
2 2 2

1 1Z z Z

zzF z z< ≤ < ≤

 −
= + + − − 

  
  

 
We now take a derivative to find the probability density ( ).Zf z  For 0 1,z≤ ≤  we find 

0 1.( ) 1Z zf z z ≤ ≤= For the larger values of z, we compute  

( ) 1 22 .1 zz < ≤− We can now write 
 

( )0 1. 1 2( ) 2 .1 1Z z zf z z z≤ ≤ < ≤= + −  
 

So the sum of two i.i.d. U(0,1) random variables is not uniform. Some of the implications of this 
finding are discussed in the uniform distribution section.  
 
The difference of two U(0,1) random variables 
Having now established a motif for managing this style of U(0,1) variable manipulation, we can 
compute the distribution of ,Z Y X= −  where X and Y are each independent and i.i.d. U(0,1).  

The range is different, with Z now going from -1 to 1. We first consult a figure to explore 
the regions of interest. (Figure 4) 
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While the region of interest is the same, the integration that we must carry out is different.  For 

1 0,z− < ≤  the probability of the region where X Y Z+ ≤   is straightforward to evaluate, and we 
write 
 

[ ] ( )

( )

1 1

, 0 1 0 1
0

11 2 2

0 0

,

(1 )1 (1 ) .
2 2

1 1
z

X Y x y
X Y Z X Y Z y z

zz

X Y Z f x y dy dx

y zy z dy z y

+

< < < <
+ ≤ + ≤ −

++

+ ≤ = = =

  +
= − + = + − = 

 

∫∫ ∫∫ ∫ ∫

∫

P

  

 
Note that when 1, ( ) 0,Zz F z= − =  a finding that tracks with our intuition. Also, when 

10, ( ) .
2Zz F z= =  

 
To compute ( )ZF z  for positive z, an evaluation of the area suggest that we might first compute 
1 ( ).ZF z−   
 

( )

( )

1

, 0 1 0 1
0

11 2 2
2

2

1 ( ) ,

1
2 2 2

1 ,
2 2

1 1
y z

Z X Y x y
X Y Z X Y Z z

z z

F z f x y dy dx

y zy z dy zy z z

z z

−

< < < <
+ > + >

− = = =

    = − = − = − − −    
    

= + −

∫∫ ∫∫ ∫ ∫

∫   

 

And 
2 1( ) .

2 2Z
zF z z= − + Note that ( ) 10 ,

2ZF =  which matches with the finding for the cumulative 

distribution function for negative z, and also ( )1 1,ZF =  which again confirms our intuition. Thus 
we may write 
 

( )
2 2

1 0 0 1
(1 ) 1 .

2 2 2
1 1Z z z

z zF z z− ≤ ≤ < ≤

 +
= + − + 

 
 We now compute 

( ) ( ) ( ) ( )1 0 0 1z +1 11 1Z
Z z z

dF z
f z z

dz − ≤ ≤ < ≤= = + −   

 
Product of two U(0,1) variables 
This circumstance may at first blush appear to be difficult, but it is among the simplest of all the 
cases that we will consider here. Again, we let X and Y each be U(0,1). We want the probability 
function of .Z XY=  We know that 0 1,z≤ ≤  and a simple diagram convinces us that there is only 
one case to consider (Figure 5). 
 In this circumstance regardless of the value of Z, we are best served by computing the 
complement of the cumulative distribution function. Thus, we find 
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( )

( ) ( )( ) ( )( )

( )

1 1

, 0 1 0 1

1
1

1 ( ) ,

1 ln 1 ln 1 ln

1 ln ,

1 1Z X Y x y
zXY Z XY Z z
y

z
z

F z f x y dy dx

z dy y z y z z z z
y

z z z

< < < <
> >

− = = =

 
= − =  −  = − − −   

 
= − +

∫∫ ∫∫ ∫ ∫

∫  

Or ( )( ) ln .ZF z z z z= −  

 
 
 

Does ( )( ) lnZF z z z z= − make sense? We see that ( )0 0,ZF =  and ( )1 1.ZF =  We proceed to find 

( ) ( )( ) ( )( ) 1 1 ln ln .Z
Z

dF zf z z z
dz

= = − + = −
 

 
 

Quotient of two U(0,1) random variables 
Let X and Y be i.i.d., U(0,1) random variables.  We seek the probability 

density function of their 

quotient
 

.YZ
X

=  We can see the regions of integration of interest by writing this relationship as 

Y ZX= (Figure 6). 
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 Here, as in many of our other cases, we see that there are two cases. We will solve the 
easiest case first for 1Z ≤ , by simply computing 
 

( ) ( )
1

, 0 1 0 1
0

2

0 0

,

1 .
2 2

1 1
z

Z X Y x y
Y Y yZ Z
X X z

zz

YF z Z f x y dy dx
X

y y zdy y
z z

< < < <

≤ ≤

 = ≤ = = =  

  = − = − =  
   

∫∫ ∫∫ ∫ ∫

∫

P

 

 
 
 

We see that for this case ( )0 0ZF =  which makes sense, and ( ) 11 .
2ZF =   

For the case of Z > 1 we compute 
 

( ) ( )
1

, 0 1 0 1
0 0

11 2

0 0

1 ,

1
2 2

1 1
y
z

Z X Y x y
Y YZ Z
X X

YF z Z f x y dy dx
X

y ydy
z z z

< < < <

> >

 − = > = = =  

 
= = = 

 

∫∫ ∫∫ ∫ ∫

∫

P

 

So ( ) 11 .
2ZF z

z
= −  In this case ( ) 11 ,

2ZF = a finding that matches with our earlier case. And since 

Z has no upper bound, ( )lim 1.Zz
F z

→∞
= So we conclude ( ) 1 1

1 ,
2 2
1 1Z z z

zF z
z≤ >= +  and we are ready to 

find the probability density function ( ).Zf z  Compute 

( ) ( )
1 12

1 1 .
2 2
1 1Z

Z z z

dF z
f z

dz z≤ >= = +  
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The Beta Function 
 
 
 
The beta function will be most useful to us when we introduce the beta probability distribution, 
and also when we derive the t and F distributions. Its appearance is daunting at first.  
 
Definition of the beta function 
The beta function is 
 

( )
1

11

0

( , ) 1B x x dxβ−α−α β = −∫  

And the probability distribution in which we are ultimately interested is 
 

( )
( ) ( ) ( ) 11

0 1( ) 1 1X xf x x x β−α−
≤ ≤

Γ α + β
= −

Γ α Γ β
 

 
 
We see the difference between these two function is the collection of gamma functions. To gain 
some insight into this, let’s begin with two gamma functions, 

1

0

( ) ,xx e dx
∞

− −Γ = ∫ αα  and 1

0

( ) .yy e dyββ
∞

− −Γ = ∫  We write 

 
( )1 1 1 1

0 0 0 0

( ) ( ) x yx yx e dx y e dy x y e dxdy
∞ ∞ ∞ ∞

− +− − − − − −Γ Γ = =∫ ∫ ∫ ∫α β α βα β  

 
using Fubini’s theorem to write an iterated integral as a double integral. 
We then carry out the transformation ( ); 1 .x vw y v w= = −  This is a two variable to two variable 
transformation. Following the rules we discussed in the uniform distribution discussion of 
transformation of variables. We write the transformation as  
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( ) ( ) ( )( ), , , ,, , , , 1 1V W X Y x y v wg v w g v w x y v w= → →J  
 

To manage the region of integration. We first write v x y= +  and .xw
x y

=
+

  Thus, on the set 

where 0 x≤ ≤ ∞  and 0 ,y≤ ≤ ∞ then 0 ,v≤ ≤ ∞  and 0 1.w≤ ≤  
 
 Proceeding, we note  
 

( )
1

, ,

x y
w wv vx y v w v

x y v v
w w

∂ ∂
−∂ ∂→ = = =

∂ ∂ −
∂ ∂

J   

 
Thus  
 

( ) ( ) ( )( )
( ) ( )( )

( )

, , , ,

11
0 0 1

11 1
0 0 1

, , , ,

1

1

1 1
1 1

1 1

V W X Y x y v w

v
v w

v
v w

g v w g v w x y v w

wv v w e v

w w v e

β−α− −
≤ ≤∞ ≤ ≤

β−α− α+β− −
≤ ≤∞ ≤ ≤

= → →

= −

= −

J

 

 
( )

( )

( )

,

11 1
0 1

11 1
0 1

( ) ,

1

1 .

1

1

V

V

V

W V W

v
w

v
w

g w g v w dw

w w v e dv

w w v e dv

Ω

β−α− α+β− −
≤ ≤

Ω

β−α− α+β− −
≤ ≤

Ω

=

= −

= −

∫

∫

∫
 

Now, we know that ( )1 .
V

vv e dvα+β− −

Ω

= Γ α + β∫  Thus we have  

( ) ( ) ( )
1 1

1 11 1 1

0 0

( ) ( ) 1 1
V

vw w v e dv w w− −− + − − −

Ω

Γ Γ = − = − Γ +∫ ∫ ∫
β βα α β αα β α β  

Thus 

( ) ( )
1

11

0

( ) ( ) 1w w dw−−Γ Γ = − = Γ +∫
βαα β α β  

and  

( ) ( )
1

11

0

( ) ( ) 1w w dw−−Γ Γ
= −

Γ + ∫
βαα β

α β
 

Therefore 
 

( ) ( )
1

11

0

1 1
( ) ( )

w w dw−−Γ +
− =

Γ Γ∫
βαα β

α β
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Moments of the Beta Distibution 
 
We will find the kth moment of the Let’s begin with the first moment of a random variable X that 
follows a Beta (α, β) distribution.  
 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )
( )

( )
( )

( )
( )

1
11

0

1
11

0

1
11

0

1
11

0

1

1

1

1

X

k k k

k

k

k

X x d x x x dx

x x dx

x x dx

k k
x x dx

k k

k
k

k
k

−−

Ω

−+ −

−+ −

−+ −

Γ +
  = = −  Γ Γ

Γ +
= −

Γ Γ

Γ +
= −

Γ Γ

Γ + Γ + Γ Γ + +
= −

Γ Γ Γ + + Γ + Γ

Γ + Γ + Γ
=

Γ Γ Γ + +

Γ + Γ +
=

Γ + + Γ

∫ ∫

∫

∫

∫

E P βα

βα

βα

βα

α β
α β

α β
α β

α β
α β

α β α β α β
α β α β α β

α β α β
α β α β

α β α
α β α
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Transformations of Variables 
 
 
 
Introductory remarks 
We have seen that measure theory is at its root, simply measuring or weighing a collection of 
numbers (be they discrete, an interval, or some other combination) using a measuring tool, which 
in probability we call a probability mass or probability density function.  The source of some of 
these measuring tools may be by direct computation from first principles, e.g., the Poisson 
distribution. Some are from a computation using moment generating functions, or from taking 
direct measures  e.g., the sum of two uniform random variables. However, another useful tool is 
the development of a transformation.  
   
Prerequisites 
Lebesgue Integration Theory and the Bernoulli Distribution 

 
Uniform and Beta Measure 
Continuous Probability Measure 
 
Transformations allow us to move smoothly from the measuring tool of one random variable to 
the measuring tool for another, simply by knowing the relationship between two random 
variables. We will start with some very simple examples to demonstrate how this tool works.  
 Let’s begin with a random variable X that follows a uniform distribution on [ ]0,1 .  Let’s 
suppose that we have the random variable .Y X= −  What is measuring tool for Y? 
 How are these random variables different?  Well to start, our intuition tells us that their 
ranges of possible values are not the same, since  Y takes positive measure only on the [ ]1,0−

range. However, we can use the random variable X to help us find the probability that Y lies in a 

given interval.  For example,  it follows that 3 1 1 3 1 .
4 2 2 4 4

y x   − ≤ ≤ − = ≤ ≤ =      
P P Once we 

made the range change, finding the probability was straightforward. We can write this in terms 
of measuring tools 0 1( ) ,1X xf x ≤ ≤=  and 1 0( ) .1Y yf y − ≤ ≤=  This is the solution. 
 For another example, let 2 .W X=   Being sensitized to the role of the range in a 
transformation of random variables. We see that W is a transformation that maps [ ]0,1  to [ ]0,2 .  
This transformation actually does some “stretching”, and to find probabilities for W we have to 
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“compress” For example, [ ] 1 11 2 1 .
2 2

w x ≤ ≤ = ≤ ≤ =  
P P We must take this compression 

factor of two into account.  
Essentially, we find probabilities for w by using the measuring tool for x and then doing 

this compression, plus consideration of the range of w. This compression can be generally 

expressed as taking the derivative of w with respect to x. In this case , .
2 2
w dwx dx= = This is the 

additional ingredient we needed for the transformation, and we can write  0 2
1( ) .
2
1W wf w ≤ ≤=  

 Now consider the example of a random R that assigns measure to the [ ]0,1 , in accordance 
with the tool 0 1( ) 2 .1R rf r r ≤ ≤=  Now, let’s define  10 .S R=   What is  [ ]1 7 ?r≤ ≤P  How do we 
find the measuring tool for S?  

 We know the new range is [ ]0,10 . We also know that ,
10
sr =  so .

10
dsdr =  This 

incorporates the compression as we get back to the space of positive measure for r. However, we 

must assess the measuring tool for r in terms of s. In this case this means noting 2 2 .
10 5
s sr  = = 

 
 

Thus ( ) [0 10]2 .
10 10 50

1S s
s ds sf s c ds ≤ ≤

  = =  
  

  

 
Process 
Thus the entire process requires three steps  
 

1. Change the range 
2. Find the scale factor 
3. Replace the original variable in the measuring tool with the new variable. 

 
We can write this symbolically as  
 

[ ][ ]( ) ( ) .S R R Sf s f s dr ds= → Ω → Ω  
 

Applying this formulation directly to our previous problem, we have 

0 10 0 10
1( ) 2 ,

10 10 50
1 1S s s

s sf s ≤ ≤ ≤ ≤
 = = 
 

and we find the measure of the interval [ ]1,7  directly as

77 7 7 2

[1,7] 0 10
1 1 1 150 50 100
49 1 12 .

100 100 25

1 1 s
s s sd ds ds≤ ≤

   = = = =     

= − =

∫ ∫ ∫E P
  

 
 
Let’s try another example. Let X be a random variable with measuring tool 3

0 1.( ) 1X xf x x ≤ ≤=  
Define a new random variable 32 7.Y X= +  We need the measuring tool for Y. Note that for 

0 1,X≤ ≤   7 9.Y≤ ≤  We find 
1 2
3 37 1 7,

2 6 2
Y YX dx

−− −   = =   
   

 and we write 

 



Process 377 
 

 
 

[ ][ ]
31 2

3 3

7 9

1
3

7 9

( ) ( )

7 1 7
2 6 2

1 7 .
6 2

1

1

Y X X Y

y

y

f y f s dx dy

Y Y

Y

−

≤ ≤

≤ ≤

= → Ω → Ω

 − −    =        
 

− =  
 

 

 
 
These transformations which are bijective (i.e., one to one) are straightforward. However 

consider the random variable X with probability density function 1 1,
1( )
2
1X xf x − ≤ ≤=  that is, 

measure is spread uniformly across [ ]1,1 .−  Now define 0 1 1 0.1 1X XY X X X≤ ≤ − ≤ ≤= = −  This 
function maps negative values of X to their absolute value, and positive values to their same 
positive value as well, making this a two to one mapping. We express this by saying if 

1 11X x− ≤ ≤Ω = and 0 1,1Y x≤ ≤Ω = then 0 121X Y x≤ ≤Ω → Ω = Our intuition tells us that intervals of equal 
length have the same probability, as is the case for X, should hold the same under Y.  The factor 
from the derivative is one*  
 
If we were to apply ( ) ( ) [ ] [ ]Y X X Yf y f y dx dy= → Ω → Ω     we would compute. 

[ ][ ]

( )0 1 0 1

( ) ( )

1 (1) 2 .
2

1 1
Y X X Y

x x

f y f y dx dy

≤ ≤ ≤ ≤

= → Ω → Ω

 = = 
 

 

 
 Similarly, let 2.W X=  Then for 1 1, 0 1,X W− ≤ ≤ ≤ ≤ representing a two to one 
mapping.  We keep in mind the factor of 2, noting  
 

[ ] 0 12 .1X W w≤ ≤Ω → Ω =  
 

Then 
1 1
2 21, ,

2
x w dx w

−
= =  and we can conclude 

 
[ ][ ]

( )
1
2

0 1

1
2

0 1

( ) ( )

1 1 2
2 2

1
2

1

1

W X X W

w

w

f w f w dx dw

w

w

−

≤ ≤

−

≤ ≤

= → Ω → Ω

  =   
  

=

 

                                                 
* This is true for the region of interest except for the value x=0, but we are not troubled by this since the probability 
of any one point is zero for this measuring tool. 
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The measure of the [ ]0,1  reals with this tool is one as it should be if W is a proper random 
variable.  
 Finally, to consider an alternative mapping, let X be a random variable with measuring 
tool 0 1( ) ,1X xf x ≤ ≤=  and define the new random variable .Y X=  Here each value of x is 
mapped to two different values of y. This is one to two mapping, and we reflect that as 

[ ] 1 1
1 .
2
1X Y y− ≤ ≤Ω → Ω =  to correct for the expansion . To continue,  we find that 

2 , 2 ,X Y dx y dy= =   and we compute 
 

[ ][ ]

( ) 1 1 1 1

( ) ( )

12 .
2
1 1

Y X X Y

y y

f y f s dx dy

y y− ≤ ≤ − ≤ ≤

= → Ω → Ω

 = = 
 

 

 
Generalization to higher dimensions 
Commonly we will have circumstances where we are not converting just one variable to another, 
but two variables to two or three to three. In the cases of showing that the sample mean and 
variance of a normal distribution are independent, we will need to transform n variables to n 
variables.  

In these circumstances, we are guided by the same principles that served us well for the 
one to one transformations. However, the derivative will be the determinant of a matrix of 
derivatives. In most cases, this will be easy to find.  

If we are creating two random variables V and W from X and Y, then we write   
 

 ( ) ( ) ( ), ,( , ) , , ( , ) , ( , ) .V W X Yf v w f v w J x y v w x y v w=  →  Ω → Ω      
  
Where ( ), ( , )J x y v w →    is the notation that represents the Jacobian that governs the 
transformation of ( ), ( , )X Y V W→  mapping 

We will get much practice with this tool later. 
 
Convolutions 
Determination of the measure of the sums of random variables plays an important role in 
probability (e.g., the central limit theorem). We have several ways in which to manage this 
important function.  

One of them is the identify directly the measure based on geometry. A second is by using 
moment generating functions. A third is through the use of the process of random variable 
transformation. 
 A fourth tool is through the use of convolutions. A convolution builds the desired 
probability up from the relationship between the two random variables.  
  
Finding the measure of a sum using convolutions 
As an  illustration,  recall that we have demonstrated that the sum of two random variables that 
follow binomial measure with the same parameter p is also binomial with the same p parameter. 
However, suppose that this simplifying assumption of a common value of p  is not the case.  
 Let’s first examine the problem from its simplest form. Assume that the random variable 

1X  follows binomial measure with parameters ( )12, p  and 2X  follows binomial measure with 
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parameters ( )22, p independent of 1.X  What is the measure of the random variable 

1 2 ?W X X= +   
The possible values of W  are 0,1,2,3,or 4. Since this is a relatively small number of 

possibilities, we can count how each of these may be achieved and from there compute the 
measure.  
 For example, W can only be zero if both 1X  and 2X  are each zero. We write 

[ ] ( ) ( )2 2
1 20 1 1 .W p p= = − −P   

 Next, 1W =  if either 1 20, 1,X X= =  or 1 21, 0.X X= = Thus 

 
[ ] ( ) ( )

( )( )

2
1 2 2

2
1 1 2

2
1 1 1

1

2
1 1 .

1

W p p p

p p p

 
= = − − 

 
 

+ − − 
 

P
 

  
We find [ ]2W =P  analogously. If we let the notation ,k j  be the joint event that 1X k=  and 

2 ,X j=  then we write 

[ ]2 0,2 1,1 2,0 .W = = + +P  Analogously, we find 
 

[ ]
[ ]

3 0,3 1,2 2,1 3,0

4 0,4 1,3 2,2 3,1 4,0 .

W

W

= = + + +

= = + + + +

P

P
 

 
Note that the joint events all have the common feature that .k j W+ =  This is a 

relationship of which we must take advantage. Begin by writing 

[ ] ( ) ( )
4

1 1 2 2
0

4 , , , , , 4 .
k

W B n p k B n p k
=

= = −∑P   

Identifying the relationship between the entries in the bracket is the heart of the 
convolution. Relying on this development, we conclude that  

[ ] ( ) ( )1 1 2 2
0

, , , , , .
m

k
W m B n p k B n p m k

=

= = −∑P
  

We can proceed analogously for the sum of geometric random variables. Let’s assume 
that we have two independent random variables following geometric measure;   

 

 [ ] [ ]1 1
1 1 1 1 2 2; .k kX k q p X k q p− −= = = =P P   

 
Then,  
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[ ] [ ] [ ] 1 1
1 2 1 1 2 2

0 0

1 1
1

2 211
1 2 2 1 2 2 1 2 2

0 2 2 11

2

1 1

1

m m
k m k

k k
k k

km
m m m

k

W m X k X m k q p q p

p p
p ppq q p q q p q q p

p p pp
p

− − −

= =

−

+

=

= = = = − =

   
− −        = =  −   −  

 

∑ ∑

∑

P P P

 
Convolutions for continuous functions 
The procedure is analogous to that for dichotomous random variables, with the exception that the 
relevant measure is 

 

[ ] ( )

( ) ( ) ( )

1 2

1 2

2

2 1 2 1

1 2 , 1 2

2 1 2 2

,

( ).

X X
x x z

z x

X X X X

W X X z f x x d

f x f x f x z x

+ ≤

−∞ ∞

−∞ −∞ −∞

= + ≤ =

= = −

∫∫

∫ ∫ ∫

P P

F
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Survival Measure: Exponential, Gamma, 
and Related Measures 

 
Introduction 
There are a collection of distributions in biostatistics that receive substantial attention because 
they have been linked to existence durations, or the time that a system stays in any one state.  

The length of time a hospital goes with no patients in its ICU beds, the length of time a 
stem cell retains its pluripotency, the minutes an ambulance goes without a call, the length of 
time an individual lives before death each characterize a system without a state change. There are 
many distributions that characterize this process. Each of them is relatively simple to employ, 
and harken back to our work in the Poisson process. 
 
 
Prerequisites 
An Introduction to the Concept of Measure 
Lebesgue Integration Theory and the Bernoulli Distribution 
Conditional Probability 
General Poisson Process 
Continuous Probability Measure 
Variable Transformations 
 
Development of the thought process  
We will begin by returning to the Poisson process. Assume that subjects arrive at a laboratory for 
a blood draw in accordance with a Poisson process with parameter λ=5 subjects per hour. Then 
we know that the arrivals are independent of each other, and can compute the probability that k 

arrivals occur in time t, [ ] ( )( ) .
!

k
tt

X t k e
k

λλ −= =P For example, the probability that at least twelve 

patients arrive in three hours is  
 

[ ] 15

12

1512 0.815.
!

k

k
K e

k

∞
−

=

≥ = =∑P  

 
Now, what is the probability that no subjects arrive?  

Consider what this means. We are assuming that there was a last arrival some time ago, 
and we are watching the system, awaiting the next one.  We are doing nothing more than 
counting time.  

Now, our intuition also tells us that, given we know the arrival rate, the probability of the 
next event in a block of time is a function of the size of the time block. For example, the fact that 
λ = 5 arrivals per hour means that we would not really expect an arrival one minute after the last 
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one.  However as time passes the probability of at least one arrival in the time interval t should 
grow. In fact, if we can wait long enough, the likelihood of at least one arrival would be one.  
 Note how the discussion has turned from one about the number of arrivals for which we 
have a measure to one about time. The experiment generating this random variable began with a 
Poisson arrival process. However, now attention has turned to time – time is now the random 
variable. The experiment is no longer counting the number of arrivals. It is instead seeing how 
long we must wait until the next arrival.  

However, it is the Poisson process that helps us find the probability distribution of this 
inter-arrival time. The probability that we have to wait time t until the next arrival  is 

[ ] [ ]0 in (0, ) .tT t K t e λ−≥ = = =P P  Continuing with the idea that T is the random variable, then we 
can also find [ ] [ ] ( )1 1 .t

TT t T t e F tλ−≤ = − ≥ = − =P P  With this continuous cumulative distribution 
function in hand, we can write the probability density function for T,  
 

0
( )( ) .1tT

T t
dF tf t e

dt
λλ −

≤ ≤∞= =  

 
This final formulation is what is known as the negative exponential distribution. Its 

formulation begins as a consequence of the Poisson process. Its parameter is the same as the 
parameter from the Poisson distribution. However, since T is the time between arrivals, it 
sometimes is more useful to focus not on λ  but instead on 1

λ
 or the average time between 

arrivals.   
We can see at once that selecting the range of the random variable  T as all nonnegative 

real numbers is appropriate since 
0

0

1.t te dt eλ λλ
∞

∞− − = − =∫ Examples reveal the richness of 

measuring tools from this exponential family 
 

 
 
 
 
 
 
Negative exponential moments 
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A review of  gamma functions reveals the simple result that 
0

1 ,tt e dtλλ
λ

∞
− =∫  and 2

2
0

2 .tt e dtλλ
λ

∞
− =∫

Thus [ ] 1 ,T
λ

=E  and [ ] [ ]2 2
2 2 2

2 1 1 .T T T
λ λ λ

 = − = − = Var E E  We can find the moment generating 

function ( )X tM  directly as  
 

( )

( ) ( ) ( )

( )

0
0

[ ]
0 0

( )

.1

1
x x

tx tx tx x tx x
X x

t x t x
t

t e e d e e e e dx

e dx t e dx
t t

λ λ

λ λ
λ

λ λ

λ λλ λ
λ λ

∞
− −

≤ ≤∞
Ω Ω

∞ ∞
− − − −

>

 = = = = 

= = − =
− −

∫ ∫ ∫

∫ ∫

M E P
  

 
The memoryless property 
Consideration of conditional distributions for the exponential random variable provides an 
unusual finding.  Let us suppose that X is a random variable following an exp(λ), and we have 
two specific times, s and t, such that0 .s t< < < ∞  What is [ ]| ?X T X s≥ ≥P  
 We know that the unconditional  
 

[ ] 0

.

1 1 1 1
x x

x
X t x t x t x

x t

t

X t d e dx

e dx e

λ

λ λ

λ

λ

−
≥ ≥ ≥ ≤ ≤∞

Ω Ω

∞
− −

 ≥ = = = 

= =

∫ ∫

∫

P E P

 

Then 

[ ] [ ]
[ ]

[ ]
[ ]

( )| .
t

t s
s

X t X s X t eX t X s e
X s X s e

λ

λ

−
− −

−

≥ ∩ ≥ ≥
≥ ≥ = = = =

≥ ≥
P P

P
P P  

 
If we consider that the time line is comprised of times less than s, times between s and t, 

and times greater than t, than the [ ] ( )| t sX T X s e λ− −≥ ≥ =P is wholly related to the time interval 
between s and t. Another way to say this is that what happened before time s does not count. It is 
as though the process actually started not at time zero but at time t and runs to t – s.  

This feature of a stochastic process (that is, a probability process that involves time), is 
characterized as memoryless. It also makes the negative exponential distribution one of the 
easiest distributions to work with because the complications that complex sequences of events 
that occur early in time can sometimes be ignored.  
  
Example: Imaging facility 
Let’s assume that patients arrive to an imaging facility in accordance with a Poisson arrival 
process, with arrival rate λ = 15 patients per hour. Given than 10 subjects have arrived at the 
cardiac magnetic imaging scanner (cMR) in 60 minutes, what is the likelihood that the next 
patient will arrive within the next ten minutes? 

We use the memoryless property of the negative exponential distribution to see that this 
is simply the probability that a patient arrives within ten minutes, or [ ] 1 .tT t eλ≤ = −P  The arrival 
rate scales to 0.25 patients per minute. We therefore compute 

[ ] ( )0.25 (10)10 1 1 0.082 0.918.T e−≤ = − = − =P  



384    Survival Measure 
 
The timing of the first ten subjects did not matter. 

█ 
 
 
Difference of exponential random variable 
A fairly easy result to develop which will permit us to practice with using transformations of 
random variables is to find the distribution of two independent negative exponential random 
variables.  Let 1X follow a negative exponential distribution with parameter 1λ  and 2X  follow a 
negative exponential distribution with parameter 2.λ We seek the distribution of 1 2.Y X X= −  
 We notice that unlike 1X and 2X that must be on the nonnegative reals, Y can be 
negative as well as positive. We could attempt to follow the same approach that was taken for 
identifying the measuring tool for the difference of two uniform random variables, however here 
we will take a different tack. If, for example we let 1W X=  (an admittedly transparent 
transformation), and we had the joint probability density function for Y and ( ),, , ,Y WW f y w we 
would be able to compute ( ) ( ), , .

W

Y Y Wf y f y w
Ω

= ∫ We will obtain ( ), ,Y Wf y w from ( )
1 2, 1 2,X Xf x x

using our transformation of variable technique.  
 We begin by writing 
 

( ) ( )[ ] ( )[ ]
1 2, , 1 2 1 2( , ) , , ( , ) , ( , ) .Y W X Xf y w f y w J x x y w x x y w= → Ω → Ω  

 
We will manage each of the three operations on the right hand side of this equation. Begin with 

1 2Y X X= − and 1W X=  simply means that 1 ,X W= and 2 .X W Y= −  We can write 
 

( )
1 2

1 2
1 2

1 1
, ( , ) 1 1.

0 1

x x
w wJ x x y w x x
y y

∂ ∂
∂ ∂

 →  = = = − =  ∂ ∂ −
∂ ∂

 

The region of positive measure requires close examination. We note as before that .Y−∞ < < ∞  
But also Y W≤ and 0.W ≥ The only way  to reconcile these regions is to write this as 

( )max ,0 .Y W−∞ < ≤ < ∞ Since ultimately, we will need to integrate out W, it looks like it may be 
wise to consider two cases, the first where 0 ,y x−∞ < < ≤ < ∞ and the second where 0 .y x≤ ≤ < ∞  
 The last component we need to identify the distribution of  1 2Y X X= −  is ( )

1 2, 1 2,X Xf x x  
which we write as  

( ) 1 1 2 2 1 1 2 2
1 2 1 2, 1 2 1 2 1 2 0 ,0, .1x x x x

X X x xf x x e e eλ λ λ λλ λ λ λ− − − −
≤ <∞ ≤ <∞= =  

 
Seeing that ( ) ( )1 1 2 2 1 2 1 2 2 ,x x w w y w yλ λ λ λ λ λ λ− − = − − − = − + + we can proceed with  
 

( ) ( )
( )

1 2 2
, 1 2 max ,0 ., 1w y

Y W Y Wf y w e λ λ λλ λ − + +
−∞< ≤ <∞

=  

 
Recall there were two cases. For 0,y−∞ < ≤ we write 
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( ) ( ) ( )

( )

( )

1 2 2

1 2 2

1 22

2

, 1 2 0

1 2 0.
0

1 2 0.
0

1 2
0

1 2

,

.

1

1

1

1

W W

w y
Y Y W Y W

w y
Y

wy
Y

y
Y

f y f y w e

e

e e dw

e

λ λ λ

λ λ λ

λ λλ

λ

λ λ

λ λ

λ λ

λ λ
λ λ

− + +
−∞< ≤ ≤ <∞

Ω Ω

∞
− + +

−∞< ≤

∞
− +

−∞< ≤

−∞< ≤

= =

=

=

=
+

∫ ∫

∫

∫
 

 
For  0 ,y≤ < ∞ we have 

( ) ( ) ( )

( )

( ) ( )

1 2 2

1 22

1 22

, 1 2 0 .

1 2 0 .

1 2
0 . 1 2

1 2

, 1

1

1

W W

w y
Y Y W Y W

wy
Y

y

wy
Y

y

f y f y w e

e e dw

e e dw

λ λ λ

λ λλ

λ λλ

λ λ

λ λ

λ λ λ λ
λ λ

− + +
≤ ≤ < ∞

Ω Ω

∞
− +

≤ ≤ ∞

∞
− +

≤ ≤ ∞

= =

=

= +
+

∫ ∫

∫

∫

 

( )1 22

1

1 2
0 .

1 2

1 2
0 .

1 2

1

1

yy
Y

y
Y

e e

e

λ λλ

λ

λ λ
λ λ
λ λ

λ λ

− +
≤ ≤ ∞

−
≤ ≤ ∞

=
+

=
+

 

 
Thus  

( )

( )

2 1

2 1

1 2 1 2
0 0

1 2 1 2

1 2
0 0

1 2

.

1 1

1 1

y y
Y Y Y

y y
Y Y

f y e e

e e

λ λ

λ λ

λ λ λ λ
λ λ λ λ
λ λ

λ λ

−
−∞< ≤ ≤ ≤ ∞

−
−∞< ≤ ≤ ≤ ∞

= +
+ +

= +
+

 

 
Depending on the choice of parameters (and therefore the likely magnitudes of the two random 
variables whose difference we seek),  this distribution has a variety of shapes (Figure 2.)  
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We can find the probability distribution of the linear combination 1 2Y aX bX= −   (a and b both 
positive constants)  by recognizing that 1 2aX bX W V− = −  where W  follows a negative 
exponential distribution with parameter 1aλ   and V follows a negative exponential distribution 
with parameter 2.bλ   We can apply the previous result to write  
 

( ) ( )2 11 2
0 0

1 2

.1 1b a
Y y y

abf y e e
a b

λ λλ λ
λ λ

−
−∞< ≤ ≤ <∞= +

+
 

 
 
Gamma random variables 
Let’s revisit the previous example where we considered the time until the first arrival at an 
imaging center. Having found that this first arrival time is a random variable that follows a 
negative exponential distribution. We then examined the distribution of the arrival of future 
events, given a sequence of prior arrival times.  

This we saw followed the same negative exponential distribution – what this 
characteristic we called the memoryless property. This means that once we knew the time of the 
first arrival, we could find the distribution of the time of the second arrival.  

However, suppose we do not know the time of the first arrival. What is the distribution of 
the time of the second arrival?  This would be the sum of two random variables, the first being 
the time until the initial arrival and the second being the time of the second arrival. We can show 
formally that the measuring tool or probability density function of this random variable z is  
 

2
0( ) .1zZ zf z ze λλ −

≤ <∞=  
 
A straightforward way to evaluate this is to use the transformation of variables. Let 1X  and 2X  
each follow a negative exponential distribution with parameter .λ We seek the distribution of 

1 2.Z X X= + Allow 1W X=  and plan to find ( ), , ,Z Wf z w  followed by ( ) ( ), , .
W

Z Z Wf z f z w
Ω

= ∫  We will 

obtain ( ), ,Z Wf z w from ( )
1 2, 1 2,X Xf x x  using our transformation of variable technique.  

 We begin by writing 
 

( ) ( ) ( )
1 2, , 1 2 1 2 .( , ) , , ( , ) , ( , )Z W X Xf z w f z w J x x z w x x z w      = → Ω → Ω  
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We will manage each of the three operations on the right hand side of this equation. Beginning 
with 1 2Z X X= + and 1W X=  simply means that 1 ,X W= and 2 .X Z W= − We can write 
 

( )
1 2

1 2
1 2

1 1
, ( , ) 1 1.

0 1

x x
w wJ x x z w
x x
z z

∂ ∂
−∂ ∂ →  = = = =  ∂ ∂

∂ ∂

 

Note that  .0 w z≤ ≤ < ∞  
 The last component we need to identify in the distribution of  1 2Z X X= +  is 

( )
1 2, 1 2,X Xf x x  which we write as  

( ) ( )1 21 2
1 2 1 2

2
, 1 2 0 ,0 ., 1x xx x

X X x xf x x e e e λλ λλ λ λ − +− −
≤ <∞ ≤ <∞= =  

 
Seeing that ( )1 2 ,x x zλ λ− + = − we can proceed with  
 

( ) 2
, 0 ., 1zZ W w zf z w e λλ −

≤ ≤ <∞=  
 
We now simply measure this function on  0 .w z≤ ≤   
 
 

( ) ( ) 2
, 0 .

2 2
0 . 0 .

0

,

.

1

1 1
W W

z
z Z W w z

z
z z

z z

f z f z w e

e dw ze

λ

λ λ

λ

λ λ

−
≤ ≤ <∞

Ω Ω

− −
≤ <∞ ≤ <∞

= =

= =

∫ ∫

∫
 

 
We note that this is related to a gamma function.  We simply let v zλ=  to see that 

0( ) .1vV vf v ve−
≤ <∞= and we can write 

2
2

0 . 0( ) .
(2)

1 1z z
Z z zf z ze zeλ λλλ − −

≤ <∞ ≤ <∞= =
Γ  

 
What about the distribution for the sum of three independent, identically distributed 

random variables?  If we let 1 2 3 ,Z X X X= + +  and then let 1 2 ,Y X X= +  and 1.W X=  Following 
the previous example, we write 
 

,

, ,( ) ( , , ),
Y W

Z Z Y Wf z f z y w
Ω

= ∫  and fall back on our transformation formula 

 

( ) ( ) ( )
1 2 3

, ,

, , 1 2 3 1 2 3 .

( , , )

, , , , ( , , ) , , ( , , )
Z Y W

X X X

f z y w

f z y w J x x x z y w x x x z y w   
   

= → Ω → Ω
 

 
We now proceed with the computation. Begin with  
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1

2

3

x w
x y w
x z y w

=
= −
= − −

 

 
 

( )

31 2

31 2
1 2 3

31 2

1 1 1
, , ( , , ) 0 1 1 1 1

0 0 1

xx x
w w w

xx xJ x x x z y w
y y y

xx x
z z z

∂∂ ∂
∂ ∂ ∂ − −

∂∂ ∂
 →  = = − − = − =  ∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

  

 
 

And 
( )

( )
1 2 3

1 2 331 2
1 2 3

, , 1 2 3

3
0 ,0 ,0 .

, ,

1
X X X

x x xxx x
x x x

f x x x

e e e e λλλ λλ λ λ λ − + +−− −
≤ <∞ ≤ <∞ ≤ <∞= =

 

 
Thus 3

, , 0( , , ) 1zZ Y W w y zf z y w e λλ −
≤ ≤ ≤ <∞= . 

 The elegance of this approach is the selection of z, y, and w, such that the set of positive 
measure permits a smooth integration. We write  
 

, ,

3
, , 0

2 3
3 3 2

0 0 0
0 0

( ) ( , , )

2 (3)

1

1 1 1
Y W Y W

z
Z Z Y W w y z

yz
z z z

z z z

f z f z y w e

ze dwdy e z e

λ

λ λ λ

λ

λλ λ

−
≤ ≤ ≤ <∞

Ω Ω

− − −
≤ <∞ ≤ <∞ ≤ <∞

= =

= = =
Γ

∫ ∫

∫ ∫
 

 
 In fact, continuing in this manner, one can use an induction argument to find the 
distribution of n i.i.d. exp(λ) random variables.  
 Another approach to this problem invokes the moment generating function. We know 
that if X follows an exp(λ), then its moment generating function ( ) .X t

t
λ

λ
=

−
M  We have also 

seen from our initial discussion of  moment generating functions that the moment generating 
function of the sum of independent random variables is the product of their individual moment 
generating functions.  We write the random variable Z as the sum of n i.i.d. exp(λ) random 

variables. Then ( ) .
n

Z t
t

λ
λ

 =  − 
M If we write 1

0( ) ,
( )

1
n

n z
Z zf z z e

n
λλ − −

≤ <∞=
Γ

we have seen that the 

exponential measure of the real line with respect to this particular measuring tool is one. We find 
the moment generating function for this variable as  

( )1 1
0

0

( )

.
( ) ( )

1
Z

Z

tz
Z

n n
t ztz n z n

z

t e d

e z e dz z e dz
n n

λλλ λ
Ω

∞
− −− − −

≤ <∞
Ω

=

= =
Γ Γ

∫

∫ ∫

M P

 

 
Using what we know of working with gamma functions,  we let ( )v t zλ= −  and can compute 
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( )
1

1

0 0

( )
( ) ( ) ( )

n nn n
t zn v

n

v dv nz e dz e
n n t t t n

t

λλ λ λ
λ λ λ

λ
λ

−∞ ∞
− −− − Γ   = =   Γ Γ − − − Γ   

 =  − 

∫ ∫
 

 

So, invoking the continuity theorem, 1
0( ) ,

( )
1

n
n z

Z zf z z e
n

λλ − −
≤ <∞=

Γ
 is the density of the sum of n 

i.i.d. negative exponential random variables with parameter ,λ  and is therefore the distribution of 
the nth arrival.  

 The gamma distribution is commonly written as 1
0( ) .

( )
1

r
r x

X xf x x e
r

αα − −
≤ <∞=

Γ
 Being a 

function of two parameters, it has great flexibility of functional form. (Figure 3). 
 

 
 
 
Moments of the gamma distribution 
The moments of the gamma distribution with parameters α  and r are readily available. We 
simply write. 

1 1

0 0

.
( ) ( )

X

r r
k k k r x r k xX x d x x e dx x e dx

r r
α αα α∞ ∞

− − + − −

Ω

  = = =  Γ Γ∫ ∫ ∫E P    

We now let ,v xα=  see that that region of positive measure does not change, ,dvdx
α

=  and write 

 
1

1 1

0 0 0

1

0

( ) ( ) ( )

( ) 1 ( )
( ) 1 ( ) ( )

r kr r r
r k x v r k v

r k

r
r k v

r k k

v dvx e dx e v e dv
r r r

r k r kv e dv
r r k r

αα α α
α α α

α
α α
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Erlang distribution 
The Poisson model has been instrumental in studying waiting times in many systems, e.g., 
queuing theory, trunk line issues in telephone communications, and electronics. Since waiting 
times are exponential, and the sum of  i.i.d. exponential random variables, follows gamma 
measure, the gamma distribution is particularly important in complex waiting models. A 
particular version of the gamma distribution family is when  r is an integer n. In this case, the 
gamma distribution is traditionally known as the Erlang distribution, named for the father of the 
traffic engineering field. 
 
The Chi-square distribution  
We have seen that the negative exponential distribution is related to the gamma distribution, i.e., 
the negative exponential (λ) then it is gamma ( )1, .λ  Thus the negative exponential distribution is 
a member of the gamma family. The chi-square distribution is simply a gamma distribution with 
its parameter r equal to an integer and its parameter 1 .

2
α =  When we say that the random 

variable X follows a chi square ( )2χ  distribution with k degrees of freedom we are really saying  

that X follows a gamma distribution with 
2
kr =  and 1 .

2
α =  The probability density function is

2

1
2 2

0

1
2( ) .

2

1

k

k x

X xf x x e
k
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≤ <∞

 
 
 =

 Γ 
 

 Its moment generating function is 

( )
2

2
2

1
12( ) 1 2 .1 1 2

2

k

k
k

X t t
tt

−

 
   = = = −   −  −
 

M  Just as the sum of independent gamma distributions ( ),rα  

with the same parameter α is itself gamma, so the sum of independent random variables that 
follow a 2χ distribution with the total number of degrees of freedom being the sum of the 
degrees of freedom of the summands.  

This distribution plays an important role in inferential statistics. In our treatment of 
normal measure, we will see that the square of a standard normal random variable follows the 
chi-square distribution. 

We will see that the measuring tool for the distribution of the sample variance will be 
closely related to this distribution.  
 
Rayleigh distribution 
The Rayleigh distribution is related to the gamma distribution. If we want to find the measure of 

the nonnegative reals using the measuring tool 
2

2 ,
x

xe
−

 we would let 
2

.
2
xy =  For the non-negative 

real line, this is one-to-one transformation and the region of measure remains unchanged.  
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Continuing, we see 2 .
2
dxdy x xdx= =  Thus,  

2

2

0 0

1.
x

yxe dx e dy
∞ ∞

− −= =∫ ∫  The Rayleigh distribution takes 

advantage of this. It’s probability density function  is commonly written as  

The transformation argument just developed shows that this is equivalent to a negative 

exponential distribution. For example, to find  we compute  We allow 

 The interval  maps to  and  Thus, 

 

 
 
Weibull distribution 

We can generalize the Rayleigh distribution by letting our measuring tool be  

We can find probabilities for this distribution by the transformation related to that discussed for 

the Rayleigh distribution.  For example, to find  we need  We allow 

 The interval  maps to  and  Thus, 

 

 
 
Cauchy, Laplace, and Double Exponential 
Ordering Random Variables 
Normal Measure 
Compounding 
F and T Measure 
Asymptotics 
Tail Event Measure 
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The Measure of Ordering  
 
 
 
Prerequisites 
An Introduction to the Concept of Measure 
Lebesgue Integration Theory and the Bernoulli Distribution 
Conditional Probability 
General Poisson Process 
Continuous Probability Measure 
Variable Transformations 
Uniform and Beta Measure 
Survival Measure: Exponential, Gamma, and Related 
 
Our work thus far focuses on the measure of a single or collection of random variables. With the 
exception of examples in using the transformation of variables for distributions such as the 
gamma distribution, we have not troubled ourselves with the size order of the random variables.  

However, an  important component of applied probability is the measure associated with 
the relative order of random variables. When one is formulating dosing strategies for small 
peptides, for example, then it is not sufficient to focus only on the mean dose; the expected 
quantity of the minimum concentration is also an important consideration to avoid the likelihood 
of underdosing.  

 
 

 
Similarly, in a study where one focuses on a change in mean diastolic blood pressure 

between the treatment and the control group, although the mean diastolic pressure may have only 
decreased three or four millimeters of mercury, the movement in the entire distribution of blood 
pressures is substantial. By decreasing the mean diastolic blood pressure, the maximum blood 
pressure is also reduced, and since strokes rates are closely related to blood pressure, decreasing 
the maximum diastolic blood pressure decreases the overall stroke incidence rate.   

The distribution of minimum, maximum, median, and the range of random variables has 
important implications in the implementation and impact of technology in public health. [1] 
 
Some initial terminology 
We will use some familiar lay language in this discussion of random variables. For example, the 
smallest of a collection of n observations is the first order statistic, or the minimum.  

The next largest random variable is the second order statistic, the third largest is the third 
order statistic, and so on. The thn  order statistic is the maximum. The 1stn −  order statistic is the 
penultimate order statistic, and the 2ndn −  is the antepenultimate order statistic.  

The median is the order statistic “in the middle”, i.e., it is the observation that is the 50th 
percentile value in the sample of observations.  
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Rank ordering 
Our work thus far has focused on a collection of random variables 1 2 3, , ,..., .nY Y Y Y  In these 
considerations, be they creatinine measures or LDL cholesterol estimates, we have not 
considered their position based on their magnitude in the sample. For example, no thought has 
been given to the maximum arrival time of an ambulance, for example; only to the measure of 
any one of them.  

Order statistics focus on not just the random variable, but on the magnitude of the 
observation. This chapter’s focus is on the position of the random variable in the random variable 
sequence. As we will see, some of these computations we are already able to carry out.  
  
Example: Two planes are dispatched to pick up and organ for transplantation. They have the 
same flight plan, and leave at the same time from dual runways at the same airport.  What are the 
chances that Plane A arrives before Plane B.  

Let’s assume that the time to arrival of each plane follows a negative exponential 
distribution with parameter .λ  If AT  is the time until the Plane A arrives, and BT  the time until 
Plane B arrives, then we need the [ ].A BT T≤P    

But, before we begin a detailed probabilistic assessment, lets develop some intuition 
about the problem. Each plane has the same distance to fly, and same duration of flight.  

Given they fly independently of each other, begin their flight simultaneously, and have 
the same probability measure of flight time, is there any reason that one should arrive ahead of 
the other?  Although the they might not arrive at exactly the same time, wouldn’t we expect 
Plane A to arrive first approximately 50% of the time? Our intuition suggests that 

[ ] 1 .
2A BT T≤ =P  

 Furthermore, our intuition tells us that there are three possibilities;
; ; .A B A B A BT T T T T T< = >  The second possibility we eliminate since, as we saw from our 

introduction to  continuous probability measure, this event occurs with measure zero.  
As for the remaining two, should they not have equal probabilities if each event follows 

the same distribution?  Can we show this?  
Let's create the function  [ ].1

A BT T>  Then  [ ] [ ] .1
A BA B T TT T >

 > =  P E  Thus 
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e e dt e dt
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E P

  

 
But this computation provides the same solution as for  [ ],A BT T<P  a finding that is ensured by 
the i.i.d. feature of the two random variables. In fact, from a more general sense, when AT  and BT  
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are independent and identically distributed, then these two events should be equally likely. 
Following the previous development, we have  
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This resembles the continuous analogue to the convolution argument. Continuing, 

( ) ( )
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using the probability integral transform to evaluate the last integral in the argument 
 
Complexity of measure heterogeneity 
What simplified the argument above is the assumption concerning the identical nature of the 
measures. When we drop this assumption, the computations can become much more 
complicated.  
 
Example: B cells and viral infections 
While there are over one hundred viruses that have been identified that cause the common cold, 
they each operate the same way. The viral particle, itself many times smaller than a cell, slips 
through the cell membrane, and makes its way to the cell’s nucleus.*  Once there, it invades the 
nucleus, and takes control, commanding the cell to make more viral particles. The cell complies, 
and, zombie-like, devotes more and more of its energy and resources to viral particles. Finally, 
the exhausted cell, depleted of resources, its volume taken up with viruses, bursts, releasing 
thousands of new viral particles that then go on to infect other cells. When enough damage is 
done to the epithelial cells in the nose, symptoms begin. 

The body’s specific response to this is antibodies. 
Antibodies are tiny proteins whose three dimensional shape conforms to that of the agent 

against which it is target. This agent can be a virus, bacterium, fungi, protozoa, or foreign body.  
Special cells, called B cells reside throughout our body. Their job is to make antibodies; 

however, each B cell makes one and only one specific antibody against one and only one foreign 
molecule or antigen. If the virus is recognized by a B cell, that B cell begins its antibody 
production, and also starts to proliferate, producing other B cells that make the same antibody. 
These antibodies along with other body responses (e.g. T cell activation, complement production, 
and cytokine generation) overwhelm the virus, denaturing it before it can enter a cell.  

However, if the B cells take too long to make the antibodies (because no one B cell 
makes the specifically needed antibody and other cells, called undifferentiated B cells have to 
begin de novo to try to make an antibody that matches the viral particle) then the viruses infect 
thousands, and then hundreds of thousands of cells, producing symptoms.   

So, in a sense, the immune system and the viruses are in a race. Should the B cells 
respond rapidly, the viruses are deactivated before they can generate any symptom-producing 

                                                 
* Some viruses can bypass the nucleus and go directly to the ribosome, where protein construction can take place 
directly. 
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injury. However, if the B cell reaction is slow, the viral particles are free to infect more and more 
nasal cells, producing billions of new viral particles and illness.  

Now, let’s try to parameterize this problem. Let’s assume the random variable V  is the 
time it takes for the immune system to mount a sufficient defense to thwart the virus. Let W  be 
the random variable reflecting how long the virus needs to destroy enough cells to produce 
symptoms. Then [ ]V W<P  is the probability that a sufficient immune response occurs before the 
virus has an opportunity to produce symptoms and the “cold” is averted.  

We will assume that both V  and W  follow gamma measure. Define 

( ) ( ) ( ) ( )
1 1

0 0; .1 1
s n

s v n w
V v W wf v v e f w w e

s n
β αβ α− − − −

≤ ≤∞ ≤ ≤∞= =
Γ Γ

  

We also assume that n  is a positive integer.  
 We need the measure of the space 0 .v w≤ ≤ ≤ ∞  We begin by writing 
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 Note the use of Fubini’s theorem to convert a double integral to an iterated one. Let’s now 
evaluate the inner integral. 
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This is usually considered a scaled version of an incomplete gamma function.* However, we can 
take advantage of the assumption that n   is an integer greater than one.  

Let’s first transform :T W V= −  Then, from our consideration of transformation of 
variables, we can write  : : 0w t v dw dt v w t= + = ≤ ≤ ∞ → ≤ ≤ ∞  for this 1:1 transformation. 
Thus  
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W T
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∞ ∞
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Since n is an integer, we can invoke the binomial theorem to write  ( )
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* An incomplete gamma is commonly written as 1 .r x
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We can write the remaining integral as  
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Note that the expression ( )
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vv

e
k

αα − is Poisson measure. 

We can now complete the calculation. 
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We begin by reversing the summation and integration procedures and segregate all times not 
involving the relevant variable v  to the left of the integral sign.  
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Leaving 
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Further simplification is afforded by assuming that s  is a positive integer .m   
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Thus, the final solution is the sum of negative binomial probabilities. This more complex 
calculation, was required because V and W were not identically distributed 
 
Covid-19 screening 
During the 2020 Covid-19 pandemic, one of the many critical issues in the US was the ability to 
test citizens efficiently. Many testing centers were overwhelmed in June and July of that year 
with people interested in being tested (i.e., screened) for COVID positivity but who had to wait 
hours in line to be tested (and many days for results).  
Let’s examine this phenomenon using a simple case.  

Assume that we have a single site that tests individuals one at a time. Subjects line up for 
testing.  Let’s invoke the Poisson process, and say that  patients are arriving at a particular 
frequency tλ  and are tested at the frequency .tµ    

What can we say about the number of people queued to be screened at a particular point 
in time ?t   

If tX  is a random variable reflecting arrivals to the system and tY   reflects screened 
departures,  then define the random variable .t t tW X Y= −   Can a probability measure be 
computed for this new random variable? For example, what can say about the [ ]0 ?tW =P    
 tW  is zero when ,t tX Y=  i.e., the number of Poisson arrivals m is the same as the number 
of departures. Recall from the immigration-emigration process that this is  
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If the arrival and screening rates were equivalent, we might expect to see average values of tW  
hover around zero.* However, since its variance increases with m  there are times in the system 
when the line relatively long, and other times in the system when there is no one in line and the 
screeners are idle. † 
  If λ  is much greater than ,µ  there are many more arrivals in a given time then there are 
subjects who have been tested, and the average line for a test increases.  
 If tW a=  then there are a more arrivals in the queue than there are departures, the server 
is not able to keep up, and the average waiting queue lengthens. This situation  occurs when no 
matter how many subjects m  are tested, there are m a+  arrivals. This probability is  
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We can therefore write that  
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While this computation is interesting, it might be more helpful to observe the measure associated 
with the minimum and maximum value of .tW  But, from what perspective does it make sense to 

talk about the measure of the minimum ( )tWm  and maximum value of ( ), .
tt WW M   As we will 

see, this involves changing our measure’s ( ),Ω Σ  foundation. 
█ 

 
 
Transformation to rank ordering  

                                                 
* Actually “hovering” is somewhat inaccurate. The equality of the arrival and service rates is not a guarantee that 
line lengths will always be short. Even though the average line length is short, the variance of the queue length 
increases over time, providing wide swings in the number of subjects in the system  
† This is commonly observed in grocery stores where customers seem to arrive at the check out counter in bunches, 
increasing the line length and wait time.  This is because while arrival and service times are equivalent they are 
simply average rates and do reflect how arrivals are packed or spaced at any particular time.  



Measure of the minimum order statistic 399 
 

 
 

We will need notational foundation to address events such as 3 .
tWM > P   Specifically, a 

transformation is required that converts a sequence of random variables that is unstructured by 
magnitude into one that is so organized.   

A very simple maneuver will induce the structure that we need to evaluate the 
probabilities of more complicated events involving the ordered observations. Given a collection 
of observations  1 2 3, , , ... nW W W W , how do we convert it to a  sequence of rank ordered random 
variables from smallest to largest. We will denote this new sequence as [ ] [ ] [ ] [ ]1 2 3, , , ... .nW W W W  

This is essentially an n to n transformation that requires us to use one of the most elusive 
features of the transformation process.   

Recall that in our transformation of variable discussion, we wrote  
 

( ) ( )[ ] ( )[ ], ,( , ) , , ( , ) , ( , ) .V W X Yf v w f v w J x y v w x y v w= → Ω → Ω  
 
 The region is a change from an unordered one where the original measure is applied to 
each variable, to an ordered one, i.e., [ ] [ ] [ ] [ ]1 2 3 .. .nW W W W≤ ≤ ≤ ≤  The Jacobean of the 
transformation is 1. 

However the number of mappings requires careful consideration. If we have n 
observations, then the maximum [ ]nW  could be created from any one of the original n 
observations, i.e., we select one observation from n of them.  Once  this selection is made, there 
are 1n −  possibilities for [ ]1nW − . This process is completed when one observation is left for [ ]1 .W   

Thus there are !n  factorial mappings that are required to go from the original collection 
of random variables 1 2 3, , , ... nW W W W  to the structured collection [ ] [ ] [ ] [ ]1 2 3, , , ... .nW W W W  If we let 
f  be the joint density function of the unordered variables and g  the joint density function of the 

ordered variables, then we write 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]1 2 31 2 3 [ , ... ]1 2 3( ) ! , , , ... ., , , ... 1

nn w w w wng w n f w w w ww w w ≤ ≤ ≤ ≤=  
 
Measure of the minimum order statistic  
We have a collection of tools from which to choose from when we are challenged with finding 
the measure of a function of a random variable. Moment generating functions, convolutions, 
using the geometry to complete the integration, and transformation of variables all come to mind.  

In order to identify the measure of a single order statistic we will use two approaches. 
The first is a formal approach. The second is a more practical and observational method. 

 
Formal approach to finding minimum measure 
The measure for identifying ,V  the minimum of a collection if i.i.d., random variables
{ } 1,2,3... .iX i n=  with known cumulative distribution function ( )X xF  and density function 

( )Xf x  begins with a simple observation surrounding this order statistic.  
If V  is greater than a particular number, then every random variable from which V was 

created must also be greater.  
This gives us a useful jumping off point to begin to identify the cumulative distribution 

function of ( ), ,VV F v  and then, if the derivative exists, differentiate it to obtain ( ) ,Vf v  the 
density function as we showed in our introduction to continuous probability measure.  
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 So, for all :v v−∞ ≤ ≤ ∞ .  
 

{ } { } { } { }1 2 3 .

1 ( )

...
V

n

F v P V v

P X v X v X v X v

  
 
  

− = >

= ≥ ∩ ≥ ∩ ≥ ∩ ∩ ≥
        

 
Since the random variables are i.i.d., we can simplify, writing,  
 

{ } { } { } { }1 2 3

1

...

1 ( ) .

n

n n
i X

i

P X v X v X v X v

P X v F v
=

  

      

≥ ∩ ≥ ∩ ≥ ∩ ∩ ≥

= ≥ = −∏
           

 
We can now conclude 1 ( ) 1 ( ) n

V XF v F v  − = −   or ( ) 1 1 ( ) .n
V XF v F v  = − −   Finally, assuming that 

the derivative exist, we can conclude  
                                 

( )1

1

1 1 ( )( )( )

( )
1 ( )

1 ( ) ( ).

n
X

V
V

n X
X

n
X X

d F vdF vf v dv dv
d F v

n F v dv
n F v f v

−

−

     

  

  

− −
= =

−
= − −

= −

  

 
An observational approach to minimum measure 
An experiential approach begins with the view that, as in the previous demonstration, if v is the 
minimum, then 1n −  observations must be greater than it. So identifying the density problem is 
not unlike that of identifying the form of the binomial distribution.  

Here we select 1n −   observations from n ; for each of them compute the probability that 
they are greater than the minimum v  taking advantage of the i.i.d. assumption. The location of v  
is covered by the density function of X  evaluated at the point .x v=   That gives us 

( ) ( )1 1( ) ( ) 1 ( ) ( ) 1 ( ) .
1

n n
V X X X X

n
f v f v v nf v v

n
− − 

= − = − − 
F F   

 
Maximum measure 
We may follow the same approach to compute the measuring tool of the maximum order statistic 

.W   
The formal approach requires the observation that if the maximum value of a collection 

of observations is less than a value ,w  then all of the observations must also be less than .w  
Following the preceding development for minimum measure, we proceed.  

 

{ } { } { } { }

( )
1 2 3

1

( )

...

( ) ( ) .
i

W

n

n n
X X

i

F w P W w

P X w X w X w X w

F w F w
=

  
 
  

= ≤

= ≤ ∩ ≤ ∩ ≤ ∩ ∩ ≤

= =∏

  

 
Assuming that ( )X wF  is differentiable, we can write 
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( ) ( )( )
( )( ) 1

.( ) ( )n

n
X nX

W X X

d wd w
f w n w f w

dw dw
−

 
  = = =

FF
F   

 
For the less formal approach, we begin with the location of the n observations as one being the 
maximum and 1n −  observations selected from n is less than the maximum.  
We can therefore write  
 

( ) 1( ) ( ) ( ).
1

n
W X X

n
f w w f w

n
− 

=  − 
F  

 
Similar approaches can be used to find the distribution of any percentile value, using the median.  
 
Example: Cardiac MRI 
Consider an electronic component for a cardiac MRI that is constructed from a sequence of 
electric elements. Each of the elements must function for the assembled component to function 
properly. If any single one of the elements fails, a fault indicator lights, and the assembled unit 
must be replaced. (Figure 1) 

Assume that the ith element of the n elements in the sequence has a lifetime ti that is a 
random variable that follows an exponential distribution with parameter λ. We will also assume 
that the lifetimes of each of the n elements are independent random variables that follow the 
same probability distribution. Our goal is to identify the expected lifetime of the electronic 
assembly. 

 
 
Consideration of this problem’s construction reveals that the assembly fails when any one 

of its elements fails. Another way to say this is that the assembly fails with the very first 
component failure. Thus, the expected lifetime of the unit is the minimum lifetime of the n 
elements. If V is the minimum lifetime of the component and X is the lifetime of an element in 
the assembly, then from our earlier work in this chapter 
   

( ) ( )[ ]1 1 .
n

V Vv v= − −F F                                          
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Since [0, )( ) ( )1xXf x e x−λ
∞= λ , we may write the cumulative probability distribution 

function of the component is ( ) 1 n v
VF v e− λ= − , and write the density function as 

[0, )( ) ( )1n v
Vf v n e v dv− λ

∞= λ .  Thus, the lifetime of the component is a random variable that 
follows an exponential distribution with parameter nλ. The expected lifetime of this component 

is 1v n
   =

λ
E . Thus the average lifetime of the component is inversely proportional to the number 

of elements from which it is constructed. If complication is defined by the number of elements 
that are required to function in sequence (or in series) for the system to function, then the more 
complicated the system is, the shorter will be its expected lifetime.

  
 
COVID-19 testing revisited 
We can now compute the measure of the minimum and maximum number of subjects in a  
COVID-19 screening center.  

However, we do have a paradigm shift that we must manage. When this problem was 
introduced, we focused on computing the measure of the system, which consisted of one testing 
station. The provided solution allowed us to compute the likelihood of various queue lengths. In 
fact we could examine the probability of small queue lengths to obtain an understanding of how 
short the queue is likely to be, as well as examine probabilities of large queue lengths, attempting 
to gauge the likely large lengths. This is information about the extreme queue lengths of a kind, 
and if we are focused on the single testing center, this is sufficient.  

However, assume that we have n testing stations. Our interest switches from the 
performance of any particular one of them, to the performance of the system as a whole. What is 
the minimum time a person can be expected to wait given that they enter the system of n testing 
centers? How efficiently does the system operate?  

This is the important perspective of order statistics. They educate us on the performance 
of the collection of units that make up the system’s structure.  

In addition, we must keep in mind, that the actual number in the system tW  is a discrete 
integer, and not a continuous random variable. Therefore we cannot assume that the cumulative 
distribution function of the derivatives exists. However, we can utilize the heuristic approach to 
finding the order measure.  

So, let’s assume that we have n clinics operating independently of each other, with the 
same parameters λ  and .µ    

Recall that if tW  is the number of subjects in a particular testing center, then  

[ ] ( )
( )

( )
0 ! !

m a m
t ut

t
m

t t
W a e e

m a m
λλ µ+∞

− −

=

= =
+∑P

 
 

and its cumulative distribution function is  

[ ] ( )
( )

( )
0 0

( ) .
! !

m j mw
t ut

W t
j m

t t
w W w e e

m j m
λλ µ+∞

− −

= =

= ≤ =
+∑∑F P  

Let’s define tH  as the minimum number of people in the system, and tI  as the 
maximum. Working with the minimum first, we adapt our argument about minimum measure to 
write [ ].tH k=P   

[ ] ( ) ( )( ) 1
, , , 1 , , ,

n
tH k nl k t L k tλ µ λ µ

−
= = −P  
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where ( ) ( )
( )

( )
0

, , ,
! !

m k m
t ut

m

t t
l k t e e

m k m
λλ µ

λ µ
+∞

− −

= +∑  

and  ( ) ( )
( )

( )
0 0

, , ,
! !

m j mk
t ut

j m

t t
L k t e e

m j m
λλ µ

λ µ
+∞

− −

= =

=
+∑∑  

 
Similarly for the maximum 
 

[ ] ( ) ( )( ) 1
, , , , , , .

n
tI k l k t L k tλ µ λ µ

−
= =P  

 
These formulations are the link between observational parameters λ  and ,µ  estimates of which 
can be obtained from the field, and the anticipated overall performance of the clinics. One could 
also explore the values of the service rate µ  needed to keep the likelihood that the maximum 
number of people at a clinic is likely to be below some upper bound.   
 
Example: Respirator construction 
An important concern in the early phase of the COVID-19 infection surge was the availability of 
respirators, requiring consideration of their optimal use. Optimal use means that patients with the 
greatest need receive the respiratory care required to save their lives, ceteris paribus. Patients are 
placed on a respirator when required, and the respirator is discontinued with the patient has 
recovered and no longer requires it, or they are dead. Patients who are on a respirator for a short 
period of time may not have required it at all, but were placed on it in an “abundance of caution” 

Let’s look at the following A hospital has n respirators. The department would like to 
keep the respirator usage between a minimum and maximum duration of time in their system. 
We assume that the time of  use of a respirator follows a negative exponential distribution with 
parameter .λ  
 If one wanted to look at the minimum and maximum time to constructing a respirator, 
they would only need to look at the first and the 99th  percentile, for example. However, this is 
absent any experience, and is not informed by the generation of the sample.  

Let’s assume that patient need and therefore respirator use is i.i.d. What we seek is the 
measure of the range of use of the system of n respirators, where the range is simply the 
maximum minus the minimum. 

We first solve this problem in general, and then contour the solution to the issue of 
respirator use.  
 
General Solution 
Our plan will be to first identify the joint distribution of the minimum and maximum V  and .W  
We will then find the distribution of  the range .R W V= −   
 We can use our heuristic approach to identify , ( , ).V Wf v w  Of the n observations in the 

sample, one must be the minimum ( )( ) ,Xf v  one must be the maximum ( )( ) ,Xf w and the 

remaining 2n −  observations fall in the ( ),v w  interval on the real line, which occurs with 

probability ( ) ( ).X XF w F v−   Thus, we write 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
,

2

( , )
2

1
.

2

n
V W X X X X

n
X X X X

n
f v w f v F w F v f w

n
n n

f v F w F v f w

−

−

 
= −    − 

−
= −  

 

 
We first need to convert the joint distribution of the minimum and maximum to the distribution 
of the random variable .R  We do this by conducting a  two variable to two variable conversion, 
and then integrate out the auxiliary variable.  

Begin by defining : .R W V S W= − =  Then the range of integration 0 v w≤ ≤ < ∞  
converts to 0 .r s≤ ≤ < ∞  A straightforward examination of the variables reveals that ,W S=  and 

.V S R= −  The determinant of the Jacobian is one,  
Then using our transformation rule for converting two random variables V and W from X 

and Y,  
 
 ( ) ( ) ( ), ,( , ) , , ( , ) , ( , ) .V W X Yf v w f v w J x y v w x y v w=  →  Ω → Ω      

 
We can now write   
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
, 0

2
, 0 .

1
( , )

2
1

( , )
2

1

1

n
V W X X X X v w

n
X X X XR S r s

n n
f v w f v F w F v f w

n n
f r s f s r F s F s r f s

−

≤ ≤ <∞

−

≤ ≤ <∞

  

  

−
= −

−
= − − −

 

 
Working on the middle term, 
 

( ) ( ) ( )( )
( ) ( )

1 1

1 .
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Thus  
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− 

= − = − 
 

∑
 

Invoking the binomial theorem for this final step. 
 
Thus, our joint density is 
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Now, integrating with respect to s reveals.  
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∫
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∑ ∫

∑
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The measure of the range is a quite tractable sum of exponential functions. One could identify 
the value of λ  needed to keep the range as small as possible.  
 
 
Normal Measure 
Compounding 
F and T Measure 
Asymptotics 
Tail Event Measure 
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Basics of the Normal Distribution 
 
The normal probability distribution is ubiquitous in probability in general and in health care 
research in particular. Although its mathematical computation requires the use of tables (unlike 
the binomial or Poisson distributions, many of whose probabilities can be computed directly 
from their formulas) this requirement has not hindered its widespread adoption, and now when 
we are surrounded by a universe of personal computing devices that can calculate normal 
distribution based probabilities (yes, there’s an “app” for that), it can be readily computed in the 
field.  

For all of these reasons, the normal distribution is the most commonly used distribution 
in probability and statistics, and has earned its sobriquet “normal” as it is the distribution 
“normally” used. 
 
Prerequisites 
Why Probability 
From Whence it Came – An Early History of Probability 
Probability and the Renaissance 
The Random Event 
Elementary Set Theory 
Properties of Probability 
 
First Concepts 
The first thing to know about the normal distribution is that it does not provide probability for 
specific numbers but instead for regions of numbers. For example, if X follows a normal 

distribution, the 2 0,X  = =P  while 3 5
2

X ≤ ≤  
P  has a nonzero value. For the normal 

distribution, as for other continuous distributions, we assign probability not to individual 
numbers but to intervals on the real number line. We will find that it is easy to adapt to this 
change. 

The formula for the normal distribution contains two parameters, µ  its mean, and 2σ  its 
variance.  When the mean is zero and the variance is one, it becomes the “standard normal 

distribution” and its probability is governed by the function 
2

21( ) .
2

z

Zf z e
π

−
=   
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 Fortunately, we do not have to evaluate this, but instead use a table or a computer 
application to compute probabilities. (Figure 1) 

 
 

 
Figure 1 demonstrates several interesting features. The standard deviation σ   reflects the 

spread or dispersion of the measure of the random variable. The mean µ is the location of the 
center of the distribution, i.e., its central tendency. In each case however, the distribution is 
symmetric about the mean.  

One of the most useful facilities of the standard normal random variable is the finding 
that its linear functions are also normally distribution.  If X is normally distributed with mean µ

and variance 2 ,σ  then a new random variable Y aX b= +   is also normally distributed with mean 
a bµ +  and variance 2 2.a σ  We can use this to convert probabilities involving the general normal 
distribution to probabilities involving the standard normal distribution.  

Typically a random variable that follows a standard normal distribution is denoted by Z. 
Let’s say that we know that X follows a normal distribution with mean 10 and variance 25. We 
can compute [ ]15X ≤P  by computing  

 

[ ] [ ]10 15 1015 1 ,
5 5

XX Z− − ≤ = ≤ = ≤  
P P P  

And using the standard normal table, we see that [ ]1 0.841.Z ≤ =P   
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Normal Measure 
 
Normal measure is ubiquitous in probability in general and healthcare research in particular. 
Although its mathematical computation requires the use of tables (unlike the distributions e.g. 
Poisson, uniform, or negative exponential distributions whose formulas can directly provide the 
measure of events), this requirement has not hindered its widespread adoption.  And, now that 
was are surrounded by a universe of personal computing devices that can calculate normal 
distribution based probabilities (yes, there’s an ‘app’ for that), the measures can be readily 
computed in the field.  
 
Prerequisites 
Basic Properties of Probability 
Moment and Probability Generating Functions 
Continuous Probability Measure 
Variable Transformations 
An Introduction to the Concept of Measure 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
 
Omnipresence 
Normal measure’s omnipresence is based in part on the demonstrations that 1) it is the exact 
distribution for some processes, (e.g., the diffusion of a gas as demonstrated by Einstein), and 2) 
linear combinations of normal distributions are normal (whether the individual random variables 
are independent or not).   

However, the principal motivation for the widespread use of normal measure is the 
observation that linear combinations of non-normal random variables under conditions 
commonly observed in the natural and experimental world act like they are normally distributed. 
This means that exact probabilities computed on their exact distribution are very close to those 
computed assuming that the linear combination is normally distributed.  

For all of these reasons, normal measure is the most commonly used distribution in 
probability and statistics, and has earned its sobriquet “normal” as it is the distribution 
“normally” used.  
 
Measuring tool 
The probability density function for normal measure is 
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( )2

22
2

1( ) .
2

x

X xf x e
µ

σ

πσ

−
−

−∞< <∞= 1  

 
It has two parameters, µ  its mean, and 2σ  its variance.  When the mean is zero and the variance 
is one, the measuring tool reduces to  
 

2

21( ) .
2

z

Z zf z e
π

−

−∞< <∞= 1
 

 
And we commonly say that this is the “standard normal distribution”  
 Note that the term in the exponent 2z  without a corresponding term z elsewhere in the 
integrand to help with the integration, differentiates this distribution from the exponential and 
gamma class of integrals. In fact, its shape is quite different (Figure 1). 
 

 
 
Figure 1 demonstrates several interesting features. The standard deviation σ  reflects the spread 
or dispersion of the measure of the random variable. The mean µ  reflects as expected, the 
location of the center of the distribution, i.e., its central tendency. In each case however, the 
distribution is symmetric about the mean. This symmetry is a property of which we will take 
great advantage.  
 However, how do we know that this measuring tool is a probability density function? Is 
the measure of the real line under its use one? It takes a little bit of work, but it can be proven 

that the measure of the real line using
2

21( )
2

z

Z zf z e
π

−

−∞< <∞= 1 is one.  

 
Linear transforms  
One of the most useful facilities of the standard normal random variable is the finding that its 
linear functions are also normally distribution. Let z follow a standard normal distribution. What 

is the distribution of ?X Zσ µ= + . We write [ ]( ) ( ) .X z z x
dxf x f x
dz

= Ω → Ω  Since ,z−∞ < < ∞  there 

is no change in the region of measure, ,XZ µ
σ
−

=   dxdz
σ

=  and we can write 
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( ) ( )2 2

2 22 2
2

1 1 1( )
2 2

x x

X x xf x e e
µ µ

σ σ

σπ πσ

− −
− −

−∞< <∞ −∞< <∞= =1 1  

  
which is the normal probability density function or measuring tool with mean ,µ  and variance 

2.σ  Similarly, we can convert a random variable with any mean and variance into a normal 
distribution with mean zero and variance one. Thus, the computation of normal probabilities 
which is table based, can be condensed to probabilities for this latter distribution, which is 
commonly known as the standard normal distribution.   
 
Probability integral transforms revisited 
Another example of interest that exemplifies the concept of the cumulative distribution function 
of a random variable as a random variable itself derives from the concept of expectation.  

For example, suppose we are interested in computing [ ]( )ZF ZE  where Z is a standard 
normal random variable. Recall that we have already demonstrated that the random variable 

( )ZY F Z=  follows a uniform distribution on the [0,1] interval, so we know at once that 

[ ] 1( ) [ ]
2ZF Z Y= =E E .  

 We can use this device to evaluate many expectations that involve the cumulative 
distribution function of the random variable of interest. For example, in order to find the 

1 ( )Z Z A  − +E F  where Z is a standard normal random variable, consider [ ]X Y A− >P  where X 
and Y are independent standard normal random variables. Then we can write  

( ) ( )

, ( , ) ( ) ( )

1 ( ) ( ) 1 ( ) ( )

1 ( ) 1 ( ) .

X Y X Y
x y A y A

X Y Y Y

Y Z

X Y A f x y dxdy f x f y dxdy

Y A f y dy Y A f y dy

Y A Z A

∞ ∞

− > −∞ +

∞ ∞

−∞ −∞

  

      

− > = =

= − + = − +

= − + = − +

∫∫ ∫ ∫

∫ ∫

P

F F

E F E F

 

Alternative,  we also know that  
[ ] ( )

( )

0,2

0,1
2

[ ]

1 .
2Z

X Y A N A

AN

X Y A W A

A

− > >     
  

>   
   

− > = > =

= = −

P = P

P

P P

F
                    

Combining  these two results, we find that  1 ( ) 1
2Z Z

AZ A  
    

 
− + = −E F F , or 

( )
2Z Z

AZ A  
    

 
+ =E F F . 

 
Moments and MGFs. 
We have described the parameters of normal measure as mean and variance. Direct integration 
finds the mean for us. We compute 
 

[ ]
( )2

22
2

1 .
2x

x

X xd x e dx
µ

σ

πσ

−∞ −

Ω −∞

= =∫ ∫E P  
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Let .XZ µ
σ
−

=  Then there is no change in the region of integration, , ,X Z dx dzσ µ σ= + =  and 
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z e dz e dz
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The remaining integral becomes 
 

2 2 2 2

2 2

0
2 2 2 2
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1 1
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∫ ∫ ∫ ∫

∫ ∫
 

 
Thus [ ] .X µ=E  We can use an integration by parts argument to compute the variance, 
demonstrating [ ] 2.X σ=Var  
 
MGF of normal measure 
Computing t ze  E  when Z is a standard normal distribution is worthy of a calculation here 
because the sequence of computations will help us in our discussion of compounding normal 
distributions. We begin by writing  

2 2

2 21 1
2 2

z z tztz tz tze e d e e dz e dz
π π

∞ ∞
− − +

Ω −∞ −∞

  = = =  ∫ ∫ ∫E P  

 
We now develop the exponent 
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Thus  
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recognizing that 
( )21

21
2

z t
e dz

π

∞
− −

−∞
∫  is the measure of the real line using a normal mean t, variance 

one measuring tool. 
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 To compute the moment generating function of a random variable X that is normal with 
mean µ   and variance 2 ,σ  we know that a standard normal random variable ,X Zσ µ= +  and 

( )t ztxe e σ µ+   =   E E  
( )2

2 .
t

tt t ze e e
σ

µµ σ +
 = = E   

 
Explanation of the central limit theorem 
We will later have a discussion about the mathematics behind the central limit theorem. 
However, it will serve us well at this point to make some simple observations.*  

First, the measuring tool for normal measure is non-intuitive. At first glance, one can be 
forgiven for thinking that it is too complicated to serve as the distribution of any but artificially 
generated random variables. While the same might be said of the gamma distribution, at least we 
showed that it could be built up from sums of random variables that followed the negative 
exponential distribution.  So far we have only shown that a normally distributed random variable 
is only the sum or difference of other normally distributed random variables.  

Yet, its symmetry and central tendency seem to serve as an attractor for the distribution 
not of other individual random variables which are not normal, but their sums.  
 Recall for example the uniform distribution. In that discussion, we saw that while X, 
which is U(0,1) has no central tendency (in fact, equal intervals are equally likely, regardless of 
where they are located on the [ ]0,1 line, the sum of two such independent variables does exhibit a 
tendency to centralization of much of its measure (Figure 2) 

As another example, consider a discrete random variable with the measuring tool  

[ ] 0.01 0.990.50 0.50 .1 1x xX x = == = +P  This distribution divides its probability between two extreme 
values on [ ]0,1 .  

 

 
 

                                                 
* This dicussion is adapted from Kapadia A, Chen W, Moyé L.Mathematical Statistics with Applications.  
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Yet if we accumulate sums of independently and identically distributed random variables 
that follow this distribution, we see this undeniable movement to centrality (Figure 3). Normality 
was not part of the summands, yet it appears to arise from their sum. 
 

 
 

That this movement to centrality and normality occurs is ineluctable. Why it should be so 
is worthy of exploration.  

Consider for example two random variables each independent with probability mass 

function that places probability 1
2

 on each of 0 and 1. Note there is no central tendency here. We 

can easily examine the joint distribution of X and Y (Table 1).  
 

 
 
Each combination is equally likely as we would expect. However, if we now ask the question 
what is the distribution of the new random variable ,Z X Y= +  then centrality emerges (Table 2). 
 

 
 
Examination of  Table 1 shows us the source. In taking the sums of ( ), ,X Y  we see that there 
were  two ways to produce the intermediate value one ((0,1) and (1,0)), yet only one way to 
produce the extreme values (0,0), and (2,2). The increase in the number of ways to produce these 
intermediate values was the driving force to centrality. 
 Furthermore, the different possibilities for the summands were independent of the 
probabilities. 
 We can conclude that the number of intermediate values in such summands will always 
aggregate. How fast the probability aggregates depends on the probabilities themselves, but 
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ultimately, they will follow the force produced by the increasing numbers of ways to produce the 
intermediate values. This is the explanation for Figure 3; even though the only nonzero 
probabilities began for the extreme events, the momentum toward centrality was irresistible.  
 As a final example, let’s consider the sum of two random variables which not only show 
no inclination to central tendency (as one the case with the uniform random variable) but instead 
are the antithesis of central tendency. Consider the random variable whose measure is defined as  
 

0 1( ) 2 1X xf x x ≤ ≤=  
 
In this case, most of the probability concentrates on the right portion of the region (Figure 4). 
                  

 
 
 

If we define a second random variable Y independent and with the same distribution as X, then 
define Z X Y= +  then what appearance would we expect for the probability density function of 

, ( )?ZZ f z  
 Recognizing that the range of Z is on interval 0, 2    we would expect that there would be 
little concentration of measure close to zero, since the probability that each would produce a 
small value such that Z was also small is very low. We would expect most of the summand’s 
measure to be close to two. The exact probability density function can be computed.  
 
Solution 
 
It is  

3
0 1 1 2

2( ) ( )
3

1 1Z z zf z z g z≤ ≤ ≤ ≤= +  

Where 
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( )( ) ( ) ( )2 3212 8 12 1 1 12 1 4 1
( ) .

6
z z z z z z

g z
− + − − + − − −

=   Its appearance shows a clear presence of 

central tendency (Figure 5). 
 

 
 

 
Note that the probability of extremely large values is very small. While not yet symmetric based 
on the sum of two random variables the high likelihood of intermediate values of z demonstrates 
the generation of central tendency that we might not expect from the sum on only two random 
variables both of which concentrate probability at their larger values.   

A formal proof of this movement to central tendency will be discussed later when we 
review and prove the central limit theorem.  This key finding states that when suitably 
normalized, the probability of events evolving sums can be approximated by the use of normal 
measure. Essentially, for our purposes here if we have a collection of i.i.d. random variables  ,iX  
i = 1, 2, 3, …, n where ,iX µ   =E  and [ ] 2 ,iX σ=Var  then for “large” n, we can approximate 

the probability distribution of 
2

nS n
n

µ

σ

−  by a standard normal distribution. Thus, probabilities of 

events involving nS  which may be cumbersome to compute exactly, can be nicely and easily 
approximated. 
 
Example: Clinical trial recruitment  
A clinical trial has seventy centers. Each recruits patients into the trial at a rate in accordance 
with a Poisson distribution with parameter λ = 4 patients per month. What is the probability that 
the trial will reach its recruitment goal of 3200 recruited patients in a year.  

We know that four patients per month translates to forty-eight patients per year for one 
center and (48)(70)=3360 patients per year on average. However, to compute the exact 

probability that this Poisson random variable is greater than 3200 is to compute 3360

3200

3360 ,
!

k

k
e

k

∞
−

=
∑  

or 
3200

3360

0

33601 ,
!

k

k
e

k
−

=

− ∑ either of which can be time consuming.  

Alternatively, we could recognize that nS   follows a Poisson distribution with mean 3200 
and variance 3200. We then compute using the central limit theorem that 
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[ ]

[ ]

n
3360 3200 33603200

3360 3360
3200 3360(0,1)

3360
(0,1) 2.76 0.997.

nSS

N

N

− − 
≥ = > 

 
− 

= > 
 

= > − =

P P

P

P

   

 
“Within normal limits” 
In health care, one of the most commonly used expressions among physicians, nurses, and other 
health care providers in the process of studying the characteristics and findings of their patients 
is “within normal limits”.  

This term is applied to heart measurements, blood sugar levels, plasma hormone 
assessments, serum cholesterol evaluations, and blood pressure measurements to name just a 
few. Essentially, a measurement is considered to be within normal limits if it falls within a range 
of values commonly seen in healthy people. Generally, normal measure is used to determine the 
values of these normal limits.  

However, just how applicable is normal measure in this setting? As an example, let’s 
consider one of the parameters that is assumed to follow a normal distribution, an individual’s 
white blood cell count. White cells are particular cells that inhabit the blood and the lymphatic 
system. 

 These cells are part of the body’s line of defense against invasion. Unlike red blood cells 
(erythrocytes) which are carried along passively by the currents and eddies of the blood stream, 
white blood cells are capable of independent motion, freely “choosing” their own directions of 
movement. However, they are especially attracted to toxins released by invading organisms and 
to compounds that are released by damaged cells.  

When sensitized by these substances, these white blood cells react aggressively, attaching 
and moving through blood vessel walls, as they leave the blood stream and negotiate their way to 
the region of injury. Once they arrive at the site of cellular disruption, they produce substances 
that kill the invading organism (e.g., bacteria ), or destroy the foreign body (e.g., a wooden 
splinter).  

White blood cells are short-lived, typically not surviving for more than 48 hours. 
However, their counts can dramatically increase with important systemic infections occur (e.g. 
pneumonia). White blood cells can also be produced in astonishing huge and damaging numbers 
when they are the product of cancer. 

Clearly, there are many factors that affect the white blood cell count, and it would be 
difficult to see why the precise probability distribution of this count would be normal. 
Nevertheless, this is the probability distribution that is used to describe the white blood cell 
count.  

While the use of normal measure is a natural consequence of the central limit theorem, 
the applicability of this theorem can be examined from another perspective in this example. 
There are many factors that influence the white blood cell count.  

While we can think of a few (e.g. presence of infection, foreign bodies, cancer producing 
substances, hormone levels, compounds that are elaborated by other white cells) there are 
undoubtedly many, many more of these influences.  

By and large, the impact of any single one of these influence is to either increase or 
decrease the white blood cell count by a small amount. Thus the white blood cell count is the 
result of the combined effect of all of these factors, each of which exerts only a small effect.  



420                                Normal Measure 
 

This is essentially what the central limit theorem states. The impact of the sum of many 
independent influences individually have a small effect, when suitably normalized, follows a 
standard normal distribution.  

We can go one step further. Although the assumption of a normal distribution for the 
white blood cell count admits a wide range of possible values, 95% of the population whose 
white blood cell counts are healthy will have their count fall within 1.96σ of the population 
mean. Therefore, one could compute the mean μ and standard deviation σ in a population of 
subjects who have healthy white blood cell counts.  

From this computation, the lower 2.5 percentile value (μ – 1.96σ) and the upper 97.5 
percentile value (μ + 1.96σ) could be calculated. This region (μ– 1.96σ , μ + 1.96σ ), commonly 
described as the 95% confidence interval, is the range of white blood cell counts that are “within 
normal limits”.  

The construction and use of this region represents an attempt to incorporate the 
observation that, while variability is a routine occurrence in nature, too much variability, while 
possibly normal, is the hallmark of an abnormality. 
 
Example:  Ejection fraction 
One measure of heart function is left ventricular ejection fraction (LVEF), which measures the 
percent of blood ejected from the heart. Ideally, the left ventricle which is the main pumping 
chamber of the heart pushes out at the end of each beat most all of the blood that it contains. 
Healthy individuals typically have ejection fractions of 80% or more.  

Those patients who have had a heart attack can see their ejection fraction fall to 45% or 
less. Subjects who have heart failure can have ejection fractions as low as 10% to 15%, a number 
so low that they must have either a left ventricular assist device or a heart transplant to sustain 
their lives. 
 In hospitals, LVEF is most commonly measured by two modalities. One is magnetic 
resonance imaging. The outcome is continuous random variable which we will assume follows a 
normal distribution. However, sometimes patients undergo a bedside echocardiographic 
produced ejection fraction.  

While one might ideally expect that this “bedside echo” is also normally distributed, 
characteristically, it is read in increments of 5 units. In addition, on average the echo based 
LVEF is seven absolute percentage points less than the MR echo.  

Assume the chances that a patient who has just had a heart attack has a bedside 
echocardiogram is 60%, with a 40% probability that they will have an MR based LVEF 
determination. What is the probability that they will have an ejection fraction of 40 or less? 

We begin by asking what can we say about the distribution of LVEF. The answer is 
of course easy if one has an MR based LVEF. We simply need to know its mean and variance.  
Similarly, if one knows the LVEF will be echo based, a measurement which tends to be in 
increments of five, the distribution of the discrete probabilities is also simple. However, what is 
one does not know whether the LVEF is either, but an individual simply has the measurement? 
 In this case, we must maintain flexibility with our measuring tool. In some regions we 
use the Riemann integral or area under the curve. In other regions, we use a “probability as 
mass” tool. We might write the probability function for the ejection fraction  X as 
 

( )2

2
5

2
2

1

1( ) 0.40 0.60 .
2

1
k

x

X k x a
k

f x e p
µ

σ

πσ

−
−

=
=

= + ∑  

 
 
This function has two “parts” revealing the two measuring tools that must be implemented to 
compute probabilities (Figure 6). 
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 We satisfy ourselves that the measure is one over the entire space (i.e., the entire real 
line) by seeing that the normal density integrates to one, and using point mass measure, 
probability over the discrete point measure integrates to one, the norming constants 0.40 and 
0.60 being necessary for the measure to scale down to one over the entire real number line.  
 To compute [ ]40 ,X ≤P we simply accumulate measure over the real line, switching back 
and forth between the two measuring tools. This is 
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If we let 245, 10,µ σ= =  we can complete the first part of this computation at once. To complete 
the screening component we need the of screening echocardiographic LVEF values and their 
probabilities. (Table 3). 
 

<<Table 3>> 
 
Thus we compute 
 

[ ] [ ]
[ ]

40 0.60(0.309) 0.40 0.10 0.15 0.30

0.185 0.40 0.55 0.405.

X ≤ = + + +

= + =

P
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Chi-square distribution and s2  
Not only is normal measure of interest in its own right, but it produces other measures with their 
own applications. A good way to begin is with the distribution of the mean of the normal 
distribution.  
 We begin with taking a sample of observations 1 2 3, , ,... nX X X X which are independently 
and identically distribution ( )2, .N µ σ  We are seeking the distribution of the sample mean 

1 ,

n

i
i

X
X

n
==
∑

 and what we will call the sample variance 
( )2

2 1 ,
1

n

i
i

X X
s

n
=

−
=

−

∑
 which estimation theory 

tells us is the best estimate for the variance. If we were to take, say m samples of size n from the 
population, each sample producing an ( )2,X s  pair, what would the probability distribution 
function look like?  
 Since normal measure has been so “user friendly” thus far, perhaps we are not so 
surprised to learn that in fact the distribution of the sample mean is independent of the sample 
variance. We will review here how that is demonstrated, and discuss its implications.  

 We are interested in determining the probability density function for 1 ,

n

i
i

X
X

n
==
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 and 

( )2

2 1 ,
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i

X X
s
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 We will first write 
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And using some of the rules of sigma notation, we write 
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Now, we can see that  
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Now, knowing that ( )2 2 2
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This we will need to establish that the probability distribution functions of the sample mean and 
sample variance are independent. 
 
Independent sample mean and variance 
Our path will be to begin with the joint distribution of a sample of observations 1 2 3, , ,... nX X X X
which are independently and identically distribution ( )2, .N µ σ  After a transformation of 
variables, we will use the results from the previous section to identify the desired result. 
 This is a daunting task, so we will first begin with a smaller one. Let z  be a standard 
normal random variable. What is the distribution of 2 ?w z=   
 We see at once that there is a change in the region of integration. While ,z−∞ ≤ ≤ ∞  w 
must be nonnegative.  This implies an integration factor of 2.*  

From our discussion of transformation of variables we know that if we wish to create a 
new variable  y from  x we write 
 

[ ]( ) ( )Y X x yf y f y dx dy  = → Ω → Ω    
 

which for us in this case may be written 
 

( ) ( ) .z wW Zf w f z dz dw   
  = → Ω → Ω  

 
We know z wΩ → Ω  is a mapping of 1 z−∞ < <∞  to 0 .1 w≤ <∞  Defining 2w z=  implies that 

1 1
2 21, ,

2
z w dz w

−
= = giving us all of the ingredients that we need. Since  
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* If z were positive, the mapping would be 1 to 1. However, since z can also be negative, the map is 2 to one, 
implying a multiplicative factor of 2. 
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It remains to show that 1 ,
2

π  = Γ 
 

 which may seem alien on its face, but can be directly 

proved. Thus, the square of a standard normal variable follows a chi-squared distribution with 1 
degree of freedom.  
 Returning to the original issue of demonstrating the independence of the sample mean 
and variance from a normal distribution. We will begin with the following many-to-many 
transformation of variables. 

1 2 1 3 2 4 3 1, , , , ... ,n nY X Y X X Y X X Y X X Y X X−= = − = − = − = −  and process through our 
transformation of variable operation 
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This transformation does not change the region of measure, which remains over the entire real 
number line.  The joint density of the original random variables 1 2 3, , ,... nX X X X is  
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Proceeding to scaling the space correctly, we can demonstrate that the Jacobean  
( )1 2 3 1 2 3, , ,..., ( , , ,... )n nJ x x x x y y y y →   is n.  Finally, we have just calculated 
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We recognize 
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n X

ne
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σπ

−
−

as a normal distribution with mean µ  and variance 
2

.
n

σ  The 

fact that the sample variance is in terms separate and apart from the newly found probability 
density function for the sample means permits us to conclude that they are independent, and we 
can pursue its distribution separately.  
 We know that if a random variable X follows a normal distribution with, then .X µ  = E  

The distribution of 
X XZ

σ
−

=  follows a standard normal distribution, and we have shown that 
2

2 X XZ
σ

 −
=  

 
follows a 2χ  distribution with one degree of freedom. It follows from the 
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development above that the individual deviations 1 2 3, , , ... nX X X X X X X X− − − −  are each 

independent of each other.  Then we know that ( )2 2
2

2
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1n n
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i
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n sX XZ
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∑ ∑  follows a 2χ  

distribution with 1n −  degrees of freedom. This finding of the independence of the sample 
mean and variance from a collection of independent normally distributed random variables is the 
foundation of many useful inferential procedures in statistics. 
  
Predicting future variance from the past 
Let’s assume that we have a sequence of observations 1 2 3, , ,..., ,..., ...m nX X X X X  that are normal 
with mean µ and variance 2.σ  We may compute a sequence of sample variances 

2 3 4

2 2 2 2 2, , , ..., ,..., ...m ns s s s s  Is there any way that we can compute the probability of values of the 
future variance 2,ns  based on knowledge of the variance at current point based on m 
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However, how can we manage the case where 0?µ ≠  We know that the sample mean and 
variance are independent for a normal distribution, thus the sample variance is not a function of 
the mean. We can then compute i iW X X= −  for i= 1 to n. Then each iW  is normally distributed, 

,i iW X      =Var Var  and we can apply the derivation from above.  

 
Introduction to the F and T measure. 
Another example of the probability distribution of the use of sample measures is the comparison 
of the ratio of sample variances. Assume that the random variables V and W are each 
independent 2χ  distributions with k and m degrees of freedom respectively. Then through a 
process of transformations we can find the distribution of the random variable the random 

variables ,VX
V W

=
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,
V

kG W
m

=  and .T G=   These derivations require some facility with 

transformations of random variables, and reveal that  
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or a beta distribution that we recognize from previous discussions.  The derivational result for the 
random variable G is new, derived as 
 

2

2 1
2

0
12( )

1
2 2

1

m k

k
k

G x

m k
mf g g mk m k g

k

+

−

≤ ≤∞

+   Γ     =          +Γ Γ        

 

 
This is an F distribution with degrees of freedom k and m. The square root of this random 
variable we call T and it follows a Student’s t distribution whose measuring tool is  
 

1
1 2
2

2

1
12( )

1
2

1
m

T t

m

f t m
m mtπ

+

−∞≤ ≤∞

+ Γ    =  +   Γ 
 

 

 
 
 



  427 
 



  428 
 

 
 
 
 
 
 
 

Integrating the Normal Measure  
 
 
Our task is to show that the measure of the real line using the measuring tool

2

21( )
2

x

X xf x e
π

−

−∞< <∞= 1 is one.  

 
 
Using polar coordinates 
The solution requires the use of a helpful transformation, polar coordinates.  The problem is to 
demonstrate 
 

2

21 1,
2

x

e dx
π

∞
−

−∞

=∫  equivalent to 
2

2 2 .
x

e dx π
∞

−

−∞

=∫  Let’s begin by letting  
2

2 .
x

A e dx
∞

−

−∞

= ∫ Then 

( )2 22 2 2 2

2 2 2 2 2 2

x yx x x y

A e dx e dx e dx e dy e dxdy
+∞ ∞ ∞ ∞ ∞ ∞

− − − − −

−∞ −∞ −∞ −∞ −∞ −∞

       
= = =       

              
∫ ∫ ∫ ∫ ∫ ∫  

 
This use of Fubini’s theorem, allowing us to convert an iterated integral into a double integral is 
what permits the required transformation to polar coordinates.  
 We now conduct a transformation of variables to polar coordinates. Let 

( ) ( )cos : sin .x r y rθ θ= =  Then, using our transformation of variables approach 
 

( ) ( ) ( ), ,( , ) , , ( , ) , ( , ) .R W X Yf r f r J x y r x y rθ θ θ θ=  →  Ω → Ω      
 
The range of the measure is quite different. As we saw in the introduction to polar coordinates 
the range ;x y−∞ < < ∞ − ∞ < < ∞  is transformed to 0 2 ; 0 .rθ π≤ ≤ ≤ < ∞  The Jacobian of the 
transformation is 
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( ) ( )
( ) ( ) ( ) ( )2 2cos sin

cos sin .
sin cos

x x
rr r r r

ry y
r

θ θθ θ θ
θ θ

θ

∂ ∂
−∂ ∂ = = + =

∂ ∂
∂ ∂

  

 
Finally, since 

( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 2 2 2cos sin cos sin ,x y r r r rθ θ θ θ+ = + = + =  we can write 
( )2 2 2

2 2 .
x y r

e dx dy re dr dθ
+

− −
=

 
Now, completing the integration, we have  

 
( )2 2 2 22 2

2 2 2 2

0 0 0 0

2 .
x y r r

A e dxdy re dr d d re dr
π π

θ θ π
+∞ ∞ ∞ ∞

− − −

−∞ −∞

= = = =∫ ∫ ∫ ∫ ∫ ∫ Thus 2 ,A π=  
2

2 2
x

e dx π
∞

−

−∞

=∫ , and 

2

21 1.
2

x

e dx
π

∞
−

−∞

=∫  
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Deriving the Variance of Normal 
Measure 

 
 
 
 
To compute the X  Var  where the measuring tool or probability density function is  

( )2

22
2

1( )
2

x

X xf x e
µ

σ

πσ

−
−

−∞< <∞= 1  we begin with  

[ ] [ ]2 2 2 2 ,X X X X µ   = − = −   Var E E E  demonstrating that our efforts must concentrate on 

finding 2 .X  E  We note 
 

( )2

22 2 2 2
2

1 .
2x

x

X x d x e dx
µ

σ

πσ

−∞ −

Ω −∞

  = =  ∫ ∫E P  

 

Let .XZ µ
σ
−

=  Then there is no change in the region of integration, , ,X Z dx dzσ µ σ= + =  and 

( )

( )

( )

2 2

2

2

2 2 2

22 2 2
2 2

22 2 2

2 2 22 2 2

1 1
2 2

12
2

1 1 12
2 2 2

x z

z

z z z

x e dx z e dz

z z e dz

z e dz z e dz e dz

µ

σ σ µ σ
πσ πσ

σ µσ µ
π

σ µσ µ
π π π

−∞ ∞− −

−∞ −∞

∞
−

−∞

∞ ∞ ∞
− − −

−∞ −∞ −∞

= +

= + +

= + +

∫ ∫

∫

∫ ∫ ∫

 

 
The second term becomes 
 

2 2

2 21 12 2 0,
2 2

z z

z e dz z e dzµσ µσ
π π

∞ ∞
− −

−∞ −∞

= =∫ ∫ since the mean of the standard normal distribution is 

0. Thus we have  
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( )2 2

2
2

2 2 22 2
2

1
22

x z

x e dx z e dz
µ

σ σ µ
ππσ

−∞ ∞− −

−∞ −∞

= = +∫ ∫  

 

And the computation comes down to the evaluation of  
2

2 2 .
z

z e dz
∞

−

−∞

= ∫ For this, we use integration 

by parts. Let  
 

2 2

2 2

;

;
z z

u z du dz

dv ze v e
− −

= =

= = −
 

So 
2 2 2

2 2 2 2 0 2 2 .
z z z

z e dz ze e dz π π
∞

∞ ∞
− − −

−∞ −∞−∞

 
= = + = + = 

  
∫ ∫  

Thus 
( )2 2

2
2 2

2 2 2 22 2
2

2 2

1 2
2 22

.

x z

x e dx z e dz
µ

σ σ σµ π µ
π ππσ

σ µ

−∞ ∞− −

−∞ −∞

= + = +

= +

∫ ∫  

 Thus [ ] [ ]2 2 2 2 2 2 2 2X X X X µ σ µ µ σ   = − = − = + − =   Var E E E   
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Sum of Two Linear Random Variables 
 
Here, we are interested in deriving the sum of two specific, independent, and identically 
distributed random variables in order to demonstrate the generation of central tendency. We 
define each of X and Y to have positive measure on the [ ]0, 1  interval, where  
 
 
 
Goal and methods 
We desire the measure of their sum .Z X Y= +  We first note that the range for Z is on [ ]0, 2 .As 
we saw for the sum of two U(0,1) random variables the shape of the region of interest depends 
on the value of Z (Figure 1.) 
 
 
 
 
 
 
 
 
 
 

 
 

0 1 0 1( ) 2 : ( ) 21 1X Yx yf x x f y y≤ ≤ ≤ ≤= =
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As before, we note that there are two cases, depending of the value of z. We will manage each of 
these two cases separately 
 
Case 1: 0 1.z≤ <  (Figure 2). 
 

 
 
Here, we compute for 0 1z≤ < ( ) [ ] [ ].Z z Z z X Y z= ≤ = + ≤F P P  Examining the region from 
Figure 2 permits us to write  
 

( ) ,
0 0

( , ) 2 2 .
z

z yz

Z X Y
A

z f x y dxdy ydy xdx
−

= =∫∫ ∫ ∫F    

The second integral is ( )22
0

0

2 | .
z y

z yxdx x z y
−

−= = −∫  Continuing 

( ) ( )

( )

2

0 0 0

2 2 2 2 3

0 0

2 2 2

2 2 2 2

z yz z

Z

z z

z ydy xdx y z y dy

y z zy y dy z y zy y dy

−

= = −

= − + = − +

∫ ∫ ∫

∫ ∫

F
 

2 3 4 4 4 4
2

0

4 4 4 4
4 4 4

22 2 2
2 3 4 2 3 4

2 12 6 8 3 .
2 3 4 6 6

z
y y y z z zz z

z z z zz z z

   
= − + = − +   

   

 
 = − + = − + =   

 

 

 

This is illumination. The fact that ( ) 11
6Z =F  tells us that most of the measure is to the right of 

one. We now proceed with Case 2. 
 
Case 2: 1 2.z≤ ≤  (Figure 3) 
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Here we must compute ( ) [ ]1Z zz B= −F P  ( ) [ ] ,1 1 ( , )
z

Z z X Y
B

z B f x y dxdy= − = − ∫∫F P . And from 

an examination of Figure 3 we can write 
1 1

,
1

( , ) 2 2 .
z

X Y
B z z x

f x y dxdy xdx ydy
− −

=∫∫ ∫ ∫  Note here that 1.z ≥   

Now,  
 

 
 

 

( )
1

2 1 2 22 | 1 2z x
z x

ydy y z zx x−
−

= = − + −∫ . 

Continuing,  
 

[ ] ( )( )

( )

( )

( )

1
2 2

1
1

2 2 3

1
12 2 3 4

1

12 2 3 4

1

2 1 2

2 1 2

1 22
2 3 4

1 6 1 8 3
6

z
z

z

z

z

B x z zx x dx

z x zx x dx

z x zx x

z x zx x

−

−

−

−

 = − + − 

= − + −

 −
 = + −
  

 = − + − 

∫

∫

P

 

 
This reduces to 

( ) ( )( ) ( ) ( )2 3 42 2 21 6 1 8 3 6 1 1 8 1 3 1
6

z x z z z z z z − + − − − − − − + − 
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Recalling that ( ) [ ]1Z zz B= −F P we can see that ( ) 5 11 1 (1) 1
6 6Z ZB= − = − =F  which is the 

solution we found for case 1. In addition ( )2 1 (2) 1 0 1.Z ZB= − = − =F We can now take 
derivatives to compute 
 

3
0 1 1 2

2( ) ( )
3

1 1Z z zf z z g z≤ ≤ ≤ ≤= +  

 
where 
 

( )( ) ( ) ( )2 3212 8 12 1 1 12 1 4 1
( ) .

6
z z z z z z

g z
− + − − + − − −

=   Its appearance shows a clear presence of 

central tendency.  
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Determinant for an n to n 
Transformation 

 
From the demonstration of the independence of the sample mean and variance of normal 
measure, we started with a sample of observations 1 2 3, , ,... nX X X X which are independently and 
identically distribution ( )2, ,N µ σ transforming to  

1 2 1 3 2 4 3 1, , , , ... .n nY X Y X X Y X X Y X X Y X X−= = − = − = − = −   
 

Examining this transformation in terms of  the 1 2 3, , ,... ,nX X X X we have 
2 2 1 3 3 1 4 4 1 1, , ,... ,n nX Y Y X Y Y X Y Y X Y Y= + = + = + = + and 

 
1 2 3 1... .nX Y Y Y Y= + + + −  

 
Our goal is to identify the Jacobian of this transformation. For the simple case of n = 2,  

we have  

( )
1 2

1 1
1 2 1 2

1 2

2 2

1 1
, ( , ) 2.

1 1

x x
y y

J x x y y
x x
y y

∂ ∂
∂ ∂ −

 →  = = =  ∂ ∂
∂ ∂

 

Expanding to n = 3 produces 
 

( )

( )( ) ( )( ) ( )( )

31 2

1 1 1

31 2
1 2 3 1 2 3

2 2 2

31 2

3 3 3

1 1 1
, , ( , , ) 1 1 0

1 0 1

1 1 1 1 1 1 3

xx x
y y y

xx xJ x x x y y y
y y y

xx x
y y y

∂∂ ∂
∂ ∂ ∂

−
∂∂ ∂

 →  = =  ∂ ∂ ∂
∂∂ ∂

∂ ∂ ∂

= − − + − =

 

 
We can take advantage of this pattern matrix.  If we apply the ACBD lemma for determinant 
computation,  
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'
'

 
= − 

 

A B
A A BDB

B D
 

 
Where A is an invertible p x p matrix and D is r x r. 
 

Letting ,1=A  [ ]1 1 ,=B  and 1 0
0 1

 
=  

 
D , we see 

 

[ ]
1 1 1

1 0 1
1 1 0 1 1 1 1 2 3.

0 1 1
1 0 1

−
   

= − − = − − =   
   

 

 
One worked for us in this  case is that D was the identity matrix. This converted 'BDB  to simply 

'BB  which translates to 2, permitting the calculation 1 2 3.− − =  
One more example 

 

( )

( )( ) ( )( ) ( )( )

31 2 4

1 1 1 1

31 2 4

2 2 2 2
1 2 3 4 1 2 3 4

31 2 4

3 3 3 3

34 2 4

4 4 4 4

, , , ( , , , )

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

1 1 1 1 1 1 3

xx x x
y y y y

xx x x
y y y y

J x x x x y y y y
xx x x

y y y y
xx x x

y y y y

∂∂ ∂ ∂
∂ ∂ ∂ ∂

∂∂ ∂ ∂
∂ ∂ ∂ ∂

 →  =  ∂∂ ∂ ∂
∂ ∂ ∂ ∂

∂∂ ∂ ∂
∂ ∂ ∂ ∂

−

=

= − − + − =

 

Letting 1,=A  [ ]1 1 1 ,=B  and 
1 0 0
0 1 0
0 0 1

 
 =  
  

D , we see applying the ABCD lemma that  

1 1 1 1
1 1 0 0

4.
1 0 1 0
1 0 0 1

−

=  
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and, when there is a sample of observations 1 2 3, , ,... nX X X X the determinant of our transformation 
is n. 
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Derivation of F and T Measure 
 
 
Initial comments and calculations 
Here we will derive two of the most frequently used probability distributions in applied statistics. 
The derivation of these distributions can appear complex, but they are fine examples, allowing us 
to use the tools of transformation of variables that we discussed for the gamma, and beta 
distributions.  
 
Distribution of the normal square 
We begin with finding the distribution of the square of a standard normal distribution function. 
Let Z follow a standard normal distribution. Then what is the measuring tool of 2 ?Y Z=   
 We first note that this function is mapping the ( ),−∞ ∞  reals to [ )0, .∞  So this is 2 to 1 
mapping, an observation that we will have to take into account during the mathematics of this 
transformation. Also, since, most of the probability for the standard normal distribution is closer 
to rather than further away from zero, we would expect the same for the measuring tool of its 
square.  
 We formally begin by applying  
 

( ) ( )X Z Z Xf x f x z x      = → Ω → ΩD  
 
The last expression, [ ]Z XΩ → Ω just reflects the relative mapping spaces. Here we are mapping 
the ( ),−∞ ∞  reals to [ )0, .∞  This double mapping to the nonnegative reals means that we will 

need to multiply the resulting density by 2. The function 
1
2z x=  produces 

1
21 .

2
dz x dx

−
=  So we 

are ready to write  
[ ][ ]

( )
1

2 2
0

1
2

1
2 2

0

( ) ( )

1 1 2
22

1
2 .

1
2

1

1

X Z Z X

x

x

x

x

f x f x z x

e x

x e

π

− −

≤ <∞

− −

≤ <∞

= → Ω → Ω

  
=   

  

 
 
 =

 Γ 
 

D
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This recalls that 1 .
2

π Γ = 
 

 This we recognize as a chi-square distribution with one degree of 

freedom. Since we know the moment generating function [ ] ( )
1
21 2 ,X t t −= −M  then 

1

n

i
i

W X
=

= ∑  

has moment generating function [ ] ( )1 2

1

1 2

n

i

nXt n
wt Xt

W
i

t e e e t=
−

=

 ∑
    = = = −    
 

∏M E = E E is a 2
nχ  

distribution. Thus the measuring tool for the sum of the squares of  n i.i.d. standard normal 
random variables is a chi-square distribution with n degrees of freedom.  
 
Derivation of the F Distribution 
Assume that the random variables V and W are each independent 2χ  distributions with k and m 
degrees of freedom respectively. Then through a process of transformations we can find the 

distribution of the random variable the random variables .
V

k
W

m
 In addition, it is sometimes of 

value to have the distribution of .V
V W+

 we will begin by identifying the probability density 

function of this second measuring tool. 
 

Begin by letting , .VX Y V W
V W

= = +
+

Our goal is to transform ( , )V W  to ( ),X Y  and then 

integrate out Y. (We know that Y will follow a 2χ  distribution with k + m degrees of freedom, so 
we know what to watch for). We turn to our formula for transformation of variables: 
 

( ) ( ) ( ), ,( , ) , , ( , ) , ( , ) .X Y V Wf x y f x y J v w x y v w x y=  →  Ω → Ω      
 
We first attend to the region of positive measure.  For 0 , 0 ,w v≤ ≤ ∞ ≤ ≤ ∞  we have 
0 1, 0 .x y≤ ≤ ≤ ≤ ∞  We find that ( ), 1V XY W Y X= = −   
 
 

( ) ( ), ( , ) 1
1

v w
y yx xJ v w x y y x xy yv w x x

y y

∂ ∂
−∂ ∂

 →  = = = − + =  ∂ ∂ −
∂ ∂

 

 
The joint density of V and W is   
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( )

1 1
2 2 2 2

0 0

1 1
2 2 2

0 0

1 1
2 2

22

1 1
2 2 ,

2 2

1 1

1 1

k m

k v m w

v w

k m

v wk m

v w

v e w e
mk

v w e
k m

− − − −

≤ <∞ ≤ <∞

+
− − −

≤ <∞ ≤ <∞

   
   
   

   
  
  

   
   
   
   

  
  

ΓΓ

=
Γ Γ

 

 
We can now write 
 

( ) ( ) ( )

( )
( )

( )
( )

, ,

2 2

1 1 1 12 2 2 22
0 1 0

2 2

1 112 2 2 22
0 1 0

( , ) , , ( , ) , ( , )

1 1
2 2 1

2 2

1 1
2 2 1

2 2

1 1

1 1

X Y V W

k m

yk k m m

x y

k m

yk k mm

x y

f x y f x y J v w x y v w x y

x y y x e y
k m

x x y e
k m

− − − −−
≤ ≤ < <∞

− + − −−
≤ ≤ < <∞

=  →  Ω → Ω    

   
   
   = −
   Γ Γ   
   

   
   
   = −
   Γ Γ   
   

 

We can now proceed with our plan to integrate over y to find 

( )

( )
( )

( )

2 2

1 112 2 22
0 1

0

2

1 112 2 22
0 1

0

1
2

1 1
2 2( ) 1

2 2

1
2 21

2 2 2

2 1

2 2

1

1

k m

k k m ym

X x

k m

yk k mm

x

k m

f x x x y e
k m

k m

x x y e
k m k m

k m

x x
k m

∞ +
− − −−

≤ ≤

+

∞ +
− − −−

≤ ≤

−

   
   
   = −
   Γ Γ   
   

+   Γ   
   = −

+     Γ Γ Γ     
     

+ Γ 
 = −

   Γ Γ   
   

∫

∫

1
2

0 11 x
−

≤ ≤

 

Which is the measuring tool for the beta distribution.  
In order to find the probability density function for the random variable variables 

,
V

kF W
m

= we will find the joint distribution for , ,VX Y W
W

= = planning to integrate over the 

entire range of the random variable Y to obtain the measuring tool of X, Once we have that, we 
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can define .kF X
m

=  Thus, our goal is to transform ( , )V W  to ( ),X Y  and then integrate out Y. 

Using ( ) ( ) ( ), ,( , ) , , ( , ) , ( , ) ,X Y V Wf x y f x y J v w x y v w x y=  →  Ω → Ω      
 
we know that 0 , 0 ,x y≤ ≤ ∞ ≤ ≤ ∞  and  W Y=  and .V XY=  In addition 

( )
0

, ( , ) .
1

v w
yx xJ v w x y yv w x

y y

∂ ∂
∂ ∂

 →  = = =  ∂ ∂
∂ ∂

 

Thus 
( ) ( ) ( )

( )
( )

, ,

2 2
1

11 2 22
0 0

( , ) , , ( , ) , ( , )

1 1
2 2

2 2

1 1

X Y V W

k m

y xmk

x y

f x y f x y J v w x y v w x y

xy y e y
k m

+
− −−

≤ ≤∞ < <∞

=  →  Ω → Ω    

   
   
   =
   Γ Γ   
   

  

 
Continuing, 

( )
2 2

1
1 1

2 2 2
0 0

1 1
2 2

2 2

1 1

k m

y xk m k

x yx y e
k m
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− − −

≤ ≤∞ < <∞

   
   
   =
   Γ Γ   
   

 

 
We now must integrate out y. 

( )

( )

2 2
1

1 1
2 2 2

0
0

2 2
1

1 1
2 2 2

0
0

1 1
2 2( )

2 2

1 1
2 2 .
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1
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y xk m k

x

f x x y e
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x y e dy
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≤ ≤∞

+∞ +
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≤ ≤∞

   
   
   =
   Γ Γ   
   

   
   
   =
   Γ Γ   
   

∫

∫
 

To integrate 

 

( )1
1

2 2

0

,
y xm k

y e dy
+∞ +

− −

∫ we let 1 2 2, ,
2 1 1

x uu y y dy du
x x

+
= = =

+ +
 and no change in the region 

of integration. Thus 
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2

0

2

2 2
1 1

2
1

2
1 2

m k
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u
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x
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x

+
−+∞ ∞+
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+
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 =  + + 

 =  + 
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∫ ∫

∫  
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Thus 
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0
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To conclude, we set , , ,k m mg x x g dx dg
m k k

= = = note that there is no change in the region of 

integration and write 
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Deriving the T-distribution 
Let 

 

,t g=

 

where 1.k =  Here we have a change in the region of integration, where now 
,t−∞ ≤ ≤ ∞  and a one to two mapping. We proceed, by noting 2 , 2 ,g t dg tdt= =  and 
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Cauchy, Laplace, and Double Exponential 
Ordering Random Variables 
Normal Measure 
Compounding 
F and T Measure 
Asymptotics 
Tail Event Measure 
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Cauchy and Laplace Distributions 
 
 
Three distributions of continuous measure that are not used as heavily as the normal, or gamma 
families are the Cauchy, Laplace, and double exponential distributions. Each has revealing 
properties and uses that reveal something interesting about the nature of probability and the use 
of density functions. 
 
Prerequisites 
Basic Properties of Probability 
Moment and Probability Generating Functions 
Continuous Probability Measure 
Variable Transformations 
An Introduction to the Concept of Measure 
Working with Measure 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
 
Cauchy distribution 
The Cauchy distribution, named for Augustin-Louis Cauchy is one of the most interesting 
distributions considered in probability theory. As is the standard normal distribution, the standard 
Cauchy is symmetric with a median or 50th percentile of zero. Its measuring tool is  
 

( )2

1( )
1

1X xf x
xπ −∞< <∞=

+
 

 
And probabilities over the set are found integrating this function recognizing that 

( )2
1 arctan .

1
dx x

x
=

+∫  Thus probabilities are closed form and as straightforward to find as those 

of, for example, the exponential distribution.  
 A graph of this probability density function demonstrates that this distribution is 
symmetric around 0x = (Figure 1). 
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However, one feature that is not discernable from Figure 1 is that while the Cauchy distribution 
has a median (which is zero), it has no mean. This is a direct reflection of the fact that 

[ ] ( )2
.

1
x

xX x d dx
xπ

∞

Ω −∞

= = = ∞
+∫ ∫E P  This follows as 

 

( ) ( ) ( )

( ) ( )

2
2 2

2 2

1 2 1 ln 1
2 21 1

1 lim ln 1 lim ln 1
2 x x

x xdx dx x
x x

x x

π ππ

π

∞ ∞ ∞

−∞
−∞ −∞

→∞ →−∞

 = = + + +

 = + − + 

∫ ∫
 

 
and each of these limits diverges. As we might expect, higher order moments are also nonextant.  
 This behavior is unusual, and would not be expected from the graph. However, the 
comparison with the standard normal distribution provides an interesting contrast (Figure 2). 
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We see that while both distributions are symmetric, the Cauchy distribution is more dispersed at 
the extremes. These “fatter tails” are precisely the feature that denies the Cauchy distribution its 
finite mean.  How this occurs is revealed in a comparison of the curves that must be integrated in 
order to compute the mean. For this demonstration, we focus on the positive real number line 
(Figure 3).  
 

 
 
 
 
 

 
 
 

The function that we must integrate to find the mean of normal measure, 
2

21 ,
2

x

xe
π

−  an 

expression dominated by
2

2
x

e
−

 rapidly approaches zero. However, the term that we must integrate 

to find the mean of the Cauchy distribution 
( )2

,
1

x
xπ +

 while still approaching zero, does so at a 

substantially slower rate. In fact, the rate is so slow, that its measure of the real line is infinity. 
 
Laplace distribution 
The Laplace distribution is related to the negative exponential distribution. However, while the 
exponential distribution defined as 0( ) 1xX xf x e λλ −

≤ <∞=  is defined for the nonnegative reals, a 
random variable that follows the Laplace distribution takes positive measure over the entire real 
line. A random variable X that follows the Laplace distribution has the measuring tool  
 

1( ) .
2

1
x

X xf x e
µ

β

β

− −

−∞< <∞=  

 
From what we know of the exponential distribution, we expect that the parameter is a location 
parameter, identifying where the center of the measuring tool resides. The parameter β  functions 
as a scale parameter, controlling the dispersal of the distribution over the real line (Figure 4). 
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Working with this distribution poses no obstacle as long as we are facile with absolute values. 

For 0µ =  and 1β =  this reduces to 1( ) ,
2

1x
X xf x e−

−∞< <∞= which is commonly referred to as the 

double exponential distribution.  In the case of the double exponential we can show fairly easily 
that the measure over the entire real number line is one: 

0

0

0

0

1 1
2 2

1 .
2

x

x x x

x x

d e dx e dx e dx

e dx e dx

∞ ∞
− − −

Ω −∞ −∞

∞
−

−∞

 
= = + 

 

 
= + 

 

∫ ∫ ∫ ∫

∫ ∫

P

  

Recognizing that 
0

0

,x xe dx e dx
∞

−

−∞

=∫ ∫  we can continue 

0

0 0

1 1 2 1.
2 2

x

x x xd e dx e dx e dx
∞ ∞

− −

Ω −∞

 
= + = = 

 
∫ ∫ ∫ ∫P   

 
For other values of  and µ   we can show that [ ]X µ=E  and [ ] 2.X β=Var  The moment 

generating function is also available and is ( ) 2

1 .
1X t

t
=

−
M   

  
Determinant of a normal matrix 
And interesting use of the concept of double expectation can be seen from the following 
question. Let each of the elements of a two by two matrix be independent and follow a standard 
normal distribution. What is the probability density function of the determinant?  
 We can write this determinant as the function of four i.i.d, standard normal distributions  

, , , .X Y V W  We will write the determinant as  
 

 
 

 
.U XY VW= −  

β



450                               Cauchy and Laplace Distributions 
 
  
Certainly XY  and VW are themselves independent and identically distributed.  
 
We will first identify the moment generating function of the product of the random variables 

.XY  We will use the principle of double expectation to find the moment generating function of 
this product. 
 

.xyt xyt
X Ye e    =    E E E  
 

We will find the inner expectation first.  
 

( )
2 2

2 ,
t x

xt yxyt
Y Ye e e   = =   E E   

 
Since we know the moment generating function of a standard normal distribution. We now 
compute 
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1

2

2

2

1
2

1
2

1 1
1 12

1

1
1

t x t x x
xyt

X Y X

x t

x

t

e e e e dx
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−∞
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   = =      

=

=
−

−

=
−

∫

∫

∫

E E E

  

 
 

Thus, the moment generating function of the product XY  is 
( )2

1 .
1 t−

  

The moment generating function of ,U XY VW= − is 
 

( ) ( )

( ) ( )

( ) ( )

22 2

1 1 1 .
11 1

t xy uv t uvtu txy tuv txy
U e e e e e

tt t

− −−        = = =        

= =
−− −

E E E E E

  

 
The determinant follows a double exponential distribution. 
 
 
 
Compounding 
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Asymptotics 
Tail Event Measure 



  452 
 



  453 
 

 
 
 
 
 
 
 

Features of the Laplace Distribution 
 
The Laplace distribution  has measuring tool  
 

1( ) .
2

1
x

X xf x e
µ

β

β

− −

−∞< <∞=  

 
Working with the Laplace distribution 
In order to demonstrate 1

x

d
Ω

=∫ P  by breaking the integral into two mutually exclusive and 

exhaustive ranges based on the absolute value of .x µ−  Begin by writing  
 

1 1 1 .
2 2 2

x

x x x

d e dx e dx e dx
µ µ µµ

β β β

µβ β β

− − − − − −∞ ∞

Ω −∞ −∞

= = +∫ ∫ ∫ ∫P  

Let’s take the second integral first. 
 

( )1 1 1 .
2 2

x x

e dx e dx
µ µ

β β

µ µβ β

− − − −∞ ∞

=∫ ∫  

 
.y x µ= −  Then xµ < < ∞  implies 0 , ,y dx dy≤ < ∞ = and 

 
( )

0

1 1 1 1 1 .
2 2 2

x y

e dx e dy
µ

β β

µ β β

− − −∞ ∞

= =∫ ∫   
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The first integral 
( )1 1 1 .

2 2

x x

e dx e dx
µ µµ µ

β β

β β

− − −

−∞ −∞

=∫ ∫  Carry out the same transformation to see 

( ) 01 1 1 1 ,
2 2

x y

e dx e dx
µµ

β β

β β

−

−∞ −∞

=∫ ∫  then let w y= −  to compute 
0

0

1 1 1 1 1 ,
2 2 2

y y

e dx e dxβ β

β β

∞ −

−∞

= =∫ ∫

and so 1 1 1.
2 2

x

d
Ω

= + =∫ P  

 
 
Moments of the Laplace distribution 
We can take advantage of this symmetry in the Laplace distribution to find the higher order 
moments. For k a non-negative integer, we can find kX  E  as 
 

( ) ( )

1 1
2 2

1 1
2 2

1
x x

k k k k
x

x x
k k

X X d X e X e dx

X e dx X e dx

µ µ
β β

µ µµ
β β

µ

β β

β β
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−∞< <∞
−∞
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  = = = 

= +

∫ ∫ ∫

∫ ∫

E P
  

 

First, evaluate
( )1 .

2

x
kX e dx

µ
β

µ β

− −∞

∫   We allow .y x µ= −  Then xµ < < ∞  implies 

0 , ,y dx dy≤ < ∞ = to see 
 

( )

( )
0

1 1 .
x y

kk

u

x e dx y e dx
µ

β βµ
β β

− − −∞ ∞

= +∫ ∫  So, now we invoke the binomial theorem to write 
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k m k m

m

k
y y

m
µ µ −
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00 0
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=  
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∑ ∫
  

In order to evaluate 
0

1 ,
y

my e dxβ

β

−∞

∫ we simply let , ,yw y w dy dwβ β
β

= = =  and 

( )
0 0

1 1 1 !.
y

m m m w m my e dx w e dw m mβ β β β β
β β
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We may compute
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Analogously, 

( )

( )
01 1 .
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x y
kkX e dx y e dy

µµ
β βµ

β β
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−∞ −∞

= +∫ ∫  Now, let z y= −  to compute 
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Thus 
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0 0

! ! 1
2 ! 2 !

m mk kk k
k mk

m m

k kX
k m m

µ β β µ
µ β

−

= =

     = + −     −    
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For the mean, we compute that for 1,k =  .
2 2 2 2

X µ β β µ µ   = + − + =E  We can also find 
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0 1 22
2
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Continuing 
 

( ) ( )

2 22 2

2 2 2 2

1 2 1 2
2 2

1 1 .
2 2

µ β β β µ µ
µ µ β β

µ β µ β µ β

      
= + + + − +      
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Thus [ ] [ ]2 2 2 2 2 2.X X X µ β µ β = − = + − = Var E E   

 
Moment generating function 
For 0, 1µ β= =   we can find the moment generating function for the Laplace distribution. We 
write 
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Compounding 
 
Working in probability commonly involves working with multiple probability density functions. 
For example, there are circumstances where a random variable X follows a normal distribution 
with parameter µ  and 2.σ  However, how do we manage computing the probability of events 
when the “parameter” µ  has its own probability distribution.  

This is a set of circumstances that we will be able to manage with the help of the law of 
total probability.  
 
Prerequisites 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Working with Measure 
Properties of Probability 
Conditional Probability 
Bernoulli Distribution – In Depth Discussion 
Moment and Probability Generating Functions 
Advanced Binomial Distribution 
Multinomial Distribution 
Hypergeometric Measure 
Geometric and Negative binomial measures 
General Poisson Process 
Continuous Probability Measure 
Variable Transformations 
Uniform and Beta Measure 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential 
Normal Measure 

  
Restatement of the law 
The Law of Total Probability is quite simple. It only states that, if we have the joint probability 
of two random variables X and W, then we can find the probability of X by summing over the 
probabilities of W. Thus. 
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[ ] [ ] [ ] [ ], : , ,
W X

X x X x W w W w X x W w= = = = = = = =∑ ∑P P P P
 

or, more generally, 
 

( ) ( ), ,( ) , : ( ) ,
Y X

X X Y Y X Yf x f x y dy f y f x y dx
Ω Ω

= =∫ ∫    

 
This result is self-evident for independent random variables, since  
 

( ) ( ) ( )
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y y

y

X X Y X Y

X Y X

f x f x y dy f x f y dy

f x f y dy f x
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Ω

= =

= =

∫ ∫

∫
 

 
While this is useful, it also holds for dependent random variables as well. In this, commonly, it is 
more helpful to write the joint density in the form of a conditional distribution.  Here, we write 
 

( ) ( )
( )

,
|

,
, X Y

X Y
Y

f x y
f x y

f y
=  

 
or 
 

( ) ( ) ( ), |, ,X Y YX Yf x y f x y f y=  
 
Thus, we can rewrite the law of total probability as  
 

( ) ( ) ( ), |( ) , , .
y y

X X Y X Y Yf x f x y dy f x y f y dy
Ω Ω

= =∫ ∫  

 
Of course, it is also true that, 
 

( ) ( ) ( ), |( ) , , .
x x

Y X Y Y X Xf y f x y dy f x y f x dx
Ω Ω

= =∫ ∫  

 
And given our penchant for using the integral sign ∫  as merely a statement of our intent to 
accumulate measure, these formulas will apply to discrete probability distributions as well as 
continuous ones.  
 
Example: Natural killer T-cells 
Natural killer or NK cells are T-cells that have a special role in the immune system. One of the 
functions that these lymphocytes carry out is immunosurveillance. They survey the receptors on 
other cells, looking for evidence that these other cells, by either absorbing an unusual compound 
or the creation of some intracellular disruption, may have been compromised.  

If the NK cell sees evidence of this compromised cell (through a particular molecular 
configuration that appears on the examined cell's membrane), the NK cell, suitable excited, will 
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transmit a chemical signal to the signaling cell to kill itself through a process known as 
apoptosis.  

This is one process by which the body identifies and destroys cancerous cells before they 
can metastasize or spread to other organ systems.  
 Assume that the probability that out of n cells expressing this signal the probability that k 
of them, 0 ,k n≤ ≤  are destroyed follows a binomial distribution with probability of a successful 
cell destruction p where 0 1.p≤ ≤  However, suppose that n, the number of expressing cells, 
follows a Poisson distribution with parameter .λ  What now is the unconditional probability that 
k cells are destroyed by the natural killer cell? 
 Here, we are given the conditional probability, [ ]| .X k N n= =P  We are tasked with 
finding the unconditional probability [ ].X k=P  We turn to the law of probability that permits us 
to write 
 

[ ] [ ] [ ] [ ], | .
n n

X k X k N n X k N n N n
Ω Ω

= = = = = = = =∫ ∫P P P P  

 
Begin this computation by writing  
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The expression ( ),n I k∈ ∞ simply means that n is an integer greater than or equal to k. Note that 
the index function for n has a lower bound of k since the event { }X k=  presumes n cannot be 
less than k. What remains before us simplification. 
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We now only have to let ,m n k= −  to helpfully adjust the index governing the range of the 
summand 
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The unconditional distribution of the random variable X is Poisson with parameter ,pλ  a 
parameter whose components are taken from the unconditional Poisson distribution for the 
number of signaling cells and the conditional binomial distribution, respectively.  
 This process of finding unconditional distributions based on conditional distributions is 
historically known as compounding.  

We can use this to provide more realism to a problem developed in the basic introduction 
to the binomial distribution involving hurricanes. There we compute the probability of  in at least 
five of ten years, there were at least three hurricanes per year. In order to compute this with the 
tools that we had at the time, we had to assume that there were fifteen storms per year. 

However, now we can simply assume that the number of storms n follows a Poisson 
distribution with parameter .λ  Let’s assume that 15.λ =  Then the probability there are  k 
hurricanes in that year is binomial with parameters n and  p = 0.28. We now know that the 
distribution of the number hurricanes in a given year is Poisson with parameter ( )( )15 0.28 4.2.=   

The probability of at least three hurricanes in a given year is 4.2

3

4.2 0.790,
!

k

k
e

k

∞
−

=

=∑   and the 

probability that in ten years there are at least five with more than three hurricanes each is

( ) ( )
10

5

10
0.790 0.210 0.992.k n k

k k
−

=

 
= 

 
∑   

 
Binomial- negative exponential compounding 
Suppose we are working with a death process. Consider an outcome X that follows a binomial 
distribution where the death parameter µ  is a constant. Then the probability that there are k 
deaths in the system by time t given there are n subjects in the system at time 0 is  

( )| 1 .
n kk t tn

X k e e
k

µ µµ
−− − 

    
 

= = −P  

However, assume that µ  is not constant, but follows an exponential distribution with parameter 
λ. We are interested in computing the unconditional distribution of X. 
 Using the law of total probability, we write 
 

| .X k X X k
υ υ

µ µ µ
Ω Ω

            = ∩ = =∫ ∫P = P P P  

 
and substitute the binomial distribution for | ,X k µ  =P and the exponential distribution with 
parameter λ for [ ].µP   
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Since n k− is a non-negative integer, we may write 
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Substituting this expression, we have 
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The remaining integral is simply ( )
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which is an easily computable, finite sum.  
  
Compounding a Poisson-gamma 
Consider an outcome tX  that represents the number of arrivals to an emergency room through 
time t. If we assume that tX  follows a Poisson distribution with parameter λ, we may write  

( )|
!

k
tt

k e
k

λλ
λ −  = =tP X  

 
for k = 0, 1, 2, 3, … Thus Xt is the cumulative number of arrivals from time 0 to time t. However, 
let's also assume that the parameter λ is not constant, but follows a gamma distribution with 
parameters α and r.  
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We are interesting in identifying the unconditional probability distribution of tX . Using the Law 
of Total Probability, we write 
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Removing all terms not involving the variable λ outside the integral, we can rewrite the second 
line of expression as  
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The integral on the right side of this equation  needs only a constant to allow it to be one. We 
therefore write 
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The integral on the right-hand side of equation is that of a variable that follows a gamma 
distribution parameters α + t and  k + r. This integrates to one over the entire range of λ. Thus, 
we are left with 
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We recognize this last expression as the probability of k failures before the rth success when the 
probability of a success is ( ) ,tα α +  and the probability of failure is ( ).t tα +  
 It is of interest that we began with Poisson measure, and ended with that of the negative 
binomial. Each provides positive probability over the non-negative integers, and it can 
sometimes be difficult to differentiate which of these two ubiquitous distributions should be 
selected.  

Some guidance can be provided by the mean and variance of the data collected from the 
experiment. If they are close to each other, than one might start with a Poisson distribution. 
However, if one expects from the nature of the experiment that the process should be governed 
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by the Poisson distribution, but the mean and variance are not similar, consideration of the 
compound Poisson derived above may be warranted.* 

Consider an outcome X that follows a gamma distribution with parameters α and n where 
n is an integer. Let n itself follows negative binomial measure. with parameters r and p. What is 
the unconditional distribution of X? 
 
Using the Law of Total Probability we write 
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Recognizing that 
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The summand  may be written as 
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Allowing us to write 
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which is a gamma density with parameters αp and r. 
 
Gamma-gamma compounding 
Consider an outcome x that follows a gamma distribution with parameters α and m where m is an 
integer greater than zero.  
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However, here, the parameter λ has its own probability distribution  

                                                 
* From. Dr. John P. Young, 1973, the Johns Hopkins University.  
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where we will assume that r is also a positive integer. We are interested in finding the marginal 
distribution of x. Using the Law of Total Probability we write 
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Removing terms involving λ, the second line of expression  becomes 
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Recognizing that the integrand in expression  is related to that of a variable that follows a gamma 
distribution, we include the appropriate constant so that this integral’s value is one.  
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 We arranging terms, this becomes 
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Compounding two normal distributions 
Let X be a random variable following a normal distribution with mean θ  and variance 2.σ  
However, in this case, θ  is itself normally distributed with mean ,µ  and variance 2.υ  We seek 
the unconditional or marginal distribution of X. Using the Law of Total Probability we write 
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Our goal is to carry out the integration in the last line of this expression with respect to θ. This 
expression can be rewritten as  
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And our attention turns to simplifying the exponent in this integral. The process we will follow is 
one of completing the square. Begin by  
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Continuing 
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It now remains to complete the square in θ. 
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We can now incorporate the completed square term. 
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The integral in the last line of expression is one, and we are left with 
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We can now write ( )Xf x as  
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which is the function of a normal distribution with mean μ and variance 2 2.σ υ+  
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Asymptotics 
 
 
Prerequisites 
The Concept of the Limit 
Convergent Series 
Cauchy Sequences 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Moment and Probability Generating Functions 
Advanced Binomial Distribution 
Multinomial Distribution 
Hypergeometric Measure 
Geometric and Negative binomial measures 
General Poisson Process 
Continuous Probability Measure 
Uniform and Beta Measure 
Survival Measure 
Normal Measure 
 

One of the most challenging topics in probability for students is the application of limit 
theory. Yet this theory has a fine motivation and can be mastered if introduced helpfully.  

Much of the work in applied statistics deals with drawing a sample from a much larger 
population. We would like to believe that the result that we obtain from that sample provides 
insight into the population from which the sample was drawn. Yet, is that insight there? Is that 
really a principal relationship between the sample and the population? How do we know?  

Another way to say that is that as the samples become larger and larger, we would like 
our estimators or functions of the data to become closer and closer to the actual parameters that 
can only be known if the entire population could be studied.  

For example, we understand that we will never actually know with infinite precision the 
population parameter  2σ  from normal measure. However, we can be assured that the estimate 
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( )2

1

1

n

i
i

x x

n
=

−

−

∑
of 2σ that is constructed from a sample of data will get closer and closer to 2σ as n 

gets larger. Without this confidence, the estimate is of diminished value to applied scientists.  
How can we provide them this assurance? 

 
Probability and convergence 
Asymptotic theory combines probability and the limiting process from calculus. This 
combination requires new thought, and has produced four types of convergence available to us.  

1- Convergence in distribution  (in law) 
2- Convergence in probability 
3- Convergence with probability one 
4- Convergence in mean  

 
 This list reveals that there is not just one way, but several ways to combine the principals 
of probability with those of convergence, and the number of them gives students pause. 
However, like many things in mathematics, this is quite manageable if we take one step at a time. 
 Let’s get started.  
 
Convergence in distribution 
How then might random variables converge?  We understand the convergence process from our 
review of limits, developed by Augustin Cauchy. We begin with { } ,nX  an infinite sequence of 

random variables, for which each random variable has a cumulative distribution function ( ).
nX xF   

For convergence in distribution, we require that (and only that) the cdf’s of the random 
variables in the sequence converge to a function that is itself a cdf.  

Formally this means that if there is a sequence of random variables { }nX  each of which 

has its own cumulative distribution ( ) ,
nX xF  then if  ( ) ( ) ,

nX Xx x→F F  then the random 

variables ,nX X→  assuming that ( )X xF  is itself a cumulative distribution function.  
Convergence in distribution (otherwise known as convergence in law) is simply a 

statement about the convergence of cumulative distribution functions.  
As an example, let’s consider a collection of n random variables each of which follows 

the ( )0,1U  distribution. We are interested in the measure of its sample minimum nV .  
We have worked with nV  in our discussion of the measure of order. Can we apply the 

notion of convergence in distribution to ?nV   
Our goal is to identify the cumulative distribution function ( )n xF  and then look for any 

limiting behavior of these cumulative distribution functions.  
But first, let’s consider what we might expect. We know that while the absolute minimum 

of a ( )0,1U  must be zero, we would not expect to actually obtain that minimum value from any 
sample.  

Yet, as the sample sizes increase, intervals closer and closer to zero, however small, will 
be likely to contain observations as well. Thus, we will expect that the minimum of these larger 
and larger samples “should”  become close to zero. Thus, as sample size increases, it becomes 
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more likely that the minimum would become smaller; the limiting cumulative distribution 
function would reflect this.  

Let ( )
nV vF  = [ ].nV v≤P  Recalling our work on order statistics,  we find that

[ ] ( ) ( )1 ( ) 1 ( ) 1 ,
n

n n
V n Xv V v v v− = > = − = −F P F  and 

( ) 0 1( ) 1 1 .1
n

n
V vv v ≤ ≤

 = − − F  We now evaluate 

( ) 0 1 0 1lim ( ) lim 1 1 lim ( ).1 1
n

n n
V v v Vn n n

v v v v≤ ≤ ≤ ≤→∞ →∞ →∞
 = − − = = F F   

 
( )V vF is the cumulative distribution function of the random variable [ ]0 1,V = =P  and we 

have demonstrated our result. We conclude that the random variable nV   converges in 
distribution to zero. 

Formally, we say that a sequence of random variables { }nX  with associated cumulative 
distribution functions ( )nX xF  converges in distribution  (or in law) to the random variable X 

with a cumulative distribution function identified as ( )X xF  if ( ) ( )lim
nXn

x x
→∞

= XF F  for every x at 

which the cumulative distribution function ( )X xF is continuous.  
It is important to see how the introduction of probability has altered our definition of 

convergence. In our introductory discussion of the limiting process, the elements of the sequence 
{ }nX became closer to one another as n increases. However, in this current setting, the elements 

of the sequence { }nX  are random ─ they are unknown. What converges is not the random 
variable values themselves, but the distributions which govern the values that these random 
variables can assume.*  
 This convergence is termed weak convergence. It is weak because it is not the random 
variables that are converging to a particular value, but the distribution functions that are 
converging. In weak convergence the occurrence of random variable values  quite far from the 
limiting value denoted by ( )X xF  although unlikely, are possible.  

This is evident in the minimum example of this section. No matter how large the sample, 
there is a probability ( )1 nε−  that the minimum observation in that sample will be greater than 

some positive number .ε Although ( )lim 1 0,n

n
ε

→∞
− =   there is never a guarantee that all of the 

minimums will be within ε  of zero, for any large value of n. 
 
Convergence in distribution and Mn(t) 
We defined the concept of convergence in distribution as one that involves a sequence of random 

variables { }nX  and a corresponding sequence of cumulative distribution functions, { }( )
nX xF

 
which, for the sake of notational brevity, we will describe as { }( )n xF  We said that the sequence 

of random variables { }nX  converged in distribution to the random variable X  if 
.lim ( ) ( )nn

x x
→∞

=F F   

                                                 
* The importance of  ( ) Xlim ( )

nXn
x x

→∞
=F F  for only those points x for which the cumulative distribution function is 

continuous is discussed in detail elsewhere(Rao, 1984). 
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 However, we might also use the link between moment generating functions and 
cumulative distribution functions to discuss convergence in distribution in terms of the MFG’s.  

Recall that a cumulative distribution function has one and only one moment generating 
function. Therefore, since the moment generating functions are unique, the convergence of ( )n xF  
to ( )xF  suggests that if ( )n tM  is the moment generating function of the random variable ,nX  

then ( )n tM  must converge to ( )tM where ( ) .t x
X t e  =M E  This is called Lévy’s Continuity 

Theorem for Moment Generating Functions, which is present without proof. 
 
Lévy’s continuity theorem 
 Let { }nX  be a sequence of random variables. Denote the  cumulative distribution function of 

nX  as ( )n tF , and the moment generating function of nX  by ( )n tM . Then for every point t such 
that  1t <  and ( )

0
lim 1,
t

t
→

=M  then ( ) ( ) ( ).lim ( ) limn nn n
x x iff t t

→∞ →∞
= =F F M M  

 
MGF’s and convergence in distribution 
The Lévy Continuity Theorem is the basis of the argument for the use of moment generating 
functions as a vehicle to obtain convergence in distribution. We will find that, in general, the 
moment generating function is a useful tool in demonstrating the convergence of random 
variables. However it must be recognized, that working with moment generating functions can at 
first be frustrating.  

For example, the examination of the manner in which the sum of uniformly distributed 
random variables on the unit interval produced probability mass in the center of the resulting 
distribution provided intuition into why central tendency emerges from sums of variables which 
by themselves presented no such tendency.  

However, frequently there is no such insight when one works with moment generating 
functions. This is not to suggest that arguments based solely on moment generating functions are 
impenetrable ─ only that the intuition for the underlying argument can sometimes be lost in the 
deeper consideration of limits and continuity.  

We will find in our approach to moment generating functions and asymptotics that a 
useful tool on which moment generating functions commonly rely is the following easily 
demonstrated limit statement;  

 

 lim 1
→∞

 + = 
 

n
x

n

x e
n   

  
Poisson random variables and normal measure   
We have already seen how the binomial distribution converges to the Poisson distribution using 
probability generating functions.  Out study of the use of normal measure as an approximation to 
the measure of other non-normal random variables begins with an examination of the manner in 
which the Poisson distribution produces probabilities that are approximately Gaussian.  
 We rely on moment generating functions in this demonstration. Recall that,  
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where ( )ko t reflects additional terms that contain powers of t that are greater than k (i.e., terms 
that are of order 1kt +  or greater).  A careful analysis of the expansion of the moment generating 
function reveals that ( )0

lim 0k
t

o t
→

= .  

Our goal is to demonstrate the utility of this expansion in proving that the probability 
distribution of a random variable converges to the probability distribution of another. 
Specifically, we will show that the expansion of the moment generating function of the Poisson 
distribution, will converge to that of normal measure. Recall that if X is a Poisson random 
variable with mean λ, then  
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Now consider the random variable Z defined by ,XZ − λ=
λ

 which is the Poisson random variable 

with its mean subtracted and divided by its standard deviation (i.e., a “standardized” Poisson 
random variable). Then the mgf of Z is   
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Thus  
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Since this is the moment generating function of the standard normal distribution, we have 

convergence in law of the Poisson distribution to normal measure.   Another demonstration of 
this result is also available. 

This finding does not imply that Poisson random variables become normal. This is not 
true for many reasons, beginning with that the measure of the Poisson random variables is only 
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positive on the nonnegative integers, while normal measure is positive over the entire real 
number line.  

The appropriate conclusion is that, suitably normalized, normal measure can be used to 
approximate Poisson measure.  
 
Introduction to the central limit theorem 
The central limit theorem is sometimes called the Lindburg-Lévy Theorem. Its proof is based on 
a property of convergence in distribution (law). The observation that the Central Limit Theorem 
is ubiquitous in its use in biostatistics speaks to the fact that convergence in distribution, however 
“weak” that it may be in theory, can have a wide range of practical implications.  

Our goal is to prove the central limit theorem by relying on Lévy’s criteria for the 
convergence of moment generating functions. With our understanding of the Lévy Continuity 
Theorem, and the prior example of the Poisson distribution converging in distribution to normal 
measure, the proof of the central limit theorem will be surprisingly easy. We begin with its 
statement. 
 
Central limit theorem 
If there is a sequence of independently distributed random variables ,iX  i = 1,2,3,…, n, each 
with a moment generating function ( )

iX tM , mean μ, and variance σ2, then the probability 

distribution of the random variable 1
2

n

i
i

X n

n

µ

σ
=

−∑
converges in distribution to (0,1)N  measure as n 

goes to infinity. 
 With the monitory that convergence in distribution does not mean that the random 

variable 1
2

n

i
i

X n

n

µ

σ
=

−∑
 itself becomes a normal random variable, but instead that its distribution can 

be approximated by normal measure,* we proceed. 
 We can proceed directly to the proof. Let us start as we did in the previous discussion 
concerning the weak convergence of a Poisson distribution to a normal distribution by beginning 
with the observation that   
 

2 2
1

n
n i

n
i

S n XT
n n

µ µ

σ σ=

− −
= = ∑  

  
Thus, the random variable of interest is the sum of n independent, normed random variables. We 
may use this fact to write 

2

( ) ( )
n i

n

T X

n

t tµ

σ

−

 
 =
 
 

M M                                            

                                                 
* The CLT does suggest however that however skewed the measure of  the random variable iX  may be, the 

behavior of 1
2

n

i
i

X n

n

µ

σ
=

−∑
does exhibit central tendency. 
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We now examine the moment generating function
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M  We can start by writing 
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Now it remains for us to take advantage of the fact that the moment generating function of the 
sum of independent random variables is the product of the moment generating function of the 
summands. Thus 
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and, taking limits, we conclude 
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This is the moment generating function of standard normal measure. Note that this finding does 
not reveal any property of the individual random variable itself other than that it is independently 
distributed with common means and variance and has a moment generating function. 

  
The delta method 
From the preceding section, we have seen that, under commonly occurring conditions, the 
measure of the sample mean of a random variable (suitable normalized) can be very reasonably 
approximated by a normal distribution. In the examples that we have developed thus far, the 
mean and variance of the random variable have been directly available.  
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 However, frequently, we are interested in the distribution of functions of these random 
variable that do not have an easily calculated mean and variance. A procedure, commonly known 
as the delta method, provides a very helpful result. It is at its heart, the application of the central 
limit theorem with the use of a Taylor expansion to approximate the mean and variance of the 
random variable in question.  
 
Convergence in probability 
Convergence in distribution has provided a helpful approach to the notion of limiting 
probabilities, not the least of which is of course the Central Limit Theorem. However 
convergence in distribution is just one of four implementations of limits and probability. 

A second approach is what is termed convergence in probability.  Perhaps a more 
evocative name for this type of convergence is weak random variable convergence, for reasons 
that we will discuss later. First, though, the statement of the definition.  
 
Definition of convergence in probability 
Let { }nX  be a sequence of random variables. Then the sequence is said to converge in 
probability to a random variable X, the probability of large deviations of the random variable 
from its limit is small, i.e., if for each ε > 0 lim 1.nn

X X
→∞

 
 − ≤ ε =P  

 
There are important differences between convergence in distribution and convergence in 
probability. Convergence in distribution focuses on the convergence of the cumulative 
distribution function. There is no statement about the random variable’s behavior, only that of 

( ).n xF   
Here for the first time, we are focusing on the behavior of the random variable itself (note 

that the requirement lim 1.nn
P X X

→∞
 
 − ≤ ε =  Convergence in probability makes no comment 

about the cumulative distribution function. 
However, convergence in probability does not imply that all but finitely many of the 

values of the sequence { }nX  must be within ε  of the limiting value .X  This ability to let some 
random variable realizations “escape” from the requirement of being within ε  of the limiting 
value X accounts for the “weakness” aspect of convergence in probability.  

Consider  the random variable follows a 10,
n

 
 
 

U  distribution, but only with probability 

.
1

n
n +

 With the remaining probability 1
1n +

 it takes on the value 2.n  Does this random variable 

converge in probability? 
Taking a step back to considering the behavior of the random variable for a moment. It 

seems to have somewhat of a “split personality”.  As n gets larger, the random variable has a 
greater and greater probability of falling into ranges that are closer and closer to zero. However, 
there is always a positive probability that  the random variable will take on a value outside this 
range, and when it does, for large values of n, the random variable takes on huge sizes ( )2 .n  To 
what extent does this random variable converge? 

In order to have convergence in probability we must show lim 1.nn
X X

→∞
 
 − ≤ ε =P  So, 

focusing on the argument of the limit. Choose any arbitrary small 0.ε >  Then 
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n nX X X     − ≤ ε = ≤ εP P  
 

and this probability is 
1

n
n +

. 

 
Now, taking the limit, as n increases, we easily see that this probability is one. Thus 0nX →  in 
probability. 
 However, the reverse is not necessarily the case. As a simple thought experiment, 
consider our previous demonstration that a suitably normalized Poisson random variable 
converges to a standard normal measure in distribution. This simply means that the cumulative 
distribution of the Poisson random variable can be approximated by standard normal measure. 
But does this equilibration of distributions suggest that the standardized Poisson random variable 
and the normal random variables approximate each other? Certainly not.  
 Now, consider the following, more formal evaluation. Assume that nX  is a sequence of 

i.i.d. random variables following a Bernoulli distribution with parameter 1 .
2

 Let X  follow this 

same distribution. Then clearly ( ) ( ) 0
nX Xx x− =F F  for both values of x  and nX  converges to X  

in distribution.  

 Now define 1 .Y X= −  Then  [ ] [ ] 10 1 .
2

X Y= = = =P P  This is also true for [ ]1 .X =P  

thus both X  and Y  have the same distribution function, and nX  must also converge to Y  in 
distribution. However X if never equal to Y  nor are the two within ε  of each other. They 
(cumulative distributions) converge, but the random variables do not.  

Note that convergence in probability does not imply that all values of Xn in the sequence 
must be close to the limit X. We can only say the probability that  discrepant values of the 
random variables occur approaches zero. These discrepant values are unlikely, but we cannot 
preclude their occurrence. For this reason, convergence in probability is commonly referred to as 
weak convergence. However, we will see later in the chapter that weak convergence can produce 
very powerful and useful results.  
 
Examples of convergence in probability 
As an example of how weak convergence works, consider a sequence of random variables that 
are independent and take on the value of either zero or one in accordance with the following rule: 
 

[ ]

[ ]

11 1

10

n

n

X
n

X
n

= = −

= =

P

P
 

 
Before we try to consider any type of convergent behavior, let’s just consider the behavior of 
these random variables. For 1,n =  nX  is zero. As n increases, however, probability moves away 
from random variable values of zero to one. Note however, for any value of n, nX  can still be 
either zero or one. It can still bounce back and forth, but the likelihood of a bounce gets smaller 
and smaller. This is the hallmark of convergence in probability. We would expect then that nX  
converges to one in probability. 
 To prove this, we select our 0ε >  and write 
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[ ] 1lim 1 lim 1 lim 1 1.n nn n n
X X

n
ε

→∞ →∞ →∞

  − ≤ = = = − =    
P P  

 
and we have the desired result. Now suppose we have the following sequence of random 
variables: 
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Again, before we carry out any formal probability analysis, let’s just examine and try to predict 
the behavior of these random variables. For 0n =  we have that nX   must be zero. The value of 

nX   moves away from 0 'in probability" but what does it become? It moves randomly and 
unpredictably from 1 to -1, never staying at either of these poles for long before it bounces back 
to the other pole. For this random variable, we know that nX  moves away from zero but it does 
not settle into a destination that is within ε  of either 1 or -1. This means that for any 0δ >  for 
any value of N we can find an n N>  such that [ ]1 .nX δ= − >P  and [ ]1 .nX δ= >P This sequence 
of random variables does not converge in probability. Of course the sequence 
of random variables 
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n

X
n
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n
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= = −

= − =
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converges to zero in probability. 
 It is important for you to practice generating sequences like this to first observe their 
properties, then see if you can prove what you have observed. This types of random variables are 
not particularly useful in public health applications, but they help you to grasp the underlying 
concept of convergence in probability.  
 
Markov's and Chebyshev's inequalities 
As it turns out, we can examine the behavior of the probability of events involving a random 
variable as n gets large with some very straightforward mathematical steps.  

Let X be a non-negative random variable (that is, takes positive measure on the 
nonnegative reals). Then we can of course write  

[ ]
0

.
X

X xd xd
∞

Ω

= =∫ ∫E P P  

Now, let's choose a positive constant c. Then we know 
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[ ]
0 0

c

c c

X xd xd xd xd
∞ ∞ ∞

= = + ≥∫ ∫ ∫ ∫E P P P P  

 

Since X takes positive measure on the nonnegative real number line, then 
0

0.
c

xd ≥∫ P  So we have 

[ ] .
c

X xd
∞

≥ ∫E P  However, on the set ,c x≤ < ∞  .x c≥  So [ ].
c c c

xd cd c d c X c
∞ ∞ ∞

≥ = = ≥∫ ∫ ∫P P P P  Putting 

it all together, we write 
 

[ ] [ ].
X c c c

X xd xd cd c d c X c
∞ ∞ ∞

Ω

= = ≥ = = ≥∫ ∫ ∫ ∫E P P P P P  

 

So [ ] [ ] .
X

X c
c

≥ ≤
E

P  This is known as Markov's inequality.  

 In order to apply this to asymptotic theory, let’s consider a random variable that follows a 
negative exponential distribution with parameter 1.λ =   We know [ ] 1.X =E  Let ,c n=   positive 

integer. Then, using Markov's inequality, we can write [ ] 1 .X n
n

≥ ≤P  

 So what does [ ]lim
n

X n
→∞

≥P mean? The sequence of probabilities that we must evaluate is 

straightforward: [ ] [ ] [ ] [ ]1 , 2 3 , 4 ...X X X X≥ ≥ ≥ ≥P P P P  . Using Markov's inequality, we write 
 

[ ] 1lim lim 0.
n n

X n
n→∞ →∞

≥ < =P  

 
So this limit of probabilities is zero. The larger the value of n, the smaller the value of [ ]X n≥P
in such a way that we can get as close to (that is, within ξ  of)  zero as we want.  
 Of course, this makes good sense. Since the mean of the random variable is one, the 
probability that X  is very large becomes smaller and smaller. However, note, that while the 
probability gets smaller and smaller, it is always possible that X  can be large. For example, it is 
possible to have 10,000.X ≥   It is not very likely, but it remains possible. What is limited here 
is not the value of X , only its probability.  
 Secondly, the bound on [ ]X n≥P is not very sharp. We can easily compute directly 

[ ] .x n

n

X n e dx e
∞

− −≥ = =∫P Of course we also know that [ ] .lim lim 0n

n n
X n e−

→∞ →∞
≥ = =P    If we compare the 

rates of convergence of the exact value of [ ] ,nX n e−≥ =P versus the Markov limit 1 ,
n

 we see that 

the exact probability gives a much truer picture of what the rate of convergence is really like. 
However, Markov’s inequality provides a useful approximation.  

Suppose we have that   
 

( )2 22 2 .n n nx x xµ ε µ ε µ ε    − ≥ = − ≥ = − ≥    P P P  
 
Now we use Markov's inequality to write 
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( )2
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x
x

µ
µ ε

ε

 −  − ≥ ≤ 

E
P  

 
This last statement is a form of Chebyshev’s inequality. * 
 
The weak law of large numbers 
Application of Markov's inequality gives us one of the most famous laws of probability and 
statistics - the Law of Large Numbers. All we have to do is apply Markov's inequality to the 
quantity nx µ−  where nx  is the mean of independent and identically distributed random 

variables, and nx µ   =E  and 
2

.nx
n

σ
   =Var  If this is the case, then what can we say about 

?nx µ ε  − ≥P   
We set ε to be some small value greater than zero. The idea is ultimately to show that the 

probability that nx  is very close to its mean µ  (we say that it is "within ε  of µ " goes to one as 
the sample upon which nx  is constructed gets larger and larger. If this is true, then for large ,n
the probability of large differences between the sample mean and its mean becomes small. Begin 
with  
 

( )2 22 2 .n n nx x xµ ε µ ε µ ε    − ≥ = − ≥ = − ≥    P P P  
 
Now we use Markov's inequality to write 
 

( )
( )2

2 2
2 .

n

n

x
x
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µ ε

ε

 −  − ≥ ≤ 
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This last statement is a form of Chebyshev’s inequality. † And since 

( ) [ ]
2

2 ,n nx x
n

σµ − = = E Var  we can say 
2

2 .nx
n
σµ ε
ε

 − ≥ ≤ P  

This is all that we need, finishing with 
2

2lim lim 0.nn n
x

n
σµ ε
ε→∞ →∞

  − ≥ ≤ =P   This is the proof of the weak law of large numbers, which 

follows 
 
Weak Law of Large Numbers  
Let { }iX  be a collection of random variables that are independent, each with the same mean .µ  

Then the sample mean nX  converges the population mean µ  in probability.  
                                                 
* Chebyshev’s inequality is typically stated as [ ] ( )

2

2
2 2 .n nk k

k
x x σµ µ≥ = ≥ ≤ − − P P  

† Chebyshev’s inequality is typically stated as [ ] ( )
2

2
2 2 .n nk k

k
x x σµ µ≥ = ≥ ≤ − − P P  
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Comments on the law of large numbers 
The result that the sample mean converges to the population mean may appear as no surprise to 
the modern student in statistics. However this finding was by no means clear to 16th century 
probabilities who were confronted with several competing estimators for the probability of a 
successful Bernoulli trial. The weak law of large numbers was first demonstrated by Bernoulli in 
1713 for independent Bernoulli trials.  

However, this original proof did not incorporate Chebyshev’s inequality, but instead 
involved a laborious evaluation of .nx µ 

  
− ≥ εP  However, it was the demonstration of 

Bernoulli’s version of the law of large numbers that supported the natural belief that the 
proportion of successful Bernoulli trials is an accurate assessment of the probability of a 
Bernoulli trial.  

However, while this intuitive sense that relative frequency computations can be a good 
measure of the probability of a successful Bernoulli trial is a correct interpretation of this version 
of the law of large numbers, there remain today some common interpretations of this law that are 
also intuitive but incorrect.  

A false interpretation of the law of large numbers is all too easily injected into the world 
of gambling. A gambler who is experiencing a run of bad luck commonly believes that 
continuing to play will assure victory at the gambling table. 

 If we parameterize his situation by letting 1nX =    if his nth  gamble earns him money, 
and 0nX =  if he loses money, then his conviction  might be more mathematically stated as a 

belief that, in the long run, nX   must be close to p, the probability that the gambler will win his 
bet.  

Therefore, he reasons that the string of 'nX s   that he has observed for which 0nX =  
cannot continue to go on, and will soon be reversed by the occurrence of a compensatory 
collection of nX ’s  for which nX  will be one. Thus, he believes that by continuing to play, his 
“luck will turn around”.  

However, there are two difficulties with this approach. The first, more obvious one is 
that, all too commonly, the value of p (the probability of his winning) is lower than he 
anticipates. This low value would require a far longer appearance at the gambling table than his 
diminishing fortune will allow.  

Secondly, and perhaps less obviously, a change in the gambler’s luck occurs far less 
commonly than our gambler might anticipate. The gambler assumes that the number of times the 
gambler is winning should increase in proportion to the number of times he gambles. This is not 
the case. Feller (1) has demonstrated that the number of times the lead changes in a sequence of 
Bernoulli trials increases not as a function of n, but as a function of .n  Thus the number of 
gambles the gambler has to make before he regains his losses is likely to be far longer than he 
can tolerate.  
 
Additional results in weak convergence 
It seems intuitive that combinations of weakly convergent sequences should themselves be 
weakly convergent. Here are the demonstrations. 

Let { }nX   is a sequence of random variables that converges to X in probability and a is a 

scalar constant. We would expect that the sequence { }nW  defined by n nW aX= nW  converges in 
probability to W = aX. 
We must show that lim 1nn

W W
→∞

 
 − ≤ ε =P . We write, for a > 0 
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and we can now write that lim lim 1n nn n
W W X X a→∞ →∞

       

ε− ≤ ε = − ≤ =P P  since{ }nX  converges in 

probability to X.  By the same reasoning, it follows that the convergence of probability of { }nX  
to X implies that {–Xn} converges to –X and therefore the sequence {aXn} converges to aX when 
a is negative.  
 Also, if { }nX   is a sequence of random variables that converges to X in probability and 

{ }nY is a sequence of random variables that converge to Y in probability then the random variable 

{ }nW where n n nW X Y= +  converges in probability to W = X + Y. 
We must show that, when we are challenged with an ε ≥ 0, then we can show that the 

.lim 0nn
W W

→∞
 
 − ≥ ε =P   Begin by writing   
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X X Y Y
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Now identify εx and εy such that εx > 0, εy > 0 and ε = εx + εy. Then 
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Slutsky’s theorem 
Other  results involving the concept of convergence in probability are available. These include 
the convergence of sums, differences, products and quotients of random variables which 
themselves converge in probability. The vehicle through which these results are obtained is 
Slutsky’s Theorem.  

Through its use, we learn that, just as limit functions passed though the continuous 
function argument for real numbers, we find that the “limit in probability” function passes 
through continuous functions of random variables that themselves converge in probability.  
 
Convergence with probability one 
Prerequisite 
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Convergence of sequences of sets 
  
While weak convergence involves the convergence of probabilities,  strong convergence 
involves the direct consideration of whether the random variables themselves converge.  This 
strong converges actually implies weak convergence, i.e., if the random variable converges, then 
the probabilities of that random variable must also converge.  

Recall that when a sequence of random variables { }nX  converges in probability, this 
convergence does not preclude the presence of random variable values that can be far from the 
limiting value no matter how large n.  

However, if the probability of this extreme value is small, its occurrence does not block 
the actual convergence of the relevant probabilities. It is true, though, that this occurrence does 
attenuate the meaning of convergence in probability.  

With convergence with probability 1 (wp1) also known as convergence “almost surely 
(as)) these extreme random variable values are not just unlikely, they are impossible.*  

Suppose we have a sequence of random variables, { }nX  such that 11 .n
nX += −  This is 

nothing but an alternating series of 1, 1,1, 1,1...− −  As we saw in our sequencing discussion, this 
sequence does not converge because we are never guaranteed to be at the limit for all n greater 
than some N. However, consider the sequence, 1, 1,1,1,1,1,1,1,1,1,...−  Recall that this sequence 
converges to 1 since it only takes on the non-limiting value  finitely many times. This is the heart 
of convergence wp1. The random variable value is “guaranteed” after some index N to be within 
ε  of the limit all the time. For this random variable, infinite subsequences that do not converge 
to one simply do not occur. 

Let’s look at another easy example. Let .10,nX
n

 
 
 

U-  This sequence of random 

variables each provides a probability for an interval of real numbers, but the intervals of positive 
measure get closer and closer to zero for increasing n. 

However, note that we are guaranteed to never be greater than 1
n

 a boundary that itself is 

guaranteed to decrease. These are our clues that we may have strong convergence to the value 0.  
So let’s choose an 0.ε >  Will all values of the random variable be less than ε  beyond 

some point in the sequence? If this is so, then we have established convergence wp1 
(convergence almost surely (as)). 

The answer is “yes”. For any 0,ε >  one can find a large enough N  such that 1 .
N

ε≤  

Since the random variable nX  must follow a follow a 10,
N

 
 
 

U   then all values of nX  are 

trapped between [ ]10, 0, .
N

ε  ⊆  
  For ,n N>  the random variable nX  is even more closely 

trapped from above to an interval with zero as the lower bound. Thus the sequence of { }nX  
converges to zero almost surely. As the case in our previous example, sequences of the random 
variables that do not converge never occur.  

Almost surely convergence is a powerful tool because it relies on the guaranteed behavior 
of the random variable, as opposed to convergence in probability which permits ‘renegade” 
random variable values but ensures that this nonconvergent behavior must become less likely as 
n increases.  
                                                 
* Some writers term this extreme event as occurring with probability (or measure) zero; however, since this language 
construction is unhelpful at this point in our didactic approach we will avoid it.  
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The definition of convergence almost surely is as simple as we would have hoped.  
 
Convergence almost surely (also known as convergence with probability one).  
A sequence of random variables { }nX  converges almost surely to X,  when for every ε > 0,  Xn is 
within ε of  X  all but finitely many times.  
 
Strong law of large numbers 
While we have demonstrated that the sample mean of a sequence of i.i.d. random variables { }nX  
converges weakly (i.e., in probability) to the population mean ,µ  it can be shown that this 
convergence also has the fundamental feature of strong convergence. The implication of this is 
that, while weak convergence assures us that, while large deviations of nX  from µ  can occur, 
they happen with vanishingly small probabilities, strong convergence guarantees us that large 
deviations do not happen, i.e., there is no sequence of random variables that meets the criteria of 
the law that does not converge. 
 While this strengthening brings little new force to applications, it is of considerable 
theoretical interest. However its proof is quite complicated.* 

 
Convergence in rth mean 
Finally, we will define convergence in mean square. 
 
Definition 7.4.  Convergence in mean square 
Let{ }nX  be a sequence of random variables. Then if lim 0,r

nn
E X X

→∞
 − =  then Xn converges to X 

in rth mean.  In particular, if r = 2, we say that {Xn} converges to X  in mean square.  
 
Unlike convergence almost surely, convergence in mean square does not focus on the random 
variables behavior as much as it does on the measure’s behavior, assessing this behavior through 
the expectation.  

Convergence in rth mean is quite useful, very powerful, and oftentimes is easy to prove. 
When 2r = , assessing convergence in mean square reduces to assessing the long term behavior 
of the variance.   

For example, in order to show that the sample mean nX of a collection of n independent 
observations from a normal distribution with known mean µ  and finite variance 2 ,σ  converges 

to µ  in mean square , we need merely write
2 2

lim lim lim 0.n n
n nn

X X n→∞ →∞→∞
   
   

σ−µ = = =E Var   

 
Example: Covid19 positivity rates 
One aspect of managing a nationwide or statewide contagion is relationship between the 
proportion of the community infected and the consequences of the infection. If a link can be 
drawn between how common the infection is, and sequela, e.g.,  hospitalizations and deaths that 
occur due to the agent and subsequent to the agent, then,  ceteris paribus the epidemiologists can 
understand what a particular proportion infected implies for hospitalizations and deaths, 
permitting health care administrators and health providers the opportunity to help ensure 
adequate resources  are available.  
                                                 
* For example, see https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/ 

https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/
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 Researchers are interested in assessing the proportion of counties in a state that have a 
COVID19 positivity rate of 20% or more. How can they use the county based data to reliably 
estimate this essential metric?  

The county level assessment is accumulated from each of the testing sites within the 
county. Each testing site controls the number of tests it carries out, and also through its testing 
regime, knows which of these tests is positive. It can therefore measure its own positivity rate. 
This positivity rate for the county is a weighted average of rates reported by each testing center, 
the weights being related to the number of tests conducted by each center.  

If there are n counties, then each provides its estimate 1 2 3. , ,... .nX X X X   Let’s now 
convert the ith county’s estimate into a new variable iW  which is 1 if the estimate is greater than  
20% positivity, 0 otherwise. The workers wish to know if they can estimate [ ]0.20iX ≤P  or 

( )0.20XF  by ,nW  the mean of the dichotomous random variable set { } , 1, 2, 3, ... .iW i n=   
For this we can look to the properties of the estimator. In particular, we are interested in 

showing if 
2

0.(0.20)lim n Xn W→∞
 
  

=−E F  

 We begin with an examination of the properties of  
?nW  From our work with Bernoulli trials, we know that the expected value of  iW  is  
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Since 0.20 (0.20),i XX =  ≤P F  we note that 2

(0.20)n XW 
 −E F is simply the variance of 

, .n nW W  Var   
 
We now compute this variance. 
 

[ ] [ ] ( ) ( )
( ) ( )

22 2

1 .
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0.20 0.20
i i i X X

X X
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Proceeding 
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We may now conclude that  
 

( ) ( ) ( )
( ) ( )

2
lim lim

1
lim 0

0.20 0.20 0.20
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n n

n

n nX

X X

n
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→∞

   
   

 
 

− =

−
= =

E VarF F F
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Thus the estimate converges in mean square to the state estimate. The fact that the empirical 
measure of the distribution function converges to the theoretical cumulative distribution function 
is sometimes described as the Fundamental Theorem of Statistics.                    █ 
 
Convergence modality relationships 
As we suspected, the introduction of probability into our understanding of  limiting process has 
been complicated.  
 We have discussed four different modes of convergence that involve the concept of 
probability. These are convergence in distribution, convergence in probability, convergence 
almost surely (or convergence with probability 1), and convergence in mean square. Each of 
these modes has been the foundation of important theoretical work in probability, but they have 
different implications. 
 A sequence of random variables that converges in probability also must converge in 
distribution. A sequence of random variables that converges almost surely, also converges in 
probability, and therefore converges in distribution. Similarly, a sequence of random variables 
that converges in mean square also converges in probability, and must converge in distribution as 
well.  
 The relationship between convergence almost surely and convergence in mean square is 
complex. Each of them implies convergence in probability and convergence in distribution but if 
a sequence of random variables{ }nX  { }nX   converges almost surely to X, it need not converge 
in mean square to X. Also, convergence in mean square does not imply convergence with 
probability one.  
 Finally, as pointed out above, a sequence of random variables that converges almost 
surely must also converge in probability. However, if { }nX is a sequence of random variables 

that converges in probability to a random variable X, although { }nX does not converge to X with 

probability one, it contains a sub-sequence { }knX  that does converges to the value X with 
probability one.  

The demonstration of convergence in distribution of the binomial distribution  and the 
negative binomial measure to the Poisson distribution,  and convergence of the Poisson to 
normal measure each represent examples of the utility of convergence in distribution. The 
continued, vibrant applicability of  these sturdy results no doubt cause confusion when these 
results are described as “weak” in some tracts.  

However, we must keep in mind that, within mathematics, weak is not synonymous with 
the terms “fragile”, “pathetic” or puny”. To the mathematician, describing results as weak merely 
means that the finding implies less than other types of findings. It does not imply that the 
implications of weak results are useless. As we have seen, (central limit theorem) the 
consequences of weak convergence are quite useful and powerful .  
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Another type of convergence that we saw earlier in this chapter is that of convergence 
almost surely. Recall that convergence almost surely implied that it was impossible for any 
possible value of the random variable to be far from the limit point when n was large enough (as 
opposed to “weaker” forms of convergence where it is possible, but unlikely for the random 
variable to be far from its limit point for large n).  

In some cases, almost sure convergence produces its own probability law. For example, 
the strong law of large numbers tells us that not only does the sample mean converge to the 
population mean in probability (i.e., weakly), but also with probability one (i.e., strongly). These 
can be very useful results in probability theory.  

In addition, probabilists have worked to relax some of the assumptions that underlie the 
law of large numbers. The most common form of this law is when the sequence of observations 
is independent and identically distributed. Relaxations of these criteria are available, but they 
require new assumptions about the existence of variances and assurances that the variances do 
not grow too fast. 

 Feller[1] contains an examination of the degree to which the assumptions that support 
the central limit theorem can be relaxed. There are also multivariable extensions of this very 
useful theorem (Sterling).  

 
Conclusions 
Asymptotic distribution theory is central to the study of the properties of infinite sequences of 
random variables. The use of probability and statistics is a daily occurrence, and we must have 
reliable estimates of statistical estimators on which important scientific and public health 
decisions reside.  
 While there are several reasons why an estimate obtained from a sample can be 
inaccurate, an ultimate explanation lies in the fact that the estimate is based not on the 
population, but instead on only a sample of the population. Thus, statisticians, when confronted 
with several different and competing estimators, commonly focus on its asymptotic properties. 
Our intuition serves us well here. One useful style of intuition informs us that, if the estimate is a 
good one, then the larger the sample becomes, the closer the estimate based on the sample will 
be to the true population value.  

These asymptotic properties are used in very comprehensible contexts. For example, a 
researcher may ask whether the estimator under consideration consistently overestimates or 
underestimates the population parameter that it attempts to measure. If it does, then that 
estimator is asymptotically biased, suggesting that perhaps another estimator should be sought.  

The properties of convergence in distribution, convergence in probability, convergence in 
law and convergence almost surely help us to establish different useful metrics to assess the 
utility of these estimators. When there are several estimators that purport to measure the same 
population parameter, then a comparison of the large sample variances of these estimators might 
be a useful way to select from among the competitors.  

These are each important questions that asymptotic theory addresses. In order to examine 
these issues, we must understand the use of limits in probability and statistics, and learn some of 
the classic results of the utilization of this theory. 
 
An Introduction to the Concept of Measure 
Elementary Set Theory 
Sequences of Sets 
Sequences of Functions 
Functions in Measure Theory 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
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Measure Based Integration 
Lebesgue Integration Theory and the Bernoulli Distribution 
Basic Properties of the Lebesgue-Stieltjes Integral 
Monotone Convergence Theorem 
Some Classic Measure Theory Results 
Tail Event Measure 
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Convergence of Binomial to Poisson 
Distribution  

 
 
Prerequisites 
The Concept of the Limit 
Convergent Series 
Cauchy Sequences 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Advanced Binomial Distribution 
General Poisson Process 
 
Our study of the binomial and Poisson distributions demonstrated that the random variables 
following theses distributions are related. For example work in conditional probability theory 
using the Poisson distribution revealed binomial random variables.   
 
Heuristic perspective 
However, these events are related in yet a more intricate setting. Consider a Poisson process with 
on average λ arrivals in a unit time. Let’s divide that unit time into n time intervals equally 
spaced where n is quite large (for the sake of example, say greater than ten thousand).  Then the 

probability of an arrival in this tiny time interval is quite small, with the arrival rate of .
n
λ  Here 

the intervals are so small that the only probability of a nonzero event in any interval that is worth 
worrying about is the probability of one arrival in the interval. Thus ,kP  or the probability of k 
arrivals in unit time is the probability that there is one arrival in each of k of the n time intervals. 

Since arrivals are independent, this probability follows the binomial law, 1 ,
k n kn

k n n
λ λ −    −    

    
 so 

this serves as an approximation to .kP  In order to remove the approximation, we must demand 
that the time intervals get exceeding small, i.e., to let n increase to infinity. This approach we 
used in examination of the contagion model. 
 However, this is really only a demonstration. A more exact prove that can be 
accomplished in just a short argument involves the generating functions of the binomial and 
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Poisson distributions.  In order to execute this, we must familiarize ourselves with an important 
limit equality from calculus.  

lim 1 .
n

x

n

x e
n→∞

 + = 
 

 

  
Let’s begin with probability generating function for the binomial distribution, which we showed 

was ( )( ) .n
s t q ps= +G  Now let’s operate under the discussion above, permitting .p

n
λ

=  Then we 

may write 
( ) ( ) [ ]( )

[ ]( ) [ ]

( ) 1 1 1

1
1 1 1 .

nn n
s

n
n

t q ps p ps p s

s
p s

n
λ

= + = − + = + −

 −
= + − = + 

 

G

 

 

Now taking limits, we have [ ] [ ]11
lim ( ) lim 1

n
s

sn n

s
t e

n
λλ −

→∞ →∞

 −
= + = 

 
G  

Which we recognize as the probability generating function of the Poisson distribution. It is the 
Lévy-Cramér Continuity Theorem that permits us to argue that since the generating function of 
the binomial distribution function converges to the Poisson distribution, then  probabilities that 
are in fact binomial can be approximated by those of the Poisson distribution.  In this case, the 
convergence (what we will come to know as convergence in distribution) works best when p is 
small and n is large.  
 Note, this does not conclude that Poisson random variables and binomial random 
variables are the same. Only that binomial probabilities can be approximated by Poisson 
probabilities.  

 
Hypergeometric Measure 
The Geometric and Negative binomial measures 
Limits and Continuity 
Moment Generating and Probability Generating Functions 
Generating Function Inversion 
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Alternative Demonstration of Poisson to 
Normal Convergence 

 
Prerequisites 
The Concept of the Limit 
Convergent Series 
Cauchy Sequences 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Advanced Binomial Distribution 
Normal Measure 
 

We have provided one derivation of convergence in distribution of the Poisson to normal 
measure. However, another demonstration of this result illustrates the importance of a finite 
variance in the limiting process.  

 
Initial discussion 
In this circumstance, we are interested in identifying the moment generating function for the 
standardized sum of n Poisson random variables that we will write as  
 

 1

n

i
i

n

x n
T

n
=

− λ
=

λ

∑
  

 
 
We will first use standard moment generating function techniques to find the moment generating 
function of ( ).

nT tM Begin by writing  expression  

( )1

1

1

n

i n
i

n i
i

X n
T X

n n
=

=

− λ
= = − λ

λ λ

∑
∑  

 
We may now write 

 
( )

( )
1

( ) nn i
i

i

n
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x
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−λ
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We can now evaluate ( )ix
t
n−λ

 
 λ 

M .  
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[ ] [ ]2 2 2

2

2 2 2 2

2 2

1
1 2
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2 2
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i i
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This reveals that ( )( )
n i

n

T x
tt
n−λ

  
=   λ  

M M , we may write  

 

2 2
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2

2
( ) 1 1

2n

n

n

T

t tno
nt tt o

n nn

    
+      λ        = + + = +      λ      
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and now it only remains for us to take a limit 
 

 
2 2

2
2

2 2

2 lim
2 2

2
lim ( ) lim 1 n

n

n

t t tno
n

Tn n

t tno
n

t e e
n

→∞

    
+       λ     

→∞ →∞

    
+    λ    = + = =

 
 
  

M   

Recognizing that 
2

2
t

e is the moment generating function for the standard normal distribution, we 
have our desired result. 
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Convergence of Negative Binomial to 
Poisson Measure 

 
Prerequisites 
The Concept of the Limit 
Convergent Series 
Cauchy Sequences 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Geometric and Negative binomial measures 
General Poisson Process 
 

Let X follow a Negative binomial measure, i.e., [ ] 1
.

1
r kk r

X k p q
r
+ − 

= =  − 
P  The following 

demonstration reveals without the use of generating functions how a negative binomial measure 
can be approximated by the Poisson distribution.  
 
Preliminaries  
Begin with  
 

[ ] ( )
( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

1 1 !
1

1 ! 1 !

1 ! 1 !1 11 1 .
! 1 ! ! 1 !

rr k k

r r kk
k

k r k r
X k p q q q

r k r

k r k r
q q q qr

k r k r r

+ − + − 
= = = − − − 

+ − + −
= − = −

− −

P
 

 

Note the expression ( )
( )

1 !
1 !k

k r
r r

+ −
−

has exactly 1k r+ −  terms in the numerator and denominator. 

We can therefore write 
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( )
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So we have 
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If we now let ,r → ∞ and 0q →  such that rq λ→  we have 
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Note that the random variable X is never Poisson. It always follows a negative binomial measure. 
However, the negative binomial measure can be approximated by the Poisson distribution.  
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The Delta Method 
 

The delta method is a practical application of the central limit theorem and Taylor’s 
expansion. Let { }iX  i = 1 to n be a collection of independent and identically distributed random 
variables with mean µ  and variance σ2.  

Now suppose we have a random variable Y defined as  ( )Y g X=  where g is a 
differentiable function of X. The delta method tells us that   

 
 ( ) ( )( ) ( )( )2 2is approximately 0, 'nn g X g N gµ µ σ−      

 
The result is almost too good to be true. Finding the exact measure ( )g x  can be 

complicated. However, we can invoke the central limit by normalizing ( )ng X  [1].  In addition 

the approximate mean and variance of ( )ng X is each readily computed.  
 
Derivation  
Let X be a random variable with expectation μ and variance σ2. Our goal is to identify the mean 
and variance of ( ).g X Our first approach might be to compute 

( )
2

2[ ] ( ) d ( ) d
x x

g X g x g x
Ω Ω

 
         

= −∫ ∫Var P P  

however, on many occasions, the integrals in this equation cannot be directly evaluated. 
 
However, an indirect approach is available to us.  
In such circumstances, a more indirect approach is available to us.  

Consider a simple Taylor series expansion. Writing ( )Y g X= as a simple Taylor series 
approximation around the point X µ,=  we have 
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Since the higher power terms will be negligible, we will severely truncate this series  so that 

( )g X  is a linear function of X, or 

.( )( ) ( ) ( )
x u

dg xg x g x
dx

µ µ
=

 
  

≈ + −  

 
Substituting nX  for X in equation  reveals  
 

 .( )( ) ( ) ( )n n
x u

dg xg X g X
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µ µ
=
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Taking expectations of both sides of this equation  reveals 
 

[ ] [ ]( )( ) ( ) ( ) ( ) .n n

x u

dg xg X g X g
dx

µ µ µ
=

    = + − =     
E E E E   

Thus, we have identified an approximation to .( )ng X 
 E  The variance of ( )ng X  also follows 

from a similar argument. 
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Example: Velocity coefficients 
Cells  commonly undergo three sequential phases of growth. The first is the lag phase during 
which little growth seen. This is followed by the log phase of growth, where the growth rate is 
exponential. This period can be very short, and is rapidly followed by a stationary phase where 
the organisms have reached the maximum tolerated number for the environment’s resources.  

During the exponential phase of growth the growth rate of the number of cells y is 

determined by the equation ,dy ky
dt

=  leading to the equation ,kty Ce=  where C  is a constant 

and k  is known as the velocity coefficient. Its value determines how accelerant the growth rate 
is.  
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 Suppose a collection of  cell specimens have their velocity coefficients measured and are 
seen to be normally distributed with mean µ  and variance 2.σ  What can we say about the 
measure of the number of organisms at time , ?kt

tt y Ce=   
While identifying the exact distribution will be difficult, we can invoke the delta method 

as an approximation. We need only compute ( ) ,tg Ceµµ =  and 

( ) ( )
22

2 2 2( ) .
kt

ut t

x u k

dg x dCe Cte Ct e
dx dk

µ

= =µ

   = = =     
  

 
The mean number of cells at time t  is asymptotically normal with mean tCeµ and 

variance ( )21 2 2.tn Ct e− µ σ  
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Slutsky’s Theorem 

 
 
There are some very useful properties of random variables that converge in probability that are 
readily available to us from simple applications of Slutsky’s Theorem. 
 
Slutsky’s theorem (general form) 
Consider a sequence of  random variables { }nX   and a collection of functions 1 2 3, , ,..., kh h h h   

defined on the sequence { }nX   so that ( )i nh X  converges to a constant   1, 2,3... .ia i k=  

Define ( )1 2 3, , ,..., .kg a a a a < ∞   Then ( ) ( ) ( ) ( )( )1 2 3, , ,...n n n k ng h X h X h X h X  converges to 

( )1 2 3, , ,..., kg a a a a in probability. In particular, if g is a rational function (i.e., the ratio of two 
polynomials), then this result is known as Slutsky’s Theorem.  
 
Applications 
This can seem a little overwhelming on first blush, so let’s begin with a simple example. Start 
with a sequence of random variables such that {Xn} converges to a constant μ in probability. 
Define the family of functions hk as  
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n n
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h x x

h x x

h x x

h x kx

  

Now, we can conclude from our work on convergence in probability that ( )i nh X  converges in 
probability to the constant iμ.  

As an example of a function g, we next let the function ( )1 2 3
1

, , , ,
k

ik
i

g h h h h h
=

= ∑
. We are 

now in a position to invoke Slutsky’s theorem and obtain  

( )1 2 3
1

( 1)lim , , , ,
2→∞

=

+
= = µ∑

k

k in i

k kg h h h h h  

 
Slutsky’s theorem does not have as many applied applications as it does theoretical ones. 

However, in this latter circumstance, Slutsky’s theorem is very powerful theorem for two 
reasons.  

First, it allows functions of random variables to have their convergent properties explored 
directly.  

However, perhaps more importantly, the application of Slutsky’s theorem in a very 
simple form illuminates critical properties of random variables that converge in probability. For 
example, consider the case where we have a sequence of random variables{Xn} that converges in 
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probability to X, and a separate sequence of random variables {Yn} that converges in probability 
to Y. Define two functions h1, and h2 as 

                        { }( ) { } { }( ) { }1 2;= =n n n nh x x h y y  
Thus the functions h1 and h2 are simply identity functions.  Finally, define the function g(h1, h2) 
as h1 – h2 (i.e., the difference of the two identity functions). Then, from Slutsky’s theorem, we 
find that the function g(h1,h2) converges to the value  X – Y in probability.  

Another way to write this result is  if {Xn} is a sequence of random variables that 
converges in probability to X and {Yn} is a sequence of random variables that converges in 
probability to Y then the random variable {Wn} where Wn = Xn – Yn converges in probability to 
the random variable W = X–Y. We have the result directly. 

Slutsky’s theorem can also be used to prove additional useful lemmas. 
If {Xn} is a sequence of random variables that converges in probability to X and {Yn} is a 

sequence of random variables that converge in probability to Y then the random variable {Wn} 
where Wn = XnYn converges in probability to W = XY. 

If {Xn} is a sequence of random variables that converges to X in probability and {Yn} is a 
sequence of random variables that converge to Y in probability (Y ≠0) then the random variable 

{Wn} where n
n

n

X
W

Y
=  converges in probability to ,XW

Y
=  assuming of course that 0.Y ≠   

Finally, our first statements introducing the concept of Slutsky’s theorem above may 
appear to be complicated. A much more common and useful form of this theorem follows:  

 
If a random variable Wn converges in distribution to W, and another random variable Un 

converges in probability to the constant u, then 
1) the sequence {Wn + Un} converges in distribution to W + u. 
2) the sequence {WnUn} converges in distribution to uW.  

 
While the devices suggested by the preceding lemmas are helpful in demonstrating 

convergence in probability, it is sometimes useful to prove that a sequence of random variables 
converge in probability from first principles. Consider the following example. 
 A sequence of random variables {Xn} each follow a U(0,1) distribution. Of course, the 
sequence does not converge in probability. However, what happens to the max {Xn} as n goes to 
infinity? In this case, we create a new sequence of random variables W1 = max (X1), W2 = max 
(X1, X2), W3 = max (X1, X2, X3). Does the sequence {Wn} converge in probability to 1? 
 We must show that lim 1 0.nn

W
→∞

 − > ε = P  We note as before that  

[ ] [ ]lim 1 1 1 .n n nn
W W W

→∞
 − > ε = − > ε = < − ε P P P  The probability distribution of the Wn is also easily 

identified. We may write 
 

[ ] ( )
[ ]

[ ] ( )

1 2 3

1 2 3

1

1 , , ,... 1

1 , 1 , 1 ,... 1

1 1

n n

n

n
n

i
i

W Max X X X X

X X X X

X
=

< − ε = < − ε  
= < − ε < − ε < − ε < − ε

= < − ε = − ε∏

P P

P

P

 

 
  
We can now write  
 

( )lim 1 lim 1 0.n
nn n

W
→∞ →∞

 − > ε = − ε = P  
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and we have shown that the maximum of a sequence of independent U(0,1) random variables 
converges in probability to one. Finally, we can demonstrate that continuous functions of a 
sequences of random variables that converge in probability themselves converge in probability, 
as demonstrated in the following lemma. 
 
Lemma 
Let {Xn} be a sequence of random variables that converge in probability to X. If ( )nf X  is a 

continuous function at all points Xn in the sequence, then the sequence ( ){ }nf X  converges to 
( ).f X  

 
This lemma is yet another implication of Slutsky’s theorem. However, a direct 

demonstration of this lemma is also available. We know that the concept of a continuous 
function might be expressed in the observation that as two points on the real line get closer to 
each other, then the value of the continuous function of those two points must also get closer 
together. The convergence in probability assumption allows us to say that, if it is very likely that 
those two points X and a are close to each other, then it is very likely that f(X) will be close to 
f(a).  
 More formally, we must show that ( ) ( )lim 1nn

f X f X
→∞

 − ≤ ε = P . 
 We know that, since Xn converges to X in probability, we can go far enough out in the 

sequence {Xn} so that –nX X δ≤  P  is large. However, the continuity of the function  f assures 
us that if nX X− ≤ δ , then it must be true that ( ) .( )–nf X f X ε≤ Thus, nX X− ≤ δ   implies that  

( ) ( )nf X f X− ≤ ε . But if this implication is true that the inequality 
 

( ) ( )n nf X f X X X − ≤ ε ≥  − ≤ δ  P P  
 
must also be true. Therefore we know that the quantity ( ) ( )nf X f X − ≤ ε P can be brought 

arbitrarily close to one by choosing n large enough, proving ( )lim ( ) 1nn
f X f X

→∞
 − ≤ δ = P

 
We may succinctly write this as  
 
 ( )lim ( ) lim 1n nn n

f X f X X X
→∞ →∞

 − ≤ ε ≥  − ≤ δ =  P P   

 
Thus, just as limit function passed though the continuous function argument for real numbers, we 
find that the limit in probability function passes through continuous functions of random 
variables.  
 



  503 
 

 
 
 
 
 
 
 

Tail Event Measure  
 
  
Prerequisite 
Sequences of Functions 
Sequences of Sets 
 
 
Elementary discussion and concepts 
The occurrence of events in a sequence is a natural phenomenon in applied biostatistics. 
Questions e.g., “In the next fifty patients, how many will have been exposed to measles?” or “In 
the next five years, how many patients will have heart failure meeting the indications for 
transplantation?” are questions that can be parameterized into sequences of random variables and 
are addressable from familiar measure paradigms.  

However, how about  “ever”  questions? These are questions that do not fix the durations 
of time. Examples of such questions would be “Will there ever be a cure for cancer?” or “Will 
there ever be another coronavirus pandemic?”  These are questions that deal with an event that 
plays out over an infinite period of time. Such events are high impact and challenge us with the 
possibility of their occurrences.*  

What distinguishes tail events from the consideration of other random variable sequences 
is the injection of the complication of infinity. The question “Will small pox return in the next 
100 years” requires an approach to the solution that is different from the approach that will 
answer the question “Will smallpox ever return?” The first question considers a finite number of 
years; the second requires the contemplation of infinity. Tail events revolve around the question 
of infinity.  

While it is natural to conclude that since neither mankind nor public health will endure 
throughout infinity, consideration of tail events is neither helpful nor germane is incorrect. A 
negative answer to the question “Will there ever be a thermonuclear holocaust” contains clear 
public health pertinence.  

 
Definition  

                                                 
* See for example, Barberis N, “The psychololgy of tail events: Progress and Challenges. Yale  School of 
Management, New Haven CT 06540. Nick_bareris@yale.edu 
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Tail events are events that require the consideration of an infinite sequence of events; we must 
have a σ-algebra that reflects the incorporation of infinity. 

Consider the distinction between the σ-algebras for the two examples 1) there will be a 
patient with typhus diagnosed in the next 100 days and 2) there will be a patient with typhus 
diagnosed beyond the first 100 days.   

The σ-algebra for event one consists of all possible events in the first 100 days. This is 
concept with which we are familiar. However, for the second event we have to consider not just 
an infinite sequence of events  (i.e., a patient is diagnosed with typhus on day 101 but no other 
patient is ever diagnosed with typhus) but all infinite sequences of events. This second σ-algebra 
is far more complicated. By requiring that the event involve an infinite number of the nX , it falls 
into the “tail” of the sequence.  

Sometimes we can compute these probabilities directly. For example, let X be a random 
variable that follows a Bernoulli distribution where the [ ]1 ,X p= =P  and the [ ]0 1 .X p= = −P  Let 
this be an independent and identically distributed random variable indexed by n, i.e., nX  is i.i.d. 
Bernoulli with probability p. Can we find the probability that nX =1 infinitely often?  

Note that the probability that we seek is indexed over n. For any given n, the sample 
space Ω and σ-algebra Σ are clearly specified and the rule of probability is clear, e.g., 1.p q+ =  
However, once we index over n, the sample space and σ-algebra change. The sample space is 
now the space that considers the joint collection of Bernoulli events over n. For example, 

[ ]
1

1n
n

X
∞

=

=∑P  is not one and clearly diverges.  

With this as background, our intuition tells us that the probability that 1nX =  infinitely 
often should be high. However small the value of p, its small value is overcome by the sheer size 
of  n.  

The key to demonstrating this finding lies in a detailed consideration of the sequence. 
Whatever the experience has been so far in the sequence, the probability of having at least one 
more success approaches one in the next infinite subsequence of events, and of course, there are 
an infinite number of infinite subsequences.* We can think of this then by dividing the positive 
integers into an infinite sequential collection of N events. Then, the probability that there is at 
least one success in one of these epochs is  ( )1 1 .Np− − However, the complete sequence is 
composed of an infinite collection of these.  Let the event that there is an infinite number of these 
events be .A∞  Then, the probability that there are  an infinite number of these events is 

[ ] ( )( )lim 1 1 1.
nn

n
A p∞ →∞

= − − =P   
This is true regardless of any positive value of p however small.  
 

Tail event 
We define a tail event as an event that is based on all σ-algebras after some finite point m in the 

sequence. This tail σ-algebra we can define as ,mΤ  where .m n
n m

∞

>

= Σ


Τ   

For example, let’s return to our example of an infinite sequence of i.i.d. Bernoulli trials. 
We understand what the sample space is for a single trial nX . Call that sample space .nΩ  We 
also can (in this case, quite simply) denote all members of the σ-algebra for this event 

                                                 
* For example consider the family of subsequences for each positive integer n . { }mod 01m n

X
=
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{ }, ,0,1 .n nX Σ = ∅ mΤ  is the intersection of each of these σ-algebras for the rest of the sequence. 
Since all of these σ-algebras is the same for the remainder of the sequence, then  { },0,1 .m = ∅Τ   

Note that the construction of mΤ  is separate and apart from the measure of the events. For 
example, assume that our sequence of random variables { }nX  is composed of independent 
Poisson random variables where the nth member of the sequence has parameter .n nλ =  Then the 
probability of small values of  nX  decreases for larger .n   Yet the σ-algebras for { }nX  are all 
the same; mΤ  is the collection of nonnegative integers.  

However, if we set { }0,1nΣ =  for even n   and { }1,0nΣ = −  for n  odd, then { }0m =Τ  as 
this is the intersection of these sets.  

With this as a definition, we may begin with the Kolmogorov 0-1 law. 
 
Kolmogorov 0-1 law 
When based on an infinite sequence of independent events { },nA  the probability of any tail event 
is either zero or one.  
 

This is a terse statement with a profound impact. The probability of the occurrence of the 
event is narrowed down to either 0 or 1 when the event is a tail event. The Borel Cantelli lemma 
will allow us to compute the probability of several of these events exactly, but first we will prove 
Kolmogorov’s law. 

The prove focuses on the truism that if 2 ,p p=  then p  is either equal to zero or one. This 
will be useful if we can show that the probability of a tail event is in fact independent of itself, an 
observation demonstrating how different these tail events are from our usual considerations. 

So, let’s begin by denoting  an event that is based on the first n events { }1 2 3, , ,... nA A A A  
in the infinite sequence.  This is not a tail σ-algebra, and let’s define nΧ as an event based on 
this this σ-algebra.  

Define another σ-algebra as { }( )1 2 3, , ,... .n n n nA A A+ + += ΣΤ   This meets our definition of a 
tail σ-algebra. We can conclude at once nΧ  is an event that is independent of events based on nΤ  
since the { }nA  are independent of each other and the σ-algebras that generated them are 
independent of each other.  

Now, let’s define a tail event nϒ  as an event that is based on the tail σ-algebra .nΤ Then, 
since nϒ is contained in the tail σ-algebra ,nΤ and nΤ is independent of nΧ  then so too is the 
event nϒ  independent of .nΧ  

Now, look at a different σ-algebra, .∞Χ  What does ∞Χ look like?  It is the collection of 

all of the σ-algebras of the entire sequence, i.e.,  { }( )1 2 3 1 2 3, , ,... , , , ,...n n n nA A A A A A A∞ + + += ΣΧ . In fact 

∞Χ  includes both nΧ and nΤ on which the tail event nϒ is based.  
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We can conclude that  nϒ is independent of ∞Χ *. But nϒ  independent of ∞Χ , was  based 
on ∞Χ . The event nϒ  must also be independent of itself. Therefore 

[ ] [ ] [ ] [ ] [ ]2 ,n n n n n n= ∩ = =P P P P Pϒ ϒ ϒ ϒ ϒ ϒ  and the probability of the tail event is either 0 or 1.  
But what types of events are independent of themselves? Events that we think of in the 

course of our day to day lives are not.  With a finite collection of events, possibilities are always 
exhausted. The event has not occurred, and that is assurance that it will not occur. This is a 
proper perspective for finite collections of events.  

However the situation changes when one deals with the infinite. In that realm, the 
absence of the event, (say that there are 100 runs of ten successes) in an infinite sequence of 
Bernoulli trials, may not occur as far out as one goes in the sequence. However, no matter how 
far one goes out in the sequence, the current location is merely a reflection of starting over again, 
facing the same (infinite number) of possibilities. In this realm, the non-occurrence of an event 
says nothing about its occurrence. This is a property of infinity.  
   
Borel Cantelli 
The Borel Cantelli lemma permits a more direct approach to computing  the probability of some 
tail events.   

The Borel-Cantelli lemma begins with an infinite sequence of events nA where [ ]nAP  is 

defined. Then if [ ]
1

converges,n
n

A
∞

=
∑P  then [ ]limsup 0.nA =P   Since limsup nA is the subset of the 

sequence of sets nA  that occurs infinitely often, there are no tail events; all events occur only 

finitely many times.   Thus, we simply need to examine [ ]
1

n
n

A
∞

=
∑P  in order to determine if nA  

occurs infinitely often. In our previous example, [ ]
1 1

,n
n n

A p
∞ ∞

= =

= = ∞∑ ∑P so by Borel Cantelli, we 

know that successes occur infinitely often (as do failures since ( )
1 1

1c
n

n n
A p

∞ ∞

= =

  = − = ∞ ∑ ∑P as well).  

In fact, since so many events to which we are accustomed to observing are guaranteed by 
Borel-Cantelli to occur infinitely often, the interesting question is which events do not occur 
infinitely often. Before we get to that, here is a proof of Borel-Cantelli that using concepts that 
we have already reviewed. 
 
Proof of the Borel-Cantelli lemma 
Let there be a infinite sequence of events ,nA  where [ ]nAP  is defined. Then if 

[ ]
1

converges,n
n

A
∞

=
∑P  then limsup 0.n

n
A

→∞

  =  
P   

Proof: Given that [ ]
1

converges,n
n

A
∞

=
∑P we know that [ ]

1
.n

n
A

∞

=

< ∞∑P  In addition, we know that 

1

limsup lim .n n nnn n m n m n

A A A
∞ ∞ ∞

→∞→∞ = > >

     = =         
P P P

 

  

 

                                                 
* This is an interesting point that deserves some exploration. Essentially the σ-algebra  is the union of two 
independent σ-algebras, and  If we only know that the union has occurred, we know nothing about whether 

 has occurred. 
 

∞Χ

nΧ .nΤ

nϒ
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The last term in the above expression has produced lim nn
m n

A
∞

→∞
>

 
 
 

P


. Thus we write  

[ ]

1 1

limsup lim lim

lim 0.

n n n nn nn n m n m n n

nn n N

A A A A

A

∞ ∞ ∞ ∞

→∞ →∞→∞ = > > =

∞

→∞
=

       = = =             

≤ =∑

P P P P

P

  

 

the last inequality is  justified by the convergence  of [ ]
1

.n
n

A
∞

=
∑P  

Another approach to this proof is to show that [ ]
1

n
n

A
∞

=

= ∞∑P  implies [ ]limsup 1.nA =P  

Let’s find the probability that the infinite sequence of events [ ]limsup 1.nA =P  

We have this result  if we can show that { }limsup 0.c
nA  = P   Then 

{ }
1 1

limsup

lim lim .

cc
c

n n n
n n m n n m n

c c
n nn n

m n m n

A A A

A A

∞ ∞ ∞ ∞

→∞ = > = >

∞ ∞

→∞ →∞
> >

      
= =     

       
   

= =   
   

P P P

P P

 

 

 

 
Since the nA  events are independent, we write 

[ ]( ) [ ]lim lim lim 1 lim -e .nAc c
n n nn n n nm n m n m nm n

A A A
∞ ∞ ∞ ∞

→∞ →∞ →∞ →∞
> > >>

   = = ≤    
∏ ∏ ∏ PP P - P



* 

 
Continuing, 
 

[ ]
[ ]

lim lim -e lim 0
n

n m n
A

Ac
nn n nm nm n

A e

∞

>

∞ ∞ −

→∞ →∞ →∞
>>

∑ 
≤ = = 

 
∏

P
PP



 

 

Since [ ]
1

.n
n

A
∞

=

= ∞∑P  Thus { }limsup 0
c

n
n

A
→∞

 
= 

 
P  and limsup 1.n

n
A

→∞

  =  
P  

 
Let’s look at two examples of the behavior of a sequence where [ ]nAP  is a function of n. 

Consider two sequences nA  and nB  each of which can take the value of zero. Here [ ] 10 ,nA
n

= =P  

and [ ] 2

10 .nB
n

= =P  In this case  limsup 1n
n

A
→∞

  =  
P  since [ ]

1
n

n
A

∞

=
∑P  diverges. However, since 

[ ] 2
1 1

1
n

n n
B

n

∞ ∞

= =

=∑ ∑P  converges, then limsup 0.n
n

B
→∞

  =  
P  

 

                                                 
* From  which can be proved using the Mean Value Theorem 1 ,xx e−− ≤
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Are there similar findings for the event lim inf ?c

n
n

A
→∞

 Consider the following 

{ }
1 1

1 1

liminf

lim lim

lim lim 0.

c
c

c
n m mn

n m n n m n

c c
m mn n

m n m n

c c
m nn nm n n

A A A

A A

A A

∞ ∞ ∞ ∞

→∞
= > = >

∞ ∞

→∞ →∞
> >

∞ ∞

→∞ →∞= + =

        = =               
    

= =    
    

   ≤ ≤ =   ∑ ∑

P P P

P P

P P

 

 
   

 

Thus, if 
1

c
n

n
A

∞

=

  ∑P  converges, then { }liminf
c

nn
A

→∞

 
  

P and liminf 1.nn
A

→∞
  = P   

 

Similarly, starting with 
1

liminf lim lim .n n n nn n n
n m n m n m n

A A A A
∞ ∞ ∞ ∞

→∞ →∞ →∞
= > > >

       = = =            
P P P P

  

  

 
Now, 
 

[ ] ( )1
c
n

c
n

m n

Ac
n n n

m n m n m nm n

A

A A A e

e

∞

>

∞ ∞ ∞ ∞  
 

> > >>

 −  

   = = ≤ −    

∑
=

∏ ∏ ∏ P

P

P P - P


 

 
So 
 

1

lim

liminf lim lim

lim lim 0.
c c

c n nnn m n m n

n n n nn n n
n m n m n m n

A AA

n nm n

A A A A

e e e

∞ ∞

→∞
> >

∞ ∞ ∞ ∞

→∞ →∞ →∞
= > > >

   ∞ − −     
 

→∞ →∞
>

       = = =            

∑ ∑
≤ − = = =∏

P PP

P P P P
  

 

 
 

Thus liminf nn
A

→∞
  = P 1 when 

1

c
n

n
A

∞

=

  ∑P  diverges and liminf nn
A

→∞
  = P 0 when 

1
.c

n
n

A
∞

=

  < ∞ ∑P  

 
We finish our discussion of tail events with the Kolmogorov’s three series theorem, which we 
offer without proof 
 
Kolmogorov’s three series theorem 
Let { }nX  be a sequence of random variable. Then the sequence 

1
n

n
X

∞

=
∑  converges almost surely 

if there exists a constant 0A >  for which each of the following conditions holds.  

i. 
1

n
n

X A
∞

=

 ≥  ∑P  converges 

ii. If 1
nn n X AY X ≤=  then [ ]

1
n

n
Y

∞

=
∑E  converges 
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iii. [ ]
1

n
n

X
∞

=
∑Var  converges  

The theorem becomes iff when the conditions hold for all 
0A > . Note that the three series 

theorem provides conditions for demonstrating that [ ]limsup 0nX =P through the application of 
the Borel Cantelli theorem.
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Introduction to Sigma Notation 
 
 

In order to manage the manipulation of complicated events, we will need to develop increasingly 
sophisticated ways to summarize events. We begin with the simple concept of summation, 
introducing here the tool of  sigma notation ( ).Σ   
Prerequisite ─ none 
 
Our purpose here is to be able to compute and manipulate the simple sums of  numbers.  Since 
each summand can be different, we just denote each by a ,ix   In order to sum ,ix    i = 1, 2, 3, ..., 
n, we could simply write the sum as 

1 2 3 ... .nx x x x+ + +  However, let’s define 
1

n

i
i

x
=
∑ as 

 1 2 3
1

... .
n

i n
i

x x x x x
=

= + + + +∑    

 
Constants (that is, summands that do not have the index i and therefore do not change as i 
changes) are handled differently and simply. For the simple case where ,ix c=  i = 1, 2, 3, ..., n,  
then we can see that  

 1 2 3
1

... ... .
n

i n
i

x x x x x c c c c nc
=

= + + + + = + + + + =∑   

 
Combinations of constants and summands require special attention, but are easily handled. Thus 
 

 
1 1

1 .
n n

i
i

i i

x x
n n= =

=∑ ∑    

 

Similarly 
1 1

n n

i i
i i

cx c x
= =

=∑ ∑ and ( )
1 1 1 1

.
n n n n

i i i
i i i i

x a x a x na
= = = =

+ = + = +∑ ∑ ∑ ∑    

 
However, if we define yi,  i = 1, 2, 3, ..., n,   
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 ( )
1 1 1

.
n n n

i i i i
i i i

x y x y
= = =

+ = +∑ ∑ ∑    

 
No further simplification is available to us since both x and y are indexed by i.  

We can continue by writing  
 

2 2 2 2 2
1 2 3

1
... .

n

i n
i

x x x x x
=

= + + + +∑  

However, in order to compute ( )2

1
,

n

i
i

x c
=

+∑  we have to first carry out the expansion of the 

argument within the sigma sign to find 
 

 
( ) ( )2 2 2 2 2

1 1 1 1 1

2 2

1 1

2 2

2 .

n n n n n

i i i i i
i i i i i

n n

i i
i i

x c x cx c x cx c

x c x nc

= = = = =

= =

+ = + + = + +

= + +

∑ ∑ ∑ ∑ ∑

∑ ∑
   

However, if we have ( )2

1
,

n

i i
i

x y
=

+∑  we write  

 ( ) ( )2 2 2 2 2

1 1 1 1 1
2 2 .

n n n n n

i i i i i i i i i i
i i i i i

x y x x y y x x y y
= = = = =

+ = + + = + +∑ ∑ ∑ ∑ ∑    

We can do nothing more to simplify 
1

n

i i
i

x y
=
∑  since both xi and yi are indexed.  Alternatively 

( )
2

1

n

i i
i

x y
=

 
+ 

 
∑  can be written as 

 
( )

2 2

1 1 1

2 2

1 1 1 1
2 .

n n n

i i i i
i i i

n n n n

i i i i
i i i i

x y x y

x x y y

= = =

= = = =

   
+ = +   

   

   
= + +   

   

∑ ∑ ∑

∑ ∑ ∑ ∑
  

 
Background 
Why Probability 
From Whence it Came – An Early History of Probability 
Probability and the Renaissance 
 
Mathematics Review 
Factorials Permutations, and Combinations 
Binomial Theorem  
Vandermond’s Inequality 
Pascal’s Triangle 
Properties of Real Numbers 
The Concept of the Limit 
 



512                       Sigma Notation  
 
Measure 
An Introduction to the Concept of Measure 
Set Functions in Measure Theory 
Simple Functions in Public Health 
Measure and its Properties 
Working with Measure 
 
Probability Foundations 
Elementary Set Theory 
Basic Properties of Probability 
Counting Events 
Properties of Real Numbers  
An Introduction to the Concept of Measure 
 
Basic Probability Distributions  
Basics of Bernoulli Trials.  
Basics of the Binomial Distribution 
Basics of the Poisson Distribution 
Basics of Normal Measure 
 
Advanced Probability 
Bernoulli Distribution – In Depth Discussion 
Advanced Binomial Distribution 
Hypergeometric Measure 
Geometric and Negative binomial measures 
General Poisson Process 
Survival Measure: Exponential, Gamma, and Related 
Cauchy, Laplace, and Double Exponential  
 
 
 
 



513 
 

 

 

 

  

 
 

Factorials and Combinations 
 

Prerequisite: None 
 
Factorials reflect useful computations involving the whole numbers (0, 1, 2, 3, 4, ...).* While they 
can become large very fast, they are relatively easy to manipulate and are essential in solving 
important probability problems.  
 
Prerequisite ─ none. 
 
Factorials are conceptually quite easy. We begin by describing n! for any integer n  > 0 as  
 

1

! ( 1)( 2)( 3)...(2)(1) .
n

k

n n n n n k
=

= − − − = ∏  

 
Thus, 4! (4)(3)(2)(1) 24.= =   

The number 1! is simply 1, and it is helpful to define 0! = 1.  
 Many times, we will achieve extensive cancellation when dividing factorials by other 
factorials.  

For example, while we could compute the quantity ( )
!
1 !

n
n −  by 1) first computing the 

numerator, then 2) computing the denominator, and finally 3) carrying out the division, it is 
easier to observe 
 

( )
( )( )( )

( )( )( )
1 2 3 ...1!

1 ! 1 2 3 ...1
n n n nn n

n n n n
− − −

= =
− − − −

 

 
 
A useful computation for large factorials is Sterling’s approximation, 
 

! 2
nnn n

e
π  >  

 
 

 

                                                 
 
 
* While they can be negative as well, we will not be working with that set of computations here.  
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an approximation that is most useful in the proof of the DeMoive-Laplace Theorem, one of the 
first proofs of the Central Limit Theorem. 

Other concepts including combinatorics will be introduced in context of counting 
problems that arise in probability. 
 
Order, permutations, and combinations 
A permutation is the number of possible sequences of events. Consider sequencing the order in 
which patients are seen at an urgent care clinic. We will denote them as simply patients  A, B, 
and C. The following enumeration is the universe of sequences in which all three patients could 
be seen. 
 

ABC ACB BAC BCA CAB CBA. 
 
Let’s think for a minute about how these are computed, taking each of the selections one 

at a time. Note that a patient occurs once and only once in each sequence. There are three choices 
for the first patient. However, once we have chosen the first patient, we have two choices for the 
second patient. Once the second patient is chosen, we have one and only once choice for the 
third patient. The number of possible orders is ( )( )( )3 2 1 3! 6.= =  Thus, the number of possible 
permutations is simply a factorial. 

Now, let’s complicate the problem just a little bit. In this new situation we have five 
patients A,B,C,D,E each of whom requires a knee operation. The clinic can only carry out two 
operations per day. What is the possible number of ways to identify the two patients who will 
have procedures on the first day.  

We can follow the lead of our previous example and just enumerate them. Thinking of 
this as 5 subjects “competing” for two slots, we have  

 
AB AC AD AE 
BA BC BD BE 
CA CB CD CE 
 DA DB DC DE 
EA EB EC ED 

 
There are 20 possibilities that we find by rotating through the five subjects, ensuring that all five 
are always considered for each of the two slots, and – importantly – that a single patient cannot 
be selected for both slots.  

We can think of this problem as selecting two subjects from a collection of 5. There were 
five choices for the first slot, and then four for the second. We can compute this easily (now 
without enumerating) as ( )( )5 4 20.=   

This process can be succinctly written using factorial notation as   
 

( ) ( )( )5! 5! 5 4 20.
5 2 ! 3!

= = =
−

 

 
The denominator ( )( )( )3! 3 2 1=  is used to divide or remove the possibilities of ordering for the 3 
subjects for whom there are no slots. In general, if we are permuting n candidates or objects 
through k possible slots without replacement, then the number of sequences is 
 

( )
! .

!
n

n k−
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Combinations 
If we look at our collection of twenty sequences, it turns out that there may be some duplicates, 
depending on what we want to count.  

For example, the two sequences AB and BA are each considered. Yet, they are the same 
event for the day (i.e., both patients  A and B have their knee surgery on the same day. Now, if it 
matters which is first (for example A has a morning surgery and B has an afternoon surgery is 
different than subject B having an AM surgery and A being seen in the afternoon), (i.e., that 
order counts) then it is appropriate to have AB and BA listed as separate events and we are done.  
However, if we are only concerned about the day and not the order of events within the day, then 
these are duplicates.  

Let’s assume order does not count. Then we have to reduce the 20 possibilities by the 
number of duplicates in order to resolve the duplicate problem.   

 But how do we find these duplicates?  
 A quick way to see what the adjustment must be follows. For the selection of a sequence 
of two patients for the day, there are two possible choices for the first slot, and once chosen, 
there is only one possible selection for the second producing (2)(1) duplicates. Thus to remove 
the duplicates, we simply divide the number of permutations by the number of duplicates, in this 

case reducing  5!
3!

 to  5! 10.
3!2!

= This is the correct computation when order does not count. 

This final computation is called a combination, and we say the number of distinct 
sequences of n objects when taken k at a time is  

 

 
( )

! .
! !

n n
k k n k

 
=  − 

   

The k! in the denominator is the correction necessary to reduce the duplication in the 
permutation. This section will be quite helpful for computing probabilities by counting events 
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Binomial Theorem and Pascal’s Triangle 
 
Prerequisite: 
Introduction to Sigma Notation 
 

The binomial theorem is attributed to Pascal, and it’s simple statement has widespread 
use. It’s use is a fine example of how equalities which may seem difficult if not impossible to 
prove (in fact to even believe) can be easily managed with the simple application of this theorem.  

The simple statement of the binomial theorem is that for any quantities a and b and any 
non-negative integer n, then  

 

 ( )
0

n
n k n k

k

n
a b a b

k
−

=

 
+ =  

 
∑     

We will first prove this using an induction argument. In order to check that the theorem is 
true for n = 1, we simply write 

 

( )
1

1 0 1 1 0 1

0

1 1 1 1 1
.

0 1 0 1
k k

k
a b a b b a a b a b a b

k
−

=

         
+ = + = + = + =         

         
∑  

 
Pascal’s Recursion 
Now assuming that the binomial theorem is true for 1,n =  we proceed by assuming that it is also 
true for any n , 1n >   and then must prove that it is true for n + 1. For this, we will first need an 
equality known as Pascal’s Recursion, which states 

 
  

1 1
.

1
n n n
k k k

− −     
= +     −     

    

 
To prove this, we develop the right hand side of this equation  
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( )
( )

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )

1 1 1 ! 1 !
1 ! 1 ! 1 ! !

1 11 !
! 1 ! 1 ! !

1 !
! 1 ! 1 ! !

1 !
! ! ! !

1 !
! !

! .
! !

n n n n
k k k n k k n k

n
k n k k n k

n k kn
k n k n k k k n k

n k kn
k n k k n k

nn
k n k

nn
kk n k

− − − −   
+ = +   − − − − −   

 
= − + 

− − − −  
 −

= − + 
− − − − −  

 −
= − + 

− −  
 

= −  
−  

 
= =  −  

 

 
Proving the binomial theorem 
This equality will speed our proof of the binomial theorem. Begin with the assertion that for an 
arbitrary 1,n >   then 
 

( )
0

n
n k n k

k

n
a b a b

k
−

=

 
+ =  

 
∑  

 
To prove that this is also true for n + 1, we multiply both sides by ( )a b+ to observe 
 

 ( ) 1 1 1

0 0 0
( )

n n n
n k n k k n k k n k

k k k

n n n
a b a b a b a b a b

k k k
+ − + − − +

= = =

     
+ = + = +     

     
∑ ∑ ∑       

We focus on the right hand side of the preceding equation. Examining the first term, 

1

0
,

n
k n k

k

n
a b

k
+ −

=

 
 
 

∑  we let h = k + 1. Then, 1k h= −  and 1.n k n h− = − +   We now have  

 

1 1

0 1
.

1

n n
k n k h n h

k h

n n
a b a b

k h
+ − − +

= =

   
=   −   

∑ ∑  For the second term we can simply let h = k to write 

1

0
.

n
h n h

h

n
a b

h
− +

=

 
 
 

∑   

Now recall that 
 

( ) 1 1 1

0 0 0
( )

n n n
n k n k k n k k n k

k k k

n n n
a b a b a b a b a b

k k k
+ − + − − +

= = =

     
+ = + = +     

     
∑ ∑ ∑  

 
 

Its right hand side now becomes  
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1 1

1 0

1 1

1

1

1

n n
h n h h n h

h h

n
h n h n

h

n n
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h h

n n
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The last term being the 0h =  term from 1

0
.

n
h n h

h

n
a b

h
− +

=

 
 
 

∑  We now define L = h -1 and rewrite 

 
1 1

1

1
1

0

1
1

0

0

1

1 1
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(Pascal's recursion here)

n
h n h n

h

n
L n L n

L
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L n L n

L
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L
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L
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+ +    −    

 − −   
= + +    −    

 
= + 

 
 

=  
 

∑

∑

∑

∑

  

 
This may seem like a complicated proof, but it has remarkable dividends. 
 
Implications of the binomial theorem 
There are many useful results from the binomial theorem. Here are just a few examples. Imagine 
if we have to prove that 
 

0 ...
0 1 2 3 4
n n n n n         

= − + − + +         
         

 

 
How could we possible begin such a task? The binomial theorem makes it easy. Simply write 
 

( ) ( )
0

0 1 1 1 1 1

...
0 1 2 3 4

n
n kn n k

k

n
k

n n n n n

−
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Other equally intriguing results are 
( ) ( )

( ) ( ) ( )

( ) ( )

0

0

2

0

2 1 1 1 1 1 ...0 1 2

1 2 1 2 1 2 4 ...0 1 2
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Vandemonde’s equality 
As a final example of the binomial theorem in operation, consider Vandemonde’s equality 
 

0
.

k

i

n m n m
k k k i=

    
    
    

+
=

−∑  

 
We know that for any constant a, ( ) ( ) ( )1 1 1 .n m n ma a a ++ + = +  Using the binomial theorem we write  
 

 

( )

( )

( )

0 2 3

0 2 3

0 2 3

1 ...
0 1 2 3

1 ...
0 1 2 3

1 ...
0 1 2 3

n n

m n

n m n

n n n n n
a a a a a a

n

m m m m m
a a a a a a

m

n m n m n m n m n m
a a a a a a

n m
+

         
+ = + + + + +         

         
         

+ = + + + + +         
         

+ + + + +         
+ = + + + + +         +         

.m+

   

 
We can also multiply the first two equalities term by term to get  
 

 
( ) 0

3
2 3

0

1
0 0 0 1 1 0

...
0 2 1 1 2 0 3

n m

i

n m n m n m
a a a

n m n m n m n m
a a

i i

+

=

            
+ = + + + +            

            
            

+ + + + + +            −            
∑

           

 
Now, given that we have two expressions for ( )1 ,n ma ++  we simply equate the coefficients of 

like powers of ( )1a +   to find the desired result.  
 
Pascal’s triangle 
Another innovation of Pascal is Pascal’s Triangle. Rather than compute the combinatoric 
quantities necessary to use the binomial theorem, Pascal devised a way for them to be computed 
nearly automatically. They are derived from sums of whole numbers (Figure 1).  
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The third row’s elements are the sum of the two numbers above them, continuing in this fashion 

for each succeeding row.  The first row is 
0

1.
0

 
= 

 
 Thus for the third row, we see that 

2 2 2
1, 2, 1.

0 1 2
     

= = =     
     

 This is a quick way to compute binomial coefficients.  
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Properties of Real Numbers 
 
Prerequisite - None 
 
The real numbers are essential for our work. An important property of the real number line is the 
character and relative positioning of its numbers. Many of the events whose probabilities we will 
wish to compute involve real numbers, e.g., [ ]5n =P  or [ ]3 5 .x− ≤ ≤P  How we compute these 
probabilities depends on the probabilities (and ultimately) the properties of real numbers.  

 
Properties of the universe 
But, before we begin to think about this, let’s take a trip.  
 To the edge of the universe.  
 Suppose that you and I have a comfortable perch at the very outermost edge of the 
universe*. This is a an incredible distance from everything that we recognize, and certainly far 
from what we call “home”. It is in fact farther than even our vivid and “unbounded” 
imaginations can take us.  

Yet, here we are, seated at a vantage point that permits us to see everything that the 
universe contains.  

So, from this view, what consumes our vision? 
 Space. 
 Vast, empty, still, cold, silent space. 
 It is everywhere. In fact unless we peer very carefully, space is all that we see. No mass, 
no planets, no suns, no rocks. Just motionless, stark, void space.  
 However if we persistently and carefully focus, we will see some distant specs. They are 
all but devoured by the surrounding space but there they are. So we race towards them, and find 
collections of galaxies.  
 Approaching these galactic consortiums, we are struck with how huge they are. They 
must be teeming with mass. Now, plunging into the mist of this galaxy collective, we find  − 
 More space.  

We expected to see (from our first vantage point) huge quantities of matter, but now that 
we are here, we observe that mass once again appears in the distance. It is closer, but by and 
large, we have to confess that we are surrounded not by mass but by space. The same space that 
inhabited the vastness of the universe, also inhabits the open expanses of galaxies. There is far 
more space than there are nebula, gases and stars.  
 Now, we focus in on a single galaxy that from the outside, looks like it is bursting with 
mass. We dive into it, only to find that this galaxy is inhabited principally not by planets or stars, 
but by space. Again, the change in perspective reveals space where we expected galaxy filling 
mass.  

                                                 
  
* Whereever that might be because the current consensus is that the universe is ever expanding.  
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Anxious for mass, we propel ourselves into the heart of the galaxy towards a cluster of 
stars, but when we get there, what looked like a closely connected group of stars is actually a 
small number of stars in a vast empty space. We see a collection of planets, and again, upon 
arrival we find yet more space. We find a planet, get to the planet and see that it is inhabited 
principally by space. On and on. Down to molecules. Down to atoms where we find that the 
elements of the atoms – the protons, and electrons −  are separated by a vast space. * 
  The totality of mass that we may think of as overwhelming† is inconsequential when 
compared to the vast emptiness that envelopes it.   
 It is your willingness to change perspective (i.e., to see things not from the point where 
you started, but from the vantage point of the environment that surrounds you) that will power 
your understanding of the real number line.  
 And we will find space is a property of all collections of items, with one great exception. 
 
Natural numbers 
Let’s begin our examination of relationships between numbers by considering the non-negative 
natural numbers, 0,1,2,….n…  There are infinitely many of them.  However, although we can 
never complete a count of them, we understand how to enumerate them, that is to say we can 
follow a sequence of counting so that we do not miss or skip any of them. We call this feature 
denumerability and say that the natural numbers are infinite and denumerable. We know how to 
count them, although we cannot actually count them all.  

However, it only takes a consideration of the natural numbers to demonstrate how 
complex the concept of infinity can be.  

For example, let’s begin with the sequence of natural numbers, and then remove every 
natural number divisible by three, i.e., 3, 6, 9, 12, 15, … 

This leaves us the sequence of natural numbers 0, 1, 2, 4, 5, 7, 8, 10… 
This final sequence is an infinite sequence.  Yet the number sequence that we have 

removed, 3, 6, 9, 12,… is itself infinite.‡ Thus we have removed an infinite sequence of natural 
numbers from an infinite sequence of natural numbers, but wind up with….an infinite sequence 
of natural numbers.  

It is natural for us to think that we have removed a third of the natural numbers in this 
subtraction operation, but of what is it a third? With infinity there is no total, and therefore 
fractions of it need not be finite.  

In fact, we can repeat the process, removing the infinite sequence of all natural numbers 
divided by seven, then those divisible by eleven, then thirteen, etc. In the end, we still have an 
infinite collection of natural numbers remaining.   

However, the essential property of infinity (i.e., its “unendingness”) is removed from the 
remaining sequence if we remove all but finitely many of the natural numbers (e.g., all natural 
numbers beyond the number 100).  In this case we are left with a finite sequence of natural 
numbers (the first 100 of them). Here, removing an infinite sequence of natural numbers leaves a 
finite sequence, while in previous subtractions, we had an infinite sequence remaining.  

At least at first blush, sometimes subtracting infinity from infinity leaves infinity, other 
times it does not.  

                                                 
* In a hydrogen atom, suitably scaled, if the single proton was on the pitcher’s mound in the middle of a baseball field, then the 
electron is out in the bleachers.  
† For example, the sun, weighing two gigatons is massive. It can lose ten million tons a second in mass, and still exist for billions 
of years.  
  
‡ From this perspective  but instead  However, if one subtracted the natural numbers from 
themselves, then  This only means that infinity is complex topic requiring careful thought.  
  

0,∞ − ∞ ≠ .∞ − ∞ = ∞

0.∞ − ∞ =
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The concept of infinity requires us to leave the idea of “total” behind us, a concept not 
easily accomplished by our practical minds. Also, “simple” arithmetic operations need not be so 
simple. With infinity, we have to develop a new intuition, one that requires time and 
contemplation.  

It is also true that, although we can never finish counting natural numbers, (that is, from 
one perspective, they are all that we see), there is in fact space between these numbers – space in 
which no other natural number resides. In fact if one were to try to accumulate the space taken 
up by the natural numbers on the one hand, and the space between them on the other, one could 
conclude that there is substantial more space that does not contain natural numbers than there is 
of space that actually holds them (Figure 1).  

 
 
There are an infinite number of natural numbers, but if you are among them, you can see that 
they are not particularly close together (as in our universe example). There is an infinite number 
of them, but there is room for more space occupying entities. In mathematics, infinity does not 
necessarily mean there is no room for nothing else.  
 
Rational numbers 
Next, we consider the rational numbers, that is, those numbers that can be denoted by p

q
where p 

and q are both integers. These are “the fractions”, and we are comfortable with them, thinking 
with and manipulating them in our practical activities of daily living.  

The question for us here is, are there more rational numbers on the positive real number 
line than there are natural numbers?  

From one perspective the answer appears to be yes. We begin with the fact that every 
natural number is itself a rational number. Then, in addition to the natural numbers, look at their 

reciprocals 
1 1 1 1 1, , , , ..., .
1 2 3 4 n

 With these two sequences (the rational numbers and their reciprocals) 

we have already “outnumbered” the natural numbers.* Plus there are other infinite sequences of 

rational numbers not contained in these two (e.g., the set of rational numbers between 
1
2

 and 1). 

So there must be more rational than natural numbers. 

                                                 
* Here we are acting like which is not always the case.   ,∞ + ∞ > ∞
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Mustn’t there? 
No.  
When the rational numbers are seen from another perspective, “ordered” such as 

1 1 2 1 3 1 2 3 41, , , , , , , , , ,
2 3 3 4 4 5 5 5 5

 then, they can be placed in one-to-one correspondence with the natural 

numbers. Removing the natural numbers from the rational numbers is akin to removing the 
natural numbers divisible by two from the entire set of natural numbers; it is case of ∞ − ∞  
again. Thus from another perspective, there are just as many rational numbers as there are natural 
numbers.   

Thus, we conclude that the rational numbers are countable or denumerable just like the 
natural numbers even though it seems that there are many more of them. Again, the property of 
infinity confounds our intuition, intuition that is accustomed to navigating the world of the finite.  

Now, how about the space between rational numbers. Are the rational numbers like the 
natural numbers in that regard as well? 

We saw that, from the perspective of a natural number, there is a huge gap between it and 
the next greater natural number. In fact that gap contains at least the rational numbers, and we 
now know that there are an infinite number of rational numbers in that gap. From this 
perspective, the natural numbers are widely spaced indeed.  

Clearly the rational numbers are much closer to each other than natural numbers. But are 
they as close together as they can possibly be?  Do they take up all of the “space”? 
 
Neighborhoods and limit points.  
To more formally explore this concept, let’s create the concept of a neighborhood around a 
rational number. A neighborhood is all the points within a tiny distance ε  of the original point. 
On the real number line, it is an interval centered on the original point and extending length ε  
both to the left and right of it. (Figure 2) 
 

 
Finding a point in the neighborhood of a number regardless of the size of ε  is a demonstration of 
how close these similar numbers can be. Since, the neighborhood can be as small as we like, then 
the numbers will be very close to each other. A limit point is defined as a point such that every 
neighborhood around it − no matter how tiny - contains at least one point with the same property. 
If every neighborhood contains a point with the property of the original point, then the points 
may be considered “dense”, because the neighborhoods can be as small as we would like.  
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Certainly, from Figure 1, the natural numbers are not limit points, because for any 
interval centered on the natural number and a width of less than one, the only natural number in 
this neighborhood is the original number. Thus, the natural numbers are not dense.  

Are the rational numbers on 0,1    limit points? Let’s start with a rational number on 

0,1   identified as .p
q

 Let’s now define a neighborhood around this rational number as 

,p p
q q

 
− ε + ε 

 
 whereε is as small as we like.   

We now use a limiting argument. Since we know that 
1lim 0,

n n→∞
=  we can choose an n large 

enough so that 
1
n

 is arbitrarily close to zero. Is there a rational number between p
q

 and ?p
q

+ ε  

Lets choose N large enough such that 
1 .
N

≤ ε  If we write 1p
q N

+  as Np q
Nq

+ , then for any natural 

number m such that 0 ,m q≤ ≤  the number Np m
Nq

+ permits us to create the following sequence of 

inequalities:  
 

1 .p Np Np m Np q p p
q Nq Nq Nq q N q

+ +
= < < = + < + ε  

 

Thus the “new” rational number Np m
Nq

+ falls in our neighborhood however small ε   is. 

 Since this is true for all rational numbers on [ ]0,1 ,  then every rational number is a limit 
point and is in a dense neighborhood of other rational numbers. This is the criteria we need for 
denseness.  

A dense set of numbers is a set of numbers such that every point is a limit point. Thus we 
know that the rational numbers are infinite, denumerable and dense. So, these, are much closer to 
each other than the natural numbers. It looks like we are well on our way to squeezing the 
“space” out of the real number line.   
 In order for the rationale numbers to do this, they have to fill  [ ]0,1 ?  Do they actually do 
this? 

An initial, intuitive answer might be “Yes”, because after all the rational numbers are 
pretty close to each other. But are they so tightly packed that there is no space for anything else?  

Now is the time for us to change our perspective.  
Recall that the rational numbers are denumerable, and can be sequentially counted 

1 1 1 2 1 2 3, , , , , , ...
1 2 3 3 4 4 4

If we can count then, the very process of counting them acknowledges 

distance between them. The distance may become shorter and shorter as they get closer and 
closer together, but the fact that we, in our counting, can disconnect from one, and go to the next 
without skipping any means that we are crossing “space” between them.  One way to say this is 
that, even though they are infinite and dense, there are still gaps between them.  
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A reasonable depiction of what dense means and does not mean is that of glitter. Suppose 
one spills glitter on the floor. It appears “everywhere”, i.e., the glitter elements are very close to 
each other. Yet there is “space” between the speckles  

The dispersed glitter particles are both dense and separable. They appear “everywhere” 
from one perspective, but if you change your point of view to that of a single point of glitter, we 
see that there is space between any two particles. This property of having interleaving space is 
sometimes denoted as “sparseness”.  Put another way, just because the rational numbers are 
dense does not mean that they are jammed in close together with no room between them. It turns 
out that the rational numbers are both dense and sparse. 

Well, then, if there is space, then we must ask, “Is there anything in that space?”  
 
Properties of irrational numbers 
Just because the rational numbers exist in every neighborhood of a rational number does not 
mean that only rational numbers inhabit that neighborhood. This brings us to the irrational 
numbers which we will see are far more numerous than the infinite rational numbers.  

First, let’s show that there are irrational numbers at all. Begin with 2log 3.y =  We will 
demonstrate its irrationality using a proof by contradiction.  

If y is rational, then we can write  
 

2log 3

2 3: 2 3

2 3

qp p
q q

p q

p
q

=

 
= =  

 
=

 

Recall that p and q are integers. Thus 2 p  must be even. But for any positive integer q, 3q must be 
odd. The finding that an even number equals and odd number is a contradiction, hence, 2log 3
cannot be rational. 
 The famous finding that 2  is irrational is also demonstrated indirectly. Assume that 2  

is rational, therefore equal to p
q

 where each of p and q have no common factors. Then 
2

22 ,p
q

=  or 

2 22 ,p q=  which implies that 2p  is even. However, since the square of odd integers is never 
even, p must be even. Thus, there is a k for which 2 .p k=  then  ( )2 22 2 ,k q= or 2 24 2 ,k q= i.e., 

2 22q k=  which means that q must also be even. However, if both p and q are even, then they 
have a common factor, which violated the assumption of our demonstration. Thus 2  cannot be 
rational.  

As rigorous as these proofs are, they can be unsatisfying. The steps don’t reveal a 
property of the irrational number that distinguished it from a rational number (other than it is not 
rational). However, if we dig into the proof a little deeper, we see that what distinguishes an 
irrational number from a rational one is that the irrational number cannot be written as a simple 
irreducible fraction.  
 The irrational numbers are quite numerous. For example, while the product of two 
irrational numbers can clearly be rational ( )2 2 2=  or irrational as 2 3 6,=   the product of 

a rational number and an irrational number must be irrational unless one of them is zero. To see 
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this, let z be an irrational number and p
q

 be rational. If their product is rational, then ,p az
q b

=  or 

,aqz
bp

= which would mean that z was rational after all. 

Similarly, we can show that sum of a rational and irrational number (for irrational 

numbers not equal to zero) is irrational. As before, we let z be an irrational number and p
q

 be 

rational. Then, if the sum is rational, then .p az
q b

+ =  This implies that  a p aq pbz
b q bq

−
= + = which 

would mean that z is rational, a contradiction. 
However, sometimes the sum of two irrational numbers (e.g., ( )3 1 3+ −  or the 

difference of two irrational numbers ( )5 7 5+ −  is rational. However, if 1z  and 2z  are 

irrational, then at least one of the 1 2z z+  or 1 2z z−  is irrational as long as  1z   and 2z are not zero. 
To see this, let’s assume that the sum and difference of 1z and 2z  are both rational. Then 

1
1 2

1

pz z
q

+ =  and 2
1 2

2

.pz z
q

− =  Adding these two equations produces 1 2
1

1 2

2 ,p pz
q q

= + and 

1 2 1 2 2 1
1

1 2 1 22 2 2
p p p q p qz
q q q q

+
= + = which is clearly rational and a contradiction.  

 
Some properties of irrational numbers 

To demonstrate some of the surprises presented by irrational numbers, consider the 
following example. It is clear that the sum of two rational numbers must be rational. However, 
the sum of an infinite number of rational numbers need not be. For example. 

1 1 1 1 11 ... 1 1 ....
1! 2! 3! 2 9

e = + + + + = + + + +  which is clearly an infinite sum of rational numbers.  In 

fact, every irrational number can be written as an infinite sum of rational numbers 
4 1 42 1.414... 1 ....

10 100 1000
= = + + + +  Thus, finite sums of rational numbers are rational. 

However, infinite sums of rational numbers may be rational or irrational.  
 

Denseness of Irrational Numbers 
It is fairly straightforward to demonstrate that the irrational numbers are dense. Choose 0.ε >  

Then, we know that there exists a positive integer N such that for all 
1, .n N
N

ε> <  Thus, 
1z
N

+  

is in the ε –neighborhood of z. But since 
1z
N

+ is the sum of a rational and irrational number, we 

know that 
1z
N

+ must be irrational. Thus, z is a limit point satisfying the definition of density.  
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It is also easy to show that there is an irrational number between two real numbers x and 

y. Since the irrationals are dense we can find an irrational number r such that .
2 2

x yr< < This 

implies that 2 .x r y< <  We simply let 2 ,t r=  which we know must be irrational*.   
 
Uncountability of irrational numbers 
Thus the set of irrational numbers is dense. But, as we have seen with the rational numbers, this 
property of density does not mean the neighborhoods consist only of irrational numbers. Number 
classes can be both dense and sparse. Is there some property that permits us to differentiate 
rational numbers from irrational numbers.  

Yes.  
Irrational numbers have a new and distinct property. One cannot count them.  
The irrational numbers cannot be counted as can the rational numbers or whole numbers. 

In fact, there are so many irrational numbers that the very process of counting makes no sense. 
On the real line, they appear to be indistinguishable from one another. We say that they are 
nondenumerable.   

As an  illustration of the difference in denumerability between rational and irrational 
numbers, consider the following observation. Take a paint brush and, after its bristles are laden 
with paint, snap the paintbrush into the air repeatedly close to a wall. Now count the droplets on 
the wall.  

 One can begin a process of counting the paint droplets and speckles that landed, even 
though it would (seem to) take forever. This is like the rational numbers –one can lay out a 
process by which you can count each one without missing any.  

Now suppose one takes the brush and simply paints the wall in even strokes until the wall 
is covered.  How does one count droplets in this scenario? It is not just that one cannot begin to 
count the drops. The concept of a droplet makes no sense. You cannot tell where one ends and 
the other begins. They are so close together that application of the concept of a “droplet” is lost, 
because droplets have borders, while confluent paint does not within its margins.  

This is what the irrational numbers are like.† Even though we can identify them by name 
e.g., 11,  they cannot be disentangled from each other. They are connected to each other.  
 
Georg Cantor 
Irrational numbers were first identified by the Greeks‡. However, it was Georg Cantor who first 
showed this confluence of irrational numbers in a very revealing way.   

He began with the proposition that the rational numbers are countable. Therefore, if the 
irrational numbers are countable as well, then one should be able to find a one-to-one 
correspondence with the rational numbers (just as one can find a one-to-one correspondence 
between the rational numbers and the natural numbers).  

Furthermore, he reasoned that if the irrational numbers are countable, then all of the 
numbers within an interval should be countable as well, and it should be possible to “fill up” the 
interval with just countable numbers.  If the interval cannot be filled, then there must be some 
other number in the interval, and since it cannot be countable, its cardinality or type of infinity 
must be different.  
                                                 
* Since it is the product of a rational and irrational number,  must be irrational. 
  
† Another example of this property is counting individual drops of water on a counter, as opposed to counting the 
drops in a puddle. The puddle does not permit drops to be separated, and therefore since once does not know where 
one ends and the other begins, they are impossible to count. So we use another metric e.g., volume.  
‡ Hippasius is credited to have discovered that the  was irrational, and supposedly was drowned at sea by the 
Gods for upseting the order of things.  

2t r=

2
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So the question becomes, can we ever, using an infinite collection of infinite sequences of 
rational numbers, fill an interval.  For example, lets choose the closed interval 0,1 ,    and let’s 

try to fill it with the sequence of rational numbers 
1 1 1 11, , , , ,...
2 3 4 5nA = .  

We can observe that, while this sequence takes up infinitely many available slots on the 
0,1   interval, there are many intervals that remain vacant.  

Such an example would be the interval 1 , 1
2

 
 
 

 which is not filled by any subset of 

numbers that is contained in .nA  So, in order to correct this deficiency, let’s choose another 

infinite sequence to “fill it”. 1 1 1 1 1 1 1 11, , , , ...
2 2 3 2 4 2 5nB

n
 = + = + + + 
 

 Since nB  is constructed to 

focus precisely on the 1 , 1
2

 
 
 

interval that we wish to fill, it fills in many position handsomely.  

However, we do notice that many positions in this interval (which in fact is just a 
subinterval of the original 0,1    interval) are not filled. In fact, we have created an infinite but 
countable number of subintervals that continue to retain available spaces waiting to be filled.   

To his surprise, Cantor observed that this process continues interminably; using a 
sequence of tailor-made rational numbers to close up an interval fails to do so, but instead creates 
a new infinite sequence of subintervals that require filling. The process does not end, precisely 
because one can always find a new interval between two rational numbers.  

In addition, as we have seen before, there is always space between rational numbers, no 
matter how close the two numbers are to each other. It is this property that makes the rational 
numbers sparse. It is this space that is filled by the irrational numbers.  

Cantor demonstrated that, however one constructs the collections of rational numbers, 
there will always be irrational numbers that are not members of the sequence. Therefore the 
irrationals are uncountable or “nondenumerable”.    

This property connects irrational numbers in a way that rational or natural numbers are 
not. Irrational numbers are so tightly connected that they cannot be separated and counted. It is 
as though they blend in to one another on the real line. They are confluent.  

Of course we can say that 2  is a single, clear and concise number. But you cannot 
precisely identify its location on the real line, even with (countably infinite) precision. As far 
down as one goes down with infinite resolving power into the real number line around 2,
winnowing out numbers close by, you never get to it. It is intermingled and indivisible from 
other numbers, so much so, that you cannot identify an adjacent one.  It is tougher to find the 2
on the real number line than it is to find an atom of carbon in a tightly woven carpet. It is both 
identifiable and also indecipherable and connected.*  

However, the irrational numbers have additional surprises. Just as it was Cantor who 
discovered that the irrational numbers are nondenumerable, he also discovered the Cantor set 
which is a set of uncountably many irrational numbers that have no length.  
 
What else is on the real number line?  

                                                 
* This is one of the strangest properties of irrational numbers. Too much thought can challenge sanity, earning these 
numbers the sobriquet “irrational”. 
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Since the identification of the irrational number was a surprise, one can ask “what other surprises 
does the real number line hold”. As it turns out, it we stay with the real (and not the complex) 
number line, there is only one. There is a class of number called transcendental.  

At first glance a transcendental number appears to be a special case of an irrational 
number Many times irrational numbers can be found as the solution to a nonzero polynomial, 
e.g., 2 2 0.x − =  This is a polynomial whose coefficients are all rational. However, there are 
irrational numbers which cannot be so derived, e.g., π  and e. The trigonometric and logarithmic 
functions are other examples. These are known as transcendental numbers.  

Research into transcendental numbers continues. However, we can say that irrational, 
nontranscendental numbers are countable. This follows because they are each derived only from 
polynomials with rational coefficients. Since there are countably many rational numbers, there 
are only countably many of these polynomials. In addition, because each polynomial has only a 
countable number of roots, the set of these nontranscendental irrational numbers is  countable. 
Thus, the uncountable set of real numbers is made up of the transcendental numbers.   

In fact, most of the numbers that inhabit the real line are transcendental.  
In conclusion, the real number line can be divided into three classes of infinite numbers. 

The first is the rational numbers, known to be countable. The second class is the 
nontranscendental irrationals (the algebraic irrationals), also known to be countable. The third is 
the transcendental numbers, which are uncountable and the largest of the three sets.  
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Cantor Sets 
 
 
 
Discovered and developed by Georg Cantor, the Cantor set reveals some surprising features 
about the real line. These sets are worth study, because they demonstrate how intricate the set of 
numbers in an interval is, and perhaps remind us that although we may believe we know, “all 
that there is to know” about a concept as simple as the [ ]0,1  interval, this interval always seems 
to have a secret that lies beyond the horizon of our intuition.*  
 
Development of the set  
There are several Cantor sets – the most popular is the Cantor ternary set. The construction is 
quite simple. Begin by removing the middle third of the line as an open set, i.e., 

[ ]1
1 20,1 " , .
3 3

C  =  
 

minus"  This leaves two sets, 10,
3

 
  

 and 2 , 1
3

 
  

 as we would expect from a set 

theory construct. 

[ ]

[ ]

[ ]

1
1 20,1 " ,
3 3

1 20,1 / ,
3 3

1 20,1 ,
3 3

1 20, ,1 .
3 3

c

C  =  
 

 =  
 

 = ∩  
 

   = ∪      

minus"

 

 
 
This is what is left after the middle open third of the real line is removed. Removing the middle 

third of the closed intervals comprising 1
1 2 3 60, ,1 0, ,1
3 3 9 9

C        = ∪ = ∪              
 generates 

 

2
1 2 3 6 7 80, , , ,1 .
9 9 9 9 9 9

C        = ∪ ∪ ∪              
 

 
                                                 
* Our development here follows the discussion of Christopher Shave, “An exploration of the the Cantor set”. 
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We continue removing the middle open interval from each of the denoted closed intervals. Each 

step reveals kC  as the union of 2k  intervals each of which is of length 1 .
3k  The Cantor ternary set 

C  is the intersection of these sets 
1

,k
k

C C
∞

=

=


i.e.,  what is left after each of these removals.  

If we continue in this fashion, we can see that we are removing an infinite but countable 
number of intervals (Figure 1). 

The numbers that ultimately remain comprise the Cantor set. 
Figure 1 reveals that after 6 such iterations, most of the [ ]0,1  interval has been removed. 

However, one of the most interesting features about the Cantor set construction is the lengths of 
1) the sum of all of the sets that we remove and 2) the sum of those that remain. 
 

                                    
 

Let’s begin with the subintervals of the real number line that are removed. What is their 
total length ( )?RL  Counting up, we see that    

( )
1

1

1 2 4 8 2... .
3 9 27 81 3

k

k
k

R
−∞

=

= + + + + + = ∑L . But we can write this as 

( )
1 1

1
1 1 0

2 1 2 1 2 1 1 1.
23 3 3 3 3 3 1
3

kk k

k k
k k k

R
− −∞ ∞ ∞

−
= = =

 = = = = =     − 
 

∑ ∑ ∑L Thus the length of all of the extractions 

required to build the Cantor set is in fact length of the [ ]0,1  interval. Yet, we know that the 
Cantor set is left over. Does this set really have a length of zero?   
  Yes. While it turns out that the Cantor set is nondenumerable (to be proved in a moment) 
it must have length of zero.  

To see this, we first note that the Cantor set focuses on interval endpoints. Note that in 
creating the Cantor set, i.e., removing intervals,  each interval endpoint can be written in a 
ternary (base 3) form of only 0’s and 2’s.* Thus, at every level when an interval is subtracted, 
what is happening is that we are removing numbers whose ternary expansion contains a one.  

                                                 
* This is an astounishing assertion in and of itself. However, spending some time with a base 10 to base 3 number 
converter will demonstrate its veracity.  
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Thus, at the kth stage of removal, any new interval endpoint either has a 2 in the 3

stk−  ternary 
place which repeats indefinitely or terminates at the 13

stk− −  place.  

Now consider the number 1 .
4

 It does not appear as any interval endpoint. However, while 

we are used to seeing 1
4

 written as 0.25, this is base ten notation. In base 3, 

1 0.0202020202020202...
4

=  Thus it is not in any interval that is removed and therefore is in the 

Cantor set.  Yet it is not an interval endpoint. And there are uncountably many such points as 
0.25.  

To show that the Cantor set is uncountable, we turn to a proof by contradiction. We know 
that the hallmark of the Cantor set is that it has 1) a 2 in the 3 k−  ternary place which repeats 
indefinitely or terminates at the 13 k− −  place.  
 Let’s let the set w be the collection of all members of the Cantor set. Now if we assume 
what we don’t wish to prove, i.e., that w is countable, then we can index each member of w using 
natural number indices, 1 2 3, , ,...w w w  Furthermore, we can write 
 

1 2 3

1 2 3

1 2 3

1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

0. , 0. ,0. ...

0. , 0. ,0. ...

0. , 0. ,0. ...

...
0. , 0. ,0. ...0.

mn n n n n

w c c c

w c c c

w c c c

w c c c c

=

=

=

=

 

  
where the digit 

mnc  is either 0 or 2.  
 Now define the number 1 2 30. ... ...nz c c c c=  where c1 reverses* the first digit of w1, c2 
reverses the second digit of w2,  c3 reverses the third digit of w3 and so on. Since z contains only 
zeros and twos, it is a member of the Cantor set. But is it a member of W? 

If z were a member of W, say *z w=  then every digit of z must match every digit of w* 
However, we know that it not the case, since z is not equal to w* in the nth place. Therefore z 
cannot be member of  W.†  

Since we have already shown that the length of the complement of the Cantor set is one, 
i.e., the length of the entire interval, we know that the Cantor set can contain no intervals.  

These properties alone are quite revealing. We could be forgiven for thinking that since 
1) the real numbers are nondenumerable and also comprise intervals, and 2) the set of rational 
numbers is both denumerable and do not solely make up intervals, then it must be the property of 
nondenumerability that confers the interval making property on the real number line.  

The Cantor set demonstrates that this is clearly not the case. Sets of nondenumerable 
numbers can both be uncountable yet separated and by themselves not form intervals. These such 
sets have a cumulative length of zero on the [ ]0,1  line, the entire length having been consumed 
by the extractions to form the Cantor set. 
 
 

                                                 
* “reverses” in this context means to replace a “2” with a “0” or a “0” with a “2”. 
† This demonstration is the heart of the Cantor diagonalization process that he used to demonstrate that although the 
rational numbers are infinite, there are more numbers than just the rational numbers, namely the irrationals.  
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Limits and Continuity  
 
 
Prerequisite 
Properties of real numbers 
 
The difference between calculus and other areas of finite mathematical structures in mathematics 
is the concept of the limit, an idea that is principally due to Cauchy.  It is through an 
understanding of the limiting process  that we can produce powerful results in mathematics with 
implications in public health (e.g., the contagion process). At first glance, the limiting process 
can seem counterintuitive; however, it relies only on the properties of real numbers.  
 
What does a limit mean? 
Let’s examine the behavior of the thoroughly understood function 1( )

2

k

f k  = 
 

 for all non-

negative natural numbers. The values of this function comprise a sequence of numbers 
1 1 11, , , ,....
2 4 8

 indexed by k.  

 We begin with the observation that the quantity 1
2

k
 
 
 

decreases as k increases. However, 

the decrease in this function follows a pattern, allowing us to put bounds on the function’s value, 
regardless of the value of k. For example, ( )f k  cannot be negative. Also, its maximum value is 
1. Finally it is always decreasing.  
 However, given that it can always be decreasing, can ( )f k ever be zero? An examination 

of examples of k reveals that whatever value of k that we chose, 1
2

k
 
 
 

is never zero. This 

interesting property of a function that changes in such a way that, while it approaches a number, 
is never equal to that number is the heart of the concept of a limit (Figure 1).   
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Figure 1 demonstrates the relationship between k and ( ).f k  From the larger graph in the figure, 

( )f k  first decreases precipitously as k increases. Then as k continues to decrease, the rate at 

which ( )f k  decreases is reduced. It appears to “level off”.   

 However, the insert reveals that for larger values of k , ( )f k  continues to demonstrate 

first a rapid fall followed by a more gradual one. No matter how large the value of k, 1) ( )f k gets 

ever closer to zero, and 2) there is always a gap between ( )f k and zero.*  This is the concept of 
the limit.  
 We express this as  

1lim 0.
2

k

k→∞

  = 
 

 

Other ways to express this are that the function 1
2

k
 
 
 

 converges to 0 or 1 0.
2

k
  → 
 

 

This does not say that 1
2

k
 
 
 

 is ever equal to zero; we know that it is not.  However the concept of 

“approaching” that is encapsulated in the limit statement is the notion that we can get as close as 
we want to zero; we simply have to let k be large enough. 

 For example, if we want 1 0.00001,
2

k
  ≤ 
 

 we simply have to choose k > 17.  We can get 

as arbitrarily close to zero as we like. It is this property of the function that will allow us to say 
1lim 0.
2

k

k→∞

  = 
 

  

                                                 
* We might think of this as a plane approaching a runway, getting closer and closer, but its wheels never hit the 
tarmac.  
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 It is fair to ask why the limit could not be some infinitesimal positive value 0?b >   
However, after reflection, we see that, for any positive value b, no matter how small, there is 
some k such that kf b< .* Thus 0b >  cannot be the limit. 
 We now will formalize this concept. We say that an infinite sequence of numbers a0, a1, 
a2, a3, …an … approaches the limit a, i.e., lim ,nn

a a
→∞

=   if for any ε > 0, we can find an n* such 

that for all n > n*, | | .na a ε− ≤  
 This is simply a mathematical way of saying that if an  truly approaches a in the limit, 
then we can bring an in as close as we like to a  (and staying within that close distance of a) by 
simply going far enough out in the sequence.  Therefore, if we are challenged with an ε, (i.e., we 
are told to have an to always be within ε of a), we simply have to find the value of n (n*) that 
ensures all subsequent values of an are close enough (within ε) of a.   

With this as a definition, let’s now develop a formal argument to show that 
1lim 0.
2

n

n→∞

  = 
 

  We are challenged with any ε > 0, and must find an n* such that for any n > n*, 

1 10 .
2 2

n n

ε   − = ≤   
     

Our previous work with this function shows how this may be done. Working with limits 
requires having detailed and intimate knowledge of the functions involved. In this case, the 
exponential suggests that taking logs is in order. Proceeding,  

( )

( )

( )
( )

1
2

1ln ln
2

1ln ln
2

ln (2) ln

ln
* .

ln (2)

n

n

n

n

n n

ε

ε

ε

ε

ε

  ≤ 
 

  ≤ 
 

 − ≥ − 
 

≥ −

−
= ≥

 

 Since we know that 1
2

n
 
 
 

is always decreasing, all subsequent values 1
2

n
 
 
 

for n > n* will 

be even closer to 0, and we are finished. Note that proving this limit required us to have 1) 

intimate knowledge of the function 1
2

n
 
 
 

 and also the actual value of the limit.  

 
All but finitely many times 
Looking at the previous example, note that we said that all subsequent values 1

2

n
 
 
 

for n > n* 

will be even closer to 0. Another way to think of this is that there are only finitely many value of 

n ( )*n n<  for which 1 ,
2

n

ε  > 
 

 and therefore, reversing it,  1
2

n

ε  ≤ 
 

for all but these finitely 

                                                 

* To see this, note that 
1

2

k

b≤ 
 
 

  implies 
1

ln ln
2

k

b≤ 
 
 

   and 
1

ln ln
2

k b≤ 
 
 

 or 
ln

1
ln

2

.b
k ≤
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many times. If a function kf  is within any 0ε >  of f  all but finitely many times, then we can 
say .kf f→  We will develop this concept of “all but finitely many times”  for not just functions 
but, for sets of objects. 
 
Examples of convergent series 
A sequence that has a limit, converges. There are many useful series that converge. Examples 
without proof are 
 

0
2

2
1

1

1 for 1.
1

1 .
6

1 2
2

k

k

k

k

s s
s

k

n

π

∞

=

∞

=

∞

=

= <
−

=

=

∑

∑

∑

 

 
Among the most interesting to us will be 

.

0 !

k
x

k

x e
k

∞

=

=∑  

that will be the basis of one of the most useful probability distributions for us, the Poisson 
distribution.  
 
Cauchy sequences 
For the previous demonstration of the proof that 1( )

2

k

f k  = 
 

had the limit of (or converged to) 

zero, we had to know what the limit actually was. However it is possible to demonstrate that a 
sequence converges without actually knowing its limit.  
 We define a sequence a0, a1, a2, a3, …an …to be a Cauchy sequence, it for any small 
value of 0,ε >  we can find an n* such that for all n and all , m > n*, then .n ma a ε− ≤   
 Note that this definition does not require that we know the limit a of our sequence.  
However, this definition focuses on a property that makes good sense. If we have a convergent 
sequence, not only must the elements of the sequence get closer and closer to the limit, but they 
also must get closer and closer to each other.   
 We can easily demonstrate that a convergent sequence is a Cauchy sequence. Assume the 
sequence { }na  is convergent. Then we know that, for a given ε > 0 we can find an n* such that 

*n n>
∀  then .

2na a ε
− ≤  Then choose an integer .m n>  Then  

 
| | | | | | | |

,
2 2

n m n m n ma a a a a a a a a a
ε ε ε

− = − + − ≤ − + −

≤ + =
 

 
thereby satisfying the Cauchy requirement.*  

                                                 
* Here, we have invoked the rule that any side of a triangle is less than the sum of lengths of the other two sides. 
This is known as the triangle inequality. 
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Proof of the reverse direction begins with the assertion that given ε > 0, we can find a 
value of n and a subsequence { }ma  such that   n ma a−  is within ε  of this upper bound.  
Another way to say this is that since ma  does not get to “escape” from ,na  ma  is within ε  of .a   

Assuming na  and ma  are positive, and that there must be an upper bound a  for ma . Thus 
as n increases, ma  is trapped between na  and this bound .a   This implies that for n large enough, 

na  is  within ε  of .a   Since ,n ma a a≤ ≤  then ma  must also be within ε  of .a   Thus the sequence 
converges to a.  The  “successful pursuit” of ma  by na  implies that 'm sa  “escape” from na  is 
blocked by the bound a which is in fact the limit of the sequence.  
 
Continuity 
Continuity is a property of many functions. It is essential to understand this feature not just for 
the practice that it offers for working with the limit concept, but in addition, to appreciate the 
“limit pass through” feature it provides.  
 The property of continuity can be confusing to students new to the concept of the limit 
because it can be difficult to differentiate continuity from convergence. 
 Essentially, for a function to be continuous, two levels of convergence must take place. 
First, the function’s argument must converge. Second, the function itself must converge.  

Fortunately, like so many elementary concepts in calculus, a little thought provides a 
natural sense of the underlying idea. An intuitive understanding of continuous functions over a 
region is based on the sense that such functions contain no breaks as one moves across the x axis.  
This is colloquially expressed as “The pencil need not be removed from the page” when drawing 
the function over a continuous region. While this is easy to grasp, we must invoke the limit 
concept to state this mathematically.  
 Let’s begin with the assumption that, at the point ,a  ( ) ( ).f x f a=  How does the 

function actually get to ( )?f a   In drawing the function across the page, moving from left to 

right uninterruptedly along the x axis, we anticipate that as we allow x  to get closer to ,a ( )f x  
gets closer to ( ).f a  Thus, we have two limit processes. One is the (trivial) process of x  

approaching ,a  and the other is that as x  approaches ,a  ( )f x  approaches ( ).f a   

 We can now state the formal criteria for continuity of a function. A function ( )f x  is 

continuous at ( )f a  if the lim
x a

x a
→

=  implies ( ) ( )lim .
x a

f x f a
→

= This is simplified to the condition 

that a function ( )f x  is continuous at ( )f a  if  ( ) ( )lim .
x a

f x f a
→

=  

 This dual limit phenomenon requires that we have two small arbitrary constants, ,ε  and 
.δ  With these constants in hand, demonstrating continuity of ( )f x  at ( )f a  translates the 

concept of “if x  is close to ,a  then ( )f x  is close to ( )f a ”  to if  x a δ− ≤  then 

( ) ( ) .f x f a ε− ≤   
In general, the practical demonstration of continuity requires us to first examine the 

inequality ,( ) ( )f x f a ε− <  trying to get this into a function of ,x a−  then use the fact that you 
can squeeze x a−  to be as small as possible to get ( ) ( ) .f x f a ε− <   

 For example, in order to demonstrate the continuity of the function ( )f x kx=  for k  a 

positive, known constant, we start by assuming that x  is within δ  of .a  Then .x a δ− ≤  This 

implies that ( ) ( ) ,f x f a kx ka k x a kδ− = − = − ≤  or ( ) ( ) .f x f a kδ− ≤  Regardless of the 
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value of ,k  choosing δ  small enough permits  ( ) ( )f x f a−  to be small. Setting kε δ=  

finishes the demonstration.  If we, for example would like ( )f x  to be within 0.0001 of ( ) ,f a  

we set 0.0001.
k

δ =   

This is an easy example; not all such continuity demonstrations are so simple. Sometimes 
demonstrating continuity can be a technical challenge,  requiring intimate knowledge about 

( ).f x   
However, one relieving factor with tremendous and  helpful consequences is the notion of 

passing a functions through limits, i.e.,  the “limit pass through”  feature.   

When can we pass a limit through a function, i.e., when is  ( ) ( ) ( )lim lim ?
x a x a

f x f x f a
→ →

= =  

The answer is that this is true for continuous functions, as this is their very definition.  
The property of reversing the function and limit sign adds tremendous power to our 

ability to manipulate limits.  From our previous example, since ( )f x  is continuous at ( ) ,f a  

then  ( ) ( ) ( )lim lim lim ,
x a x a x a

f x kx k x ka f a
→ → →

= = = =  and we have the continuity of ( )f x kx=  at 

( )f a  directly.  
The demonstration that the sums, differences, products and quotients (with the monitory 

that the denominator must stay away from zero) of continuous functions are also continuous 
allows us to build families of continuous functions. For example, since sine and cosine are 
continuous functions, We know that the tangent is also continuous  (as long as we stay away 

from ,
2
π  where the cosine is zero).  

 
Pointwise versus uniform convergence  
So far, our concern has concentrated on only the convergence of the function ( )f x  with no 
thought at all about the rate at which the function changes as x   converges to a.  However, 
“rates” do differ. Consider the elementary function ( )f x x=  and the slightly more complicated 

( ) 2.g x x= Do they both converge and if so, do they converge at the same rate. 

Remember that if ( )f x  is to converge to ( )f a   as ,x a→  then we must be assured that 

for ,x a δ− ≤   then ( ) ( ) .f x f a ε− ≤   

This is trivial for ( )f x  since we only have to let our ε δ=  to find that for ,x a δ− ≤  

then  ( ) ( ) .f x f a x a ε δ− = − = =   

 Taking the same approach for ( ) ,g x  again, let .x a δ− ≤  What does this imply about the 

distance between ( )g x  and ( )?g a  Write ( ) ( ) 2 2 .g x g a x a x a x a− = − = − +   

Now, focus on  .x a+  We know that as x   approaches ,a   the quantity x a+  
approaches 2 .a  Thus   

( ) ( ) 2 2 2 .g x g a x a x a x a aδ− = − = − + ≤  So by choosing 2 ,aε δ=  we have  

( ) ( ) 2 2f x f a x a ε− = − ≤ and ( ) 2f x x=  is continuous at the point .x a=   
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 However, is ( )g x  as close to ( )g a  as ( )f x  is to ( )f a  when ?x a δ− ≤  For 1,a =  

2 2 ,aδ δ=  which means that ( ) ( )g x g a−  is twice the distance as ( ) ( )f x f a− . When 

100,a =  then  ( ) ( )g x g a− is two hundred times the distance ( ) ( )f x f a− . These rates are 

clearly different; moreover, ( )f x  has a constant rate of convergence, while ( )g x ’s  rate is a 

function of .a   We say that ( )f x  doesn’t just converge, but it converges uniformly. 

Alternatively, the function ( )g x  converges in a pointwise manner.  

 As another example of pointwise convergence, consider the function sequence ( ){ }nf x

where ( ) .n
nf x x=   Note that this is a function with two determining values. The first is n, which 

indexes the sequence of functions. The second is x, which is the argument of .nf   One could 
think of this as a sequence of functions indexed by n for each value of x.  
 What does convergence in this case mean
For each x we have a sequence of functions, opening the door to the possibility that each 
sequence of functions may have different limiting behavior depending on the value of x.  For 
fixed ,n  lim .n n

x a
x a

→
=  *   

But what about lim ?n

n
x

→∞
  For example, for any x > 1, lim n

n
x

→∞
 does not exist, since nx  is 

unbounded, growing to infinity.   
For x = 1, our function 1nx =  for all .n  Similarly, for 0, 0nx x= =  for 1.n ≥   
Now, what is the behavior of nx  for 0 1?x< <     Based on the argument we made from 

the previous section, our sense suggests that for 0 1,x< <   lim 0.n

n
x

→∞
=  How can we show this? 

 Challenged with an ε > 0, we need to find an n* such that for all n > n* ( ) .n
nf x x ε= <    

We proceed as follows.  
 

( ) ( )
( ) ( )

( )
( )

ln ln

ln ln

ln
*

ln

nx
n x

n x

n n
x

ε
ε

ε

ε

<

<

− > −

−
> =

−

 

And we have our result. However, notice that our n* is a function of x. We might even write this 
as  n*(x).  The fact that n*(x) is a function of x is a hint to us that if convergence takes place, it 
takes place at different rates (Figure 2).  
 

                                                 
* To see this note that, to demonstrate the pointwise convergence of ( ) 3

3 ,f x x=  
3 3 2 2 2 23 3x a x a x ax a x a a a δ− = − + + < − ≤   
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Certainly each of the functions in Figure 2 converges to zero. However, they converge at 
difference rates. This is another example of pointwise convergence. since the rate of convergence 
is conditional on each “point”  x. 
 Pointwise convergent functions can be a challenge to work with because we cannot be 
assured to have the function within ε of the limit for all values of x.  

This type of assurance is provided by functions which are uniformly convergent. A 
function that is uniformly convergent has the rate of convergence independent of x, i.e., n* can 
be written so that it is not a function of x.  

Commonly  we can convert a pointwise convergent function to a uniformly convergent 
function on an interval of x. Consider the same function above, ( ) ,n

nf x x=  except we now 
restrict ourselves to the region 0 0.9.x< <  Then we modify our proof of convergence as follows; 
 

( ) ( )
( ) ( )

( )
( )

( )
( )

ln ln

ln ln

ln ln
* .

ln 0.90 ln

nx
n x

n x

n n
x

ε
ε

ε

ε ε

<

<

− > −

− −
> = >

− −

 

 
Which is true for all 0 0.90.x≤ ≤   

However, since our proof holds only for 0 0.90,x< ≤ we say that the function is locally 
uniform convergent. 
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Convergence and Limit Interchanges 
 
Convergence is a critical feature of many functions. However, the different types of convergence 
and  continuity with their implications can sometimes confuse the reader. Here is a brief 
summary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Passing Limits Through Functions 
One of the consequences of our definition of a limit is that in some circumstances, if a sequence 
converges, then a function of that sequence can also converge. Such a property would aid our 
understanding of functions profoundly. However, exactly what functions are these? 

We began an examination of this concept in the section on continuity, and summarize 
here, phrasing the pass through argument somewhat differently. For a function ,f  we say that if  

0 1 2, , ,..., ...na a a a  approaches the limit a, then another sequence  ( ) ( ) ( ) ( )1 2 3, , ...., ...nf a f a f a f a   
approaches the limit ( ).f a  

 A succinct way of putting this is that ( ) ( )lim lim ,n nn n
f a f a

→∞ →∞
=  and we say that the limit 

“passes through” the function. 

Passing the Limit through a Function 

( ) ( ) ( )lim lim .
n n

n na a a a
f a f a f a

→ →
= = The limit and the 

function are interchangeable. This is a consequence of 
pointwise convergence and is the basis of the  
continuity concept. 
 
Passing a Limit through an Integral or Differential 
This is a property of  the  uniform convergence of the 
function ( )f x  to ( )f a . Note that the limit passes 
through both the integral (or derivative) and then again 
through the function   
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

lim lim lim .

limlim
lim .

n n n

nn

n

n n na a a a a a

nn a aa an

a a

f a f a f a f a

df ad f adf a df a
dx dx dx dx

→ → →

→→

→

= = =

= = =

∫ ∫ ∫ ∫
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Uniform convergence and continuity  
With the notion of uniform convergence as background, we are now in a position to show two 
important features of continuous functions. The first is that if ( )nf x  is continuous and converges 
uniformly to ( ),f x  then f  must be continuous. 
 In order for ( )f x  to be continuous at a point, say 0x  then for 0 ,x x− < δ  then 

( )0( ) .f x f x− < ε   Given that we know ( )nf x  converges uniformly to ( )f x  we know that there 

exists a single N / for all ,n N>  ( )nf x  gets as close as we need to ( )f x  and 0( )nf x  to 0( )f x for 
which x is uniformly convergent (this is why we need uniform convergence. Thus, we can write  
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

0 0 0 0

0 0 0

0 0 0

( ) ( ) ( )

( ) ( )

( ) ( ) .

n n n n

n n n n

n n n n

f x f x f x f x f x f x f x f x

f x f x f x f x f x f x

f x f x f x f x f x f x

− = − + − + −

= − + − + −

≤ − + − + −

 

Now we can write ( ) ( )
3nf x f x ε

− < and 0 0( ) ( )
3nf x f x ε

− < by the uniform convergence of ( ).nf x  

We can also write ( ) ( )0 3n nf x f x ε
− <  by the continuity of ( )nf x . Thus, we finish by writing, for 

0 ,x x− < δ  
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

0 0 0 0

0 0 0

0 0 0

( ) ( ) ( )

( ) ( )

( ) ( )

.
3 3 3

n n n n

n n n n

n n n n

f x f x f x f x f x f x f x f x

f x f x f x f x f x f x

f x f x f x f x f x f x

− = − + − + −

= − + − + −

≤ − + − + −

ε ε ε
≤ + + = ε

 

For an example of the impact of the absence of uniform convergence on the continuity of the 
limit, consider ( ) n

nf x x=  on [ ]0,1 .  Note than on the interval [ )0,1  we have ( )lim 0.nn
f x

→∞
=  Also 

at the upper bound we find that ( )lim 1.nn
f x

→∞
=  So the limit is 0 1 1( ) 0 .1 1x xf x ≤ < == +  This function 

is clearly not continuous at 1.x =   
Now, if we redefine the function as ( ) 0 0.99 ,1nn xf x x ≤ ≤= we know from our earlier 

development that ( )nf x  is uniformly convergence (the upper bound confers the rate of 
convergence) and lim ( ) 0nn

f x
→∞

=  for all x  on the defined semi-closed interval, is also continuous 
and therefore we have continuity of the limit function.  

Thus, the property of continuity permits us to pass the limit through the function, i.e., 

( ) ( ) ( )lim lim .
x a x a

f x f x f a
→ →

= =  The continuity of ( )f a  is assured if ( )f x  is uniformly 

convergent 
 
Uniform convergence, integrals and derivatives 
 

This will be a very useful property for us, since we will commonly take derivatives and 
integrals term by term in a series. If the series is uniformly convergent, then we can interchange 
the derivative and the infinite summation, and in the case of integration, interchange the integral 
and the summation. 
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 Specifically, if ( )nf x  converges uniformly to a function ( ) ,f x  then  
 

( ) ( ) ( ) ( )lim lim lim .n n nn n n
f x f x f x f x

→∞ →∞ →∞
= = =∫ ∫ ∫ ∫  

 
We can see a similar, measure-theoretic result in the development of each of the  monotone 
convergence theorem and the  Lebesgue Dominated Convergence Theorem. 
 A similar finding is available for differentiation. Again, if , ( )nf x  converges uniformly 

to a function ( ) ,f x  then  

( ) ( ) ( ) ( )limlim
lim .

nn nn n

n

df xd f xdf x df x
dx dx dx dx

→∞→∞

→∞
= = =  

 
 Interesting series that have these properties are  probability generating functions  and the 

exponential function,  

0
.

!

k
x

k

x e
k

∞

=

=∑  

 
Thus, while continuity permits us to pass the limit through a function, uniform continuity permits 
us to pass the limit through an integral or through a differential.  
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Principles of Differential Calculus  
 
 
The fundamental feature of calculus is the notion of the limit. Here we use that concept in the 
development of  the idea of the derivative. This will be important in our discussions concerning 
several developments, most notably the Poisson process. 
 
Prerequisite 
Properties of Real Numbers 
The Concept of the Limit 
Convergent Series 
Cauchy Sequences 
Pointwise vs. Uniform Convergence 
 
Curve slopes 
We have good intuition about the slope of a straight line. In general, if the line is described as 

,y mx b= +  them m is the slope of the line. Given any two points on the line ( )1 1,x y  and  ( )2 2,x y , 
we can compute the slope  m as  
 

2 1

2 1

,y y ym
x x x

− ∆
= =

− ∆
 

 
motivating the common descriptive phrase of m as the rate of change of y compared to the rate of 
change of x. Note that the use of this definition doesn’t mandate which two points ( )1 1,x y  and 

( )2 2,x y are used. Any two points on the straight line can be used, because they each give the 
same answer.  

The slope of a straight line is constant over the entire real line. It doesn’t matter whether

y∆  is large or small; as long as it is connected through the formula y
x

∆
∆

to the matched ,x∆  the 

solution for m will be the same and correct.  
 However, many curves do not have this property.  The evaluation of a curve such as 

2y x=  demonstrates a non-constant slope  (Figure 1). 
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Note that for x very close to zero, small increases in x produce very small change in y. However, 
as x increases, the increase in y for the same change in x increases. We can visualize this by 
overlaying the slope computed at each point (Figure 2).  
 

 
 
 

 
 
For the straight line that we first considered, the slope is always the same and, since this slope is 
a constant, its rate of change is zero.  However, for the curve 2 ,y x=  the slope is now a function 

of x, and is always changing. In fact, each point x generates a different slope for the curve 2.y x=  
 How can we compute this x-value specific slope, for example at the point x0?   

Since the slope changes as a function of x, we want to get as close to the point x0 as 
possible before we compute our .y∆  This suggest that the concept of the limit may serve us here. 
Let h serve as our .x∆  Then, we would like to let h get as small as possible, approaching zero, 
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and look at the quantity ( )2
0 .

x h
h
+   We define this instantaneous slope as the derivative of y with 

respect to x and for our function write 

 ( )
0

2 2
0 0

0
lim
h

x x

x h xdy
dx h→

=

+ −
=    

This is exactly the concept that we sought, i.e., to identify the change in 2x  at 0x x=  for the 
smallest possible changes in x. In fact, using what we know about limits we can compute this 
quantity. We begin by noting that  
( )2 2 2 2 2 2

0 0 0 0 0 02 2 ,x h x x x h h x x h h+ − = + + − = + permitting us to write the original expression as  
 

( ) ( )
0

2 2 2
0 0 0

0 00 0 0

2lim lim lim 2 2 .
h h h

x x

x h xdy x h h x h x
dx h h→ → →

=

+ − +
= = = + =  

 
Thus, the slope is a function of x0, as our intuition suggested.  In general to find the derivative of 
a function ( )f x  at the point 0x x=  we compute  
 

( ) ( )
0

0 0

0

( ) lim .
h

x x

f x h f xdf x
dx h→

=

+ −
=  

 
There are two caveats to finding derivatives, each involving the properties of our function ( ).f x  
The first is that ( )f x  must be continuous. The second is that taking a derivative by allowing x to 
increases to 0x   must give the same value as taking a derivative by allowing x to decrease to 0x . 
The function provided in Figure 3 shows how a function can have derivatives in some regions 
and be missing its derivatives in others. 
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The lack of continuity means that one cannot take a limit of the function at the point of 
discontinuity,  principally because ( ) ( )0 0f x h f x+ −   has no limit at the points of discontinuity. 
The notion of smoothness is conveyed by the ability to compute the same value for the derivative 
approaching from the left as for approaching from the right. The simplest and most infamous of 
these functions with discontinuity is the function y x=  at 0.x =   
 There are many formulas for computing derivatives, and after a time, like integration, 
"differentiating a function" at a particular point can become very mechanical for students. 
However, it is important to realize that one is taking advantage of important properties of the 
function in taking its derivative. Simply “taking the derivative” of a function when the derivative 
does not exist is a common pitfall.    
 
Exponential functions 
Chief among the functions we will rely on is the exponential function. In the section on limits we 

defined this function xe  as 
0

.
!

k
x

k

xe
k

∞

=

= ∑ * Its derivative is simply ,xe dx  which means that its 

antiderivative or integral is also .xe  We can compute more complicated derivatives of this 

function, relying on the adaptation of the chain rule 
( )

( ) ( ) .
g x

g xde dg xe
dx dx

=  Thus we have 
2

2
2

2: : : .

x
xx x ax

x x xde de de dee e ae xe
dx dx dx dx

−
−−

−= = − = = −   
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* Here is an example of a irrational number that is the infinite sum of rational numbers. 
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The Mean Value Theorem  
 
Prerequisites 
Pointwise vs. Uniform Convergence 
Convergence and Limit Interchanges 
Passing Limits Through Functions 
Uniform Convergence and Continuity 
Uniform Convergence, Integrals and Derivatives 
Curve Slopes 
 
One of the most useful theorems from calculus provides the ability to compare the relative 
magnitude of a function at one point by its value at another point and its rate of change.  

For example, if two functions have the same value at a particular point 0x , and,  for 
every point in some interval around 0,x  the rate of rise of one function is greater than the rate of 
rise of the other, then the function with the greater slope has greater values than the other. This 
seems self-evident, but its line of reasoning is quite valuable in calculus and analysis. It is this 
thought that is encapsulated in the mean value theorem. It is remarkable how such a natural 
conclusion is so useful in mathematics.  
 
Statement of the theorem 
If a function ( )f x  is continuous on an interval ,a b    and differentiable on the open interval 

( ),a b  then at some point 0,x 0a x b< <  the following equality holds:  
 

                        
0

( ) ( )'( ) .f b f af x
b a

−
=

−
  

 
The important corollaries of the mean value theorem are 
 

1) If ( )0' 0f x >  then ( ) ( )f b f a>   
2) If ( )0' 0f x <  then ( ) ( )f b f a<  
3) If ( )0' 0f x =  then ( ) ( )f b f a= * 

 
These corollaries (which follow because the denominator b a−  is positive) are sometimes all that 
we use from the Mean Value Theorem.  
 
Implementation 
                                                 
* This is sometimes known as Rolle’s Theorem. 
 
 



Implementation  559  
 

 
 

For example, suppose we wish to show that 1xe x> +  for .0x >  This is the same as showing 
that 1 0.xe x− − >  We know that 0(0) 0 1 0.f e= − − =  The derivative '( ) 1xf x e= −  is positive 
on this interval. Since the derivative is positive on the interval, the function is increasing on the 
interval and for any x   in the interval .( ) (0) 0f x f> =  Thus, the function must be positive and  

.1xe x> +  
 Similarly, we can show 1 .xx e−− ≤  This is equivalent to 1 ( ) 0.xe x f x− + − = ≥  

0(0) 1 0 0,f e−= − + =  and '( ) 1 1 0,x xf x e e− −= − + = − > satisfying the corollary of the mean value 
theorem.  
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Polar Coordinates 
 
Prerequisite 
Curve Slopes 
 
 
In calculus we learn that there are many integrals (we will soon see that this is synonymous with 
measures) of the real line that may not be straightforward to evaluate. Using the tools of partial 
fractions and integration by parts, among others, we build up our repertoire of implements that 
help us with the actual integration.  
 Once useful tool in double integration is the use of polar coordinates. They are 
particularly useful when the integrand is a function of an exponent whose power is along the 
lines of 2 2.x y+ *  
 
Polar coordinate system 
Polar coordinates are nothing more than an alternative way to map the Cartesian coordinate 
plane. We customarily think of this as the ( ),x y  plane, recognizing that every point in this 
system can be identified by a unique pair of real numbers which we call the x-coordinate and y-
coordinate. However, this is not the only assignment system that provides unique specification of 
the point.  In polar coordinates, we assign to each point a pointer that begins at the origin of a 
specific length, r, and an angle measured from the x-axis, .θ  Not only can every point be 
specified uniquely in this matter, but the relationship between ( ), ,x y  and ( ),r θ  is quite valuable 
(Figure 1).  
  
 

                                                 
* Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid-
seventeenth century. Saint-Vincent wrote about polar coordinates privately in 1625 and published his work in 1647, 
while Cavalieri published his in 1635 with a corrected version appearing in 1653. Cavalieri first used polar 
coordinates to solve a problem relating to the area within an Archimedean spiral. Blaise Pascal subsequently used 
polar coordinates to calculate the length of parabolic arcs (from Wikipedia). 
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From this diagram we can see that ( ) ( )cos ; sin .x y
r r

θ θ= =  This leads to the familiar 

parameterization commonly used in mapping the Cartesian plane to the polar plane, namely    
 

( ) ( )cos ; sin .x r y rθ θ= =  
 
This tells us how to map ( ),r θ  to ( ), .x y  If we want to map the reverse, we see from figure 1 

then 1tan ,y
x

θ −  =  
 

 and  

( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 2 2 2cos sin cos sin .x y r r r rθ θ θ θ+ = + = + =  Also, a simple use of Pythagorean’s 
theorem reveals the same result. Thus we can map readily from Cartesian to the polar coordinate 
planes.   
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Exponential Limit 
 

 
Prerequisites 
Binomial Theorem  
The Concept of the Limit 
Convergent Series 
Pointwise versus Uniform Convergence 
Curve Slopes 
 
We need to show  

lim 1
n

x

n

x e
n→∞

 + = 
 

 

 
To proof this assertion, we first invoke the binomial formula 
 

( )
0

n
n k n k

k

n
a b a b

k
−

=

 
+ =  

 
∑ to see that 

0
1 .

n kn

k

nx x
kn n=

    + =     
    

∑  

 
We can now write  
 

( )( )( ) ( )
0 0

0

1 2 3 ... 1
!

1 2 3 1...
!

k kn n

k
k k

kn

k

n n n n n n kx x
k n n k

n n n n n k x
n n n n n k

= =

=

− − − − +   =  
  

− − − − +      =       
      

∑ ∑

∑
 

( )
0

1 2 3 11 1 1 1 ... 1
!

kn

k

k x
n n n n k=

−     = − − − −     
     

∑  

 
Taking the limit we have  

( )
0

0

1 2 3 1lim 1 lim 1 1 1 1 ... 1
!

lim
!

.

n kn

n n k

kn

n k
x

x k x
n n n n n k

x
k

e

→∞ →∞
=

→∞
=

−       + = − − − −       
       

=

=

∑

∑  
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Differential Equations  
 
Prerequisite 
Curve Slopes 
Exponential Functions 
 
 
Differential equations focus on solutions to problems that involve rates of change. Since these 
change rates are managed by calculus, it is no surprise that calculus plays an important role in 
solving these equations.  
 
 
Simple rate change equation 
Begin with the equation 
 

dy k
dt

=  

 
Here the rate of change is a constant. Without an attempt at an analytic solution, we would 
expect that the values of y are a constant multiple of t.  
 The analytic solution is straightforward 
 

dy k
dt
dy kdt

dy k dt

y kt C

=

=

=

= +
∫ ∫

 

 
C is an arbitrary constant, which can be identified based on the boundary values of y when 0.t =  
If for example 0y =  when 0,t =  then our final solution is .y kt=  If on the other hand, 

0 0y y= ≠  when 0,t =  then 0C y=  and the final solution is 0.y kt y= + The use of boundary 
values helps us to determine the specific solution to the problem after the general solution has 
been identified. This will be a recurring motif in our approach to difference-differential 
equations.  
 
Separability 
We will now add a complication in the equation.  
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dy ky
dt

=  

 
Here the rate of change is not simply a constant, but a function of y. This tells us that as y 
increases, the rate of change of y increases. Let’s try the same approach.  
 

1

ln
kt C kt C kt

dy ky
dt
dy kdt
y
dy kdt
y
y kt C

y e e e C e+

=

=

=

= +

= = =

∫ ∫  

 

So the same approach, with the exponential being introduced through the integral dy
y∫  with 

resultant exponentiation. Note how we managed the constant. Since it is a multiplicative 
constant, we just defined a new constant 1 .CC e=  We have considerable freedom in manipulating 
constants.  
 For the boundary condition 0y y=  when 0,t =  we find (0)

0 1 1.
ky C e C= =  Therefore our 

final solution is 0 .kty y e=   
 What made this differential equation so easy to solve was that the terms involving y and 
those involving t could be separated. This concept of separability is a recurring theme.  

 Consider the equation 2 .
x

dy x
dx ye

= −  We can proceed the same way.  

 

2

2

2 .

x

x
x

dy x
dx ye

xydy dx xe dx
e

−

= −

= − = −

 

Now integrating,  
 

2

2

2

2

2
1

1
2 2

.

x

x

x

ydy xe dx

y e C

y e C

−

−

−

= −

= +

= +

∫ ∫
 

 
Using the boundary condition of 0y y=  when 0x =  we find 2

0 11y C= +  or 2
1 0 1.C y= − Thus, our 

solution is 22 2
0 1xy e y−= + − or 

2 2
0 1.xy e y−= ± + −  
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Partial differential equations 
These require the same type of approach. Since we have rates of change that affect more than 
one variable, we try to isolate these rates of changes, carry out the simple integration involving 
these changes, and then use the conditions provided by the original conditions.  
 For example, a very useful tool for the solution of a partial differential equation that can 
be written in the form  
 

( , ) ( , ) ,F x y F x yP Q R
x y

∂ ∂
+ =

∂ ∂
 

Is the  collection of equalities  
 

.dx dy dF
P Q R

= =  

 
These are called auxillary equations. They are used to find a general solution for ( ), .F x y  What 

this general solution is found, we use the boundary condions of ( ),F x y  to find its specific 
solution. 

In order to examine this concept more specifically, we might use the auxillaruy equations 
dx dy
P Q

=  to find a constant ( )1 , .c x y  We can also use dy dF
Q R

=  to find another constant ( )2 , .c x y  

We then write ( ) ( )2 1, , .c x y c x y= Φ      

For example, lets consider the partial differential equation 2 3 2 3( , ) ( , ) .F x y F x yy x x y
x y

∂ ∂
+ =

∂ ∂

Then dx dy dF
P Q R

= =  reveals 2 2 2 3 .dx dy dF
y x x y

= =  Using the first and second terms let’s us calculate 

2 2 .dx dy
y x

=  Proceeding  

( )

2 2

2 2

2 2

3 3

3 3
1

3 3
3 , .

a

a

dx dy
y x
x dx y dy

x dx y dy

x y c

x y c c x y

=

=

=

= +

− = =

∫ ∫   

 
 
 
 
This is our first constant. Continuing with the second and third equaliy, we see 
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( )

( )

2 2 3

3

3

4

4

2

,
4

, .
4

dy dF
x x y
y dy dF

y dy dF

y c F x y

yc x y F

=

=

=

+ =

= −

∫ ∫   

 
 
So we can write 
 

( ) ( )

( ) ( )

4

2

4
3 3

1

, ,
4

, , .
4

yc x y F x y

yc x y x y F x y

= −

 Φ   = Φ − = −   

  

 
 
Now we use the boundary conditions for ( ), .F x y  For example if ( )0, ,F y y=  then 
 
 
 
For example if one has the equation  
 

( )( ) ( )1 .s st ts s
t s

υ
∂ ∂

= −
∂ ∂

G G  

 
Then we can write this as 
 

( )( ) ( )1 0,s st ts s
t s

υ
∂ ∂

− − =
∂ ∂

G G  

 
and therefore write 
 
We will use these equalities in combination with the state of the system at time t =0 to identify 

the generating function ( ).s tG   Begin with ( ) ,
1 0

sd tdt
=

G or ( ) 0,sd t =G  which implies ( )s tG is a 

constant. We write this constant ( )1 .cΦ   

Next we work with 
1 ( 1)
dt ds

s sυ
=

− −
; 



570 The Exponential and Gamma Functions 
 

( ) ( )

1 ( 1)

1 ( 1) 1

1
1ln 1 ln ln

dt ds
s s

dt ds ds ds
s s s s

ds dsdt
s s

st s s
s

υ
υ

υ

υ

=
− −

−
= = −

− −

− = −
−

− − = − − =  
 

∫ ∫ ∫
 

 
Now we just manipulate the constant 

1

1

2

1ln

ln
1

1
t

st C
s

sC t
s

sC e
s

υ

υ

υ

−

− − = + 
 

 = − +  − 

=
−

 

 

We can now write ( )1( ) ,
1

t
s

st c e
s

−υ = Φ = Φ − 
G and invoke the boundary condition for 

clarification of the form of the function .Φ  It we know that, for example ( )0s a=G  we can 
therefore write  
 

(0)(0)
1 1

a
s

s ss e
s s

−υ   = = Φ = Φ   − −   
G  

 Let .
1

sz
s

=
−

 Then ,
1

zs
z

=
−

and we find ( )
1

azz
z

 Φ =  − 
for t = 0. For any other value of t we 

have 1( )
1 1

1

a
t

t
s

t

ses st e ss e
s

−υ

−υ

−υ

 
   −= Φ =   −   −

− 

G  

 
Simplifying, we find.  
 

( )
1

( 1) 1 11
1

a
at at t

t t
t

se se ses
s se s s ee

s

−υ
−υ −υ

−υ −υ
−υ

 
    −  = =   − − − −   −  

− 

 

 
Thus  
 

( )
( ) .

1 1

a
t

s t

set
s e

υ

υ

−

−

 
 =

− −  
G  
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The Exponential and Gamma Functions 
 
Prerequisites 
Curve Slopes 
Exponential Functions 
 

 
The exponential and gamma functions are operations that play a necessary role in 

probability. The exponential function is critical in the Poisson process, and the processes related 
to it (emigration, contagion, death and the more advanced models) as well as for the Weibul, 
exponential, gamma, and normal distributions, just to name a few. The gamma function appears 
commonly and is used explicitly in the beta distribution, and the gamma distribution. Both the 
distributions have their own probability functions.  
 
Integration of exponential functions 
The exponential function we have seen before in our brief introduction to in the discussion of 
derivatives. Using this as a background, we can begin some straightforward work with 

integration.  For example, from this discussion, we know ,x xe dx e=∫  and .
b

x b a

a

e dx e e= −∫  Paying 

attention to signs produces ,x xe dx e− −= −∫  and therefore .
b

x a b

a

e dx e e− − −= −∫ An adaptation of this 

and a useful result for us is ,x a

a

e dx e
∞

− −=∫ and of course 
0

1 .
b

x be dx e− −= −∫   

 It is just a short and simple step to find the .axae dx∫  If we think of ,u ax=  then 

,du adx=  and now rewrite .ax axae dx e adx=∫ ∫ We see that we can now write this as 

.u u axe du e e= =∫  

 This gives us a clue for how to manage .axe dx∫  We simply say 
1 1 1 1 1 .ax ax ax u u axe dx ae dx e adx e du e e
a a a a a

= = = = =∫ ∫ ∫ ∫  This ability to multiply by a constant to 

obtain a simpler integrand will be essential for us.  
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 In the same vein we can find 
2

2
x

xe dx
−

∫  by recognizing that if 
2

,
2
xu = −  then .du x= −  

We can now write  
 

( )
2 2 2 2

2 2 2 2 .
x x x x

u uxe dx xe dx e xdx e du e e
− − − −

= − − = − − = − = − = −∫ ∫ ∫ ∫  
 
In order to carry out integrations such as  xxe dx−∫  we need to develop practice with the concept 
of integration by parts.  
  
Integration by parts 
A useful tool in integration is to deconstruct the integrand and evaluate it piecemeal, using the 
finding that ,udv uv vdu= −∫ ∫ ∫  where we are using the shorthand ( )u u x=  and ( ).v v x=   
 The art to using this tool is seeing an integrand ( ) ( ) ( )f x u x dv x=  in such a way that 
integration by parts is helpful. Sometimes it is so easy that it is difficult to see it at first blush for 
example, consider ln( ) .x dx∫  We write 

ln( ) : : :dxu x du dv dx v x
x

= = = =  

and therefore 
 

ln( ) ln( ) ln( ) .dxx dx x x x x x x
x

= − = −∫ ∫  

 
For another example, consider .xxe dx−∫  Consider  
 

: : : .x xu x du dx dv e dx v e− −= = = = −  
Now write 
 

( )1 .x x x x x xxe dx xe e dx xe e e x− − − − − −= − − − = − − = − +∫ ∫  
 
To compute 2 ,xx e dx−∫  we take advantage of the previous problem, choosing 

: : : ( 1).x xu x du dx dv xe dx v e x− −= = = = − +  
We can now compute 
 

[ ]
( )

2

2

( 1) ( 1)

( 1)

( 1) ( 1)
( 1) ( 1) 1

2 2 .

x x x

x x x

x x x

x

x

x e dx xe x e x

xe x xe dx e dx

xe x e x e
e x x x

x x e

− − −

− − −

− − −

−

−

= − + − − +

= − + + +

= − + − + −

= − + + + +

= − + +

∫ ∫
∫ ∫

 

 
Gamma functions 
The gamma function is an essential function for us in probability. It is defined as  
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1

0

( ) .r xr x e dx
∞

− −Γ = ∫  

 
Our experience in this section provides some insight into how we can solve this. For example  

[ ]

( ) [ ]

0 0
0

0 0

0
0

(1) 0 1 1.

(2) 1 0 1 1.

|

|

x x x

x x

x e dx e dx e e e

xe dx e x

∞ ∞
− − − ∞ −∞

∞
− − ∞

 Γ = = = − = − − = − − = 

Γ = = − + = − − =

∫ ∫

∫
 

 
Further development makes use of the observation that ( )1 ( ),r r rΓ + = Γ a result we now prove. 

Let’s integrate 
0

( 1) r xr x e dx
∞

−Γ + = ∫ by parts. We let 

1: : : .r r x x xu x du rx dv e dx v e dx e− − − −= = = = = −∫  
Thus 

1
0 0

0 0 0

( 1) ( ).| |r x r x r xr x e dx uv vdu x e r x e dx r r
∞ ∞ ∞

− ∞ − ∞ − −Γ + = = − = − + = Γ∫ ∫ ∫  

For integer k r=  this reduces to ( 1) !.k kΓ + =  
 

As another example, 
1
2

0

1 .
2

xx e dx
∞

− − Γ = 
  ∫  Let 2x y=  and carry out a change of variables. The 

region of integration is 1 to 1. ( )
1 1

2 12 2 . 2 .x y y dx ydy
− − −= = =  Thus 

2 2
1

12

0 0 0

2 2 .x y yx e dx y e ydy e dy
∞ ∞ ∞

− − − − −= =∫ ∫ ∫  If we define 2

0

,yA e dy
∞

−= ∫  then, using Fubini’s theorem 

named after the Italian mathematician Guido Fubini, we find 
( )2 22 22

0 0 0 0

.x yy xA e dy e dx e dx dy
∞ ∞ ∞ ∞

− +− −= =∫ ∫ ∫ ∫ Implementing polar coordinates, we see 

( )2 2 2
2

0 0 0 0

.
4

x y re dx dy re dr d

π

πθ
∞ ∞ ∞

− + −= =∫ ∫ ∫ ∫  and .
4

A π
=  Thus 1 2 2 .

2 4
A π π Γ = = = 
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Fubini’s Theorem 
 

One of the most useful procedures in advanced integration is the process of obtaining the 
measure over a region or volume of space. Attributed to Guido Fubini, this process provides a  
pathway to compute multiple integrals. It allows one to transform a complicated integral such as 
the normal measuring tool  into a tractable iterated integral.  
 
Prerequisite 
Curve Slopes 
Exponential Limit 
 
 Fubini’s Theorem says that if a function is measurable or integrable over a closed region, 
then the double integral ( , )

A

f x y∫∫  can be evaluated by a succession of single integrals. If for 

example the region A can be defined as ; ,a x b c y d≤ ≤ ≤ ≤ then Fubini’s theorem states that  

( , ) ( , ) ,
c b

A c a

f x y f x y dx dy
 

=  
 

∫∫ ∫ ∫   where the inner integral is carried out first. An implication of this is 

that the double integral can also be written as ( , ) ( , ) .
b d

A a c

f x y f x y dy dx
 

=  
 

∫∫ ∫ ∫  Thus the user has a 

choice of the sequence of integration that they wish to carry out.  
 For example, suppose we wish to find the area A (Figure 1) bounded by the curve 2y x=  
and the lines ,1x =  and .1y =   
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 We can compute 
2 11 1 3

2

0 0 0 0

1 .
3 3

x

A

xdxdy dy dx x dx
   

= = = =   
    

∫∫ ∫ ∫ ∫  However, we can also write 

1 1 1 1
2

0 0

1 .
A y

dxdy dx dy y dy
+

   
 = = − 
    

∫∫ ∫ ∫ ∫  Continuing 

 
11 1 3

2 2

0 0

2 11 .
3 3

y dy y y
   

− = − =   
   

∫  Thus, the order is really a matter of convenience.  
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Blaise Pascal 
 

One of the founding fathers of probability is Blaise Pascal 
 He was born in Clermont on June 19, 1623 into a home where the father, Ėtieene Pascal 
was an established mathematician in his own right and focused on the intellectual development 
of all of his children.[1] In fact he was so devoted to Blaise that he, recognizing the abilities of 
his son,  left his position at the Président à la Cour de Aides for Paris in 1631 to focus on Blaise.  

After Ėtieene began to remain at home, the home life of the family changed. Pascal’s 
mother died when he was a toddler, and Pascal became very close to his sisters Gilberte and 
Jaqueline [2]. 

Pascal was kept at home in order to ensure his not being overworked, and following his 
father's directive that his education first focus on languages.  

Notably young Pascal was prohibited by his father from doing any work in mathematics. 
This was because his father,  recognized his son’s quantitative capabilities and avid interest in 
mathematics, feared that Pascal would be so absorbed in the field that he would ignore other 
fields. 

However, this unusual restriction served only to spark Pascal’s curiosity, and at twelve, 
he asked his tutor about geometry. When he learned what geometry, with its emphasis on figure 
construction and figure relationship entailed, he gave up his leisure time to focus on these new 
concepts.  

A few weeks later, he had discovered for himself many properties of figures, and in 
particular the proposition that the sum of the angles of a triangle is equal to two right angles. His 
father, learning of Pascal’s new initiative, abandoned his mathematics constraint, and give him a 
copy of Euclid's Elements, a book which Pascal absorbed [3] 
 Pascal’s efforts produced some immediate accomplishments Before he turned thirteen, he 
had proven the 32nd proposition of Euclid. He discovered an error in Rene Descartes geometry. 
At the age of fourteen he was admitted to the weekly meetings of Roberval, Mersenne, Mydorge, 
and other French geometricians . At sixteen Pascal wrote an essay on conic sections and began to 
prepare a treatise on the entire field of mathematics. 

 However his father now required him to instead compute the sums of long columns of 
numbers by hand.  Pascal responded eagerly by designing  a calculating machine, which he 
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perfected when he was thirty. Named the “Pascaline”, it was the first accurate mechanical 
calculator created.*  

In a strange turn,  in 1650, when Pascal was 27 and in the midst of these researches, he 
suddenly abandoned his favorite pursuits to study religion, or, as he says in his Pensées, 
"contemplate the greatness and the misery of man''; and about the same time he persuaded the 
younger of his two sisters to enter the Port Royal society. In 1646, he and his sister Jacqueline 
identified with the religious movement within Catholicism known by its detractors as Jansenism. 
Following a religious experience in late 1654, he began writing influential works on philosophy 
and theology. His two most famous works include the Lettres provinciales and the Pensées, the 
former set in the conflict between Jansenists and Jesuits. [4] 

In that year, he also wrote an important treatise on the arithmetical triangle.  
It was during this time, that he began the many letters that he and Pierre de Fermat 

exchanged, a correspondence that began in 1654. It was during this correspondence that Pascal 
came to the observation that there was a fixed frequency at which the sides of die appeared. This 
finding served as a basis for modern probability.  

Pascal conducted this while working on the concept that barometric pressure was in 
reality the weight of the atmosphere. He also confirmed his theory of the cause of barometrical 
variations by obtaining at the same instant readings at different altitudes on the hill of Puy-de-
Dôme. 
 In the 1650’s, Pascal focused on developing a perpetual motion machine. After stumbling 
through an accidental invention, he developed and demonstrated the roulette (little wheel) 
machine.[2] 

Three years later, he began administer his father's estate, and began considering marriage 
when an accident turned his attention back to religion. While driving a cart the horses kicked free 
and ran away, Pascal saved only by the traces breaking. Always somewhat of a mystic, full of 
dismay and disgust by society's reactions to his inventions,  he considered the accident a mandate 
from God that he leave the material word. He wrote an account of the accident on a small piece 
of parchment, which for the rest of his life he wore next to his heart, to perpetually remind him 
of his covenant. 
 Now completely renouncing his interests in science and mathematics, he planned to 
devote the rest of his life to God. During this time, he produced a collection of spiritual essays, 
Les Pensées. and shortly moved to Port Royal, where he retired. 
 In a time that should have been consumed by rest and reflection, he was plagued by 
sleeplessness and a toothache. Suddenly he was consumed with the cycloid. This was a new 
figure to geometry, its shaped determined by tracing a point on the circumference of a moving 
circle. To his astonishment, his teeth ceased hurting at once. Regarding this as a divine 
intervention, he threw himself into the problem, working ceaselessly for eight days, ending with 
a defensible account of the cycloid’s geometry. His work developed new questions, and he held a 
contest challenging fellow mathematicians to enter and compete with their answers. [5]  

However, he had inflicted irreparable damage to his health by his incessant study, and, 
while no one is certain, he is believed to have died of a brain hemorrhage when he was  39 years 
old, on August 19, 1662 .His writings on probability were published posthumously. 
 
 
 
Why Probability 

                                                 
  
* The Pacaline was not a commercial success in Pascal's lifetime because by doing the work of six accountants, 
contemporaries felt it would  create unemployment. 
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Pierre Fermat 
.  
 
One of the most eminent mathematicians of his time, Pierre de Fermat was born near Montauban 
in 1601, and died at Castres on January 12, 1665. The son of a leather-merchant, he was 
educated at home.  
 At thirty, he obtained the post of counselor for the local parliament at Toulouse, 
discharging those duties with careful attention to detail. It was a job that provided leisure time, 
and he devoted that time to mathematics.   
 Lacking formal training in mathematics, Fermat did not follow established norms for 
promulgating his work. Except for a few isolated papers, Fermat published nothing in his 
lifetime. He gave no systematic exposition of his methods. In fact, some of the most striking of 
his results were found after his death on loose sheets of paper or written in the margins of works 
which he had read and annotated, and are unaccompanied by any proof. He was by constitution  
modest and retiring, and does not seem to have intended his papers to be published. It is probable 
that he revised his notes as occasion required, and that his published works represent the final 
form of his researches, and therefore cannot be dated much earlier than 1660. 
 The theory of numbers appears to have been his favorite field of study. Fermat prepared 
an edition of Diophantus, and the notes and comments contain many elegant theorems. 
Unfortunately, only a handful of the proofs survived, a testament to the fact that they simply 
were not rigorous, and that Fermat saw their veracity in his head, perhaps by analogy or 
induction.   
 One of the most enigmatic of this mathematician’s work is Fermat’s Last Theorem, 
which states that for any integer  2,n >  there are no integers a, b, and c, such that .n n na b c+ =
[1] Fermat famously stated that he had a proof, but that it would not fit in the margin of the copy 
of Arithmetica. A rigorous proof of this surprising assertion by Andrew Wiles, published in 
1995. [2]  
 Fermat did not seek controversy. When he found himself in a vitriolic dispute with 
Descartes, he resolved it with tact and courtesy, bringing the matter to a friendly conclusion. This 
is seen in his famous letters with Pascal are gentle and encouraging.   
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Abraham de Moivre 
 
 
A friend of Isaac Newton, Edmund Halley, and James Sterling, Abraham de Moivre was a 
French mathematician famous for de Moiré’s formula, which links complex numbers and 
trigonometry, and for his work on normal measure and probability theory.*  His book on 
probability, the Doctrine of Chances, is said to have been prized by gamblers. Perhaps most 
importantly for the time, de Moivre's ceaseless agitation for acceptance of probability as an 
elevated view of the workings of the contemporary world and not as a mere gambler's crutch, 
brought the field much needed respectability.   
  Abraham de Moivre was born in Vitry in Champagne on May 26, 1667. His father, 
Daniel de Moivre,  a surgeon, believed in the value of education, and though Abraham de 
Moivre's parents were Protestant, he first attended Christian Brothers' Catholic school in Vitry, 
which was unusually tolerant of his appearance given religious tensions in France at the time. 
Although mathematics was not part of his course work, de Moivre read several mathematical 
works on his own including Elements de mathematiques by Father Prestet and a short treatise on 
games of chance, De Ratiociniis in Ludo Aleae, by Christiaan Huygens. In 1684 he moved to 
Paris to study physics and for the first time had formal mathematics training with private lessons 
from Jacques Ozanam. 
 However, the world around him was in turmoil. Religious persecution in France became 
severe when King Louis XIV issued the Edict of Fontainebleau in 1685, revoking the Edict of 
Nantes and the substantial rights afforded to French Protestants. It forbade Protestant worship 
and required that all children be baptized by Catholic priests. De Moivre was sent to the Prieure 
de Saint-Martin, a school the authorities sent Protestant children to for indoctrination into 
Catholicism. It is unclear when de Moivre left the Prieure de Saint-Martin and moved to 
England, as the records of the Prieure de Saint-Martin indicate that he left the school in 1688. 
However, while still in his native France, he was imprisoned for being a Protestant. When 
released three years later, he and his brother emigrated to England to escape religious 
prosecution, presenting themselves as Huguenots admitted to the Savoy Church in London on 
August 28, 1687. De Moivre never returned to France and never again published anything in 
French. 
 By the time he arrived in London, de Moivre was a competent mathematician with a good 
knowledge of many of the standard texts. To make a living, de Moivre became a private tutor of 
mathematics, visiting his pupils or teaching in the coffee houses of London. De Moivre 
continued his studies of mathematics after visiting the Earl of Devonshire, discovering  Newton’s 
recent book, Principia there. Recognizing the text as a major work, he resolved to read and 
understand it. However, as he was required to take extended, time consuming walks around 
London to see his students,  reducing his time for study, de Moivre would tear pages from the 
                                                 
  
*Adapted from An Introduction to Mathematical Statistics and its Applications by Richard J. Larsen and Morris L. 
Marx and 
 http://www.swlearning.com/quant/kohler/stat/biographical_sketches/bio8.2.html  
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famous book and carry them around in his pocket to read between lessons. Eventually de Moivre 
become so knowledgeable about the material that Newton referred questions to him, saying, “Go 
to Mr. de Moivre; he knows these things better than I do.” 
  By 1692, de Moivre became friends with Edmond Halley and soon after with Isaac 
Newton himself. In 1695, Halley communicated de Moivre’s first mathematics paper, which 
arose from his study of fluxions in the Principia, to the Royal Society. This paper was published 
in the Philosophical Transactions that same year. Shortly after publishing this paper, de Moivre 
also generalized Newton’s famous binomial theorem into the multinomial theorem. The Royal 
Society became apprised of this method in 1697 and made de Moivre a member two months 
later. 
 In 1712, De Moivre was appointed to a commission set up by the society, alongside MM. 
Arbuthnot, Hill, Halley, Jones, Machin, Burnet, Robarts, Bonet, Aston and Taylor to review the 
claims of Newton and Leibniz as to who discovered calculus.  
  After de Moivre had been accepted, Halley encouraged him to turn his attention to 
astronomy. In 1705, de Moivre discovered, intuitively, that “the centripetal force of any planet is 
directly related to its distance from the center of the forces and reciprocally related to the product 
of the diameter of the evolute and the cube of the perpendicular on the tangent”. Johann 
Bernoulli proved De Moivre's formula in 1710. 
 Although his only source of income was from tutoring students and advising gamblers 
and speculators, de Moivre's successful solutions to the problems he met in his consulting 
practice led to his writing a major work. His text on probability, The Doctrine of Chances, 
emanated from an article first published in Latin in 1711 and was published posthumously in its 
final and third edition in 1756, it expanded the work of his predecessors, particularly Christiaan 
Huygens and several members of the Bernoulli family.  

It is notable (among many other contributions) for the origin of the general laws of 
addition and multiplication of probabilities, for the origin of the binomial distribution law, and 
for the origin of the formula for the normal curve, which de Moivre discovered in 1733. This 
book came out in four editions, 1711 in Latin, and 1718, 1738 and 1756 in English. In the later 
editions of his book, de Moivre gives the first statement of the formula for normal measure 
curve, the first method of finding the probability of the occurrence of an error of a given size 
when that error is expressed in terms of the variability of the distribution as a unit, and the first 
identification of the probable error calculation. Additionally, he applied these theories to 
gambling problems and actuarial tables. 
  De Moivre's second major publication, A Treatise of Annuities on Lives, was published 
in 1752. In it, he revealed normal measure of the mortality rate over a person’s age. From this he 
produced a simple formula for approximating the revenue produced by annual payments based 
on a person’s age. It was highly original and laid foundations for the mathematics of life 
insurance. Also, his effort reflects De Moivre's desire to free the science of probability from its 
connection with gambling, and also to establish a connection between probability and theology, 
necessary to get the support of the thought leaders of the day for probability as a respectable 
theory.   
 Despite these successes, and his development of analytic geometry, de Moivre was 
unable to obtain an appointment to a Chair of Mathematics at a university. At least a part of the 
reason was a bias against his French origins which would have released him from his 
dependence on time-consuming tutoring that burdened him more than it did most other 
mathematicians of the time.  
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Throughout his life de Moivre remained poor. It is reported that he was a regular 
customer of Slaughter's Coffee House, St. Martin's Lane at Cranbourn Street, where he earned a 
little money from playing chess. Yet he was ever ebullient, always anxious for conversation.  
 De Moivre continued studying the fields of probability and mathematics. However, as he 
grew older, he became increasingly lethargic and needed longer time asleep. Observing that he 
was sleeping an extra fifteen  minutes each night, he calculated the date of his death on the day 
when the additional sleep time accumulated to 24 hours. 
 November 27, 1754. 
 This was the day he died. He was initially buried at St Martin-in-the-Fields, although his 
body was later moved. 
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Pascal Fermat Correspondence 
 
 
FERMAT AND PASCAL ON PROBABILITY* Italian writers of the fifteenth and sixteenth 
centuries, notably Pacioli (1494), Tartaglia (1556), and Cardan (1545), had discussed the 
problem of the division of a stake between two players whose game was interrupted before its 
close. The problem was proposed to Pascal and Fermat, probably in 1654, by the Chevalier de 
M´er´e, a gambler who is said to have had unusual ability “even for the mathematics.” The 
correspondence which ensued between Fermat and Pascal, was fundamental in the development 
of modern concepts of probability, and it is unfortunate that the introductory letter from Pascal to 
Fermat is no longer extant. The one here translated, written in 1654, appears in the OEuvres de 
Fermat (ed. Tannery and Henry, Vol. II, pp.288–314, Paris 1894) and serves to show the nature 
of the problem.   
 
  

                                                 
  
* From http://www.socsci.uci.edu/~bskyrms/bio/readings/pascal_fermat.pdf. All but the last two letters were 
translated from the French by Professor Vera Sanford, Western Reserve University, Cleveland, Ohio, and appear in 
A Source Book in Mathematics (ed. D E Smith). The last two were translated by by Maxine Merrington and appear 
in Games, Gods and Gambling by F N David. 

http://www.socsci.uci.edu/%7Ebskyrms/bio/readings/pascal_fermat.pdf
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Fermat to Pascal 1654 [undated]  
 
Monsieur 

 If I undertake to make a point with a single die in eight throws, and if we agree after the 
money is put at stake, that I shall not cast the first throw, it is necessary by my theory that I take 
1/6 of the total sum to be impartial because of the aforesaid first throw.  

And if we agree after that that I shall not play the second throw, I should, for my share, 
take the sixth of the remainder that is 5/36 of the total. If, after that, we agree that I shall not play 
the third throw, I should to recoup myself, take 1/6 of the remainder which is 25/216 of the total.  

And if subsequently, we agree again that I shall not cast the fourth throw, I should take 
1/6 of the remainder or 125/1296 of the total, and I agree with you that that is the value of the 
fourth throw supposing that one has already made the preceding plays.  

But you proposed in the last example in your letter (I quote your very terms) that if I 
undertake to find the six in eight throws and if I have thrown three times without getting it, and if 
my opponent proposes that I should not play the fourth time, and if he wishes me to be justly 
treated, it is proper that I have 125/1296 of the entire sum of our wagers.  

This, however, is not true by my theory. For in this case, the three first throws having 
gained nothing for the player who holds the die, the total sum thus remaining at stake, he who 
holds the die and who agrees to not play his fourth throw should take 1/6 as his reward.  

And if he has played four throws without finding the desired point and if they agree that 
he shall not play the fifth time, he will, nevertheless, have 1/6 of the total for his share.  

Since the whole sum stays in play it not only follows from the theory, but it is indeed 
common sense that each throw should be of equal value. I urge you therefore (to write me) that I 
may know whether we agree in the theory, as I believe (we do), or whether we differ only in its 
application. I am, most heartily, etc., Fermat.  
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Pascal to Fermat Wednesday, July 29, 1654  
 
Monsieur,—  

Impatience has seized me as well as it has you, and although I am still abed, I cannot 
refrain from telling you that I received your letter in regard to the problem of the points 1 
yesterday evening from the hands of M. Carcavi, and that I admire it more than I can tell you. I 
do not have the leisure to write at length, but, in a word, you have found the two divisions of the 
points and of the dice with perfect justice. I am thoroughly satisfied as I can no longer doubt that 
I was wrong, seeing the admirable accord in which I find myself with you.  

I admire your method for the problem of the points even more than that of the dice. I 
have seen solutions of the problem of the dice by several persons, as M. le chevalier de M´er´e, 
who proposed the question to me, and by M. Roberval also M. de M´er´e has never been able to 
find the just value of the problem of the points nor has he been able to find a method of deriving 
it, so that I found myself the only one who knew this proportion.  

Your method is very sound and it is the first one that came to my mind in these 
researches, but because the trouble of these combinations was excessive, I found an abridgment 
and indeed another method that is much shorter and more neat, which I should like to tell you 
here in a few words; for I should like to open my heart to you henceforth if I may, so great is the 
pleasure I have had in our agreement. I plainly see that the truth is the same at Toulouse and at 
Paris.  

This is the way I go about it to know the value of each of the shares when two gamblers 
play, for example, in three throws, and when each has put 32 pistoles at stake:  

Let us suppose that the first of them has two (points) and the other one. They now play 
one throw of which the chances are such that if the first wins, he will win the entire wager that is 
at stake, that is to say 64 pistoles. If the other wins, they will be two to two and in consequence, 
if they wish to separate, it follows that each will take back his wager that is to say 32 pistoles.  

Consider then, Monsieur, that if the first wins, 64 will belong to him. If he loses, 32 will 
belong to him. Then if they do not wish to play this point, and separate without doing it, the first 
should say “I am sure of 32 pistoles, for even a loss gives them to me. As for the 32 others, 
perhaps I will have them and perhaps you will have them, the risk is equal. Therefore let us 
divide the 32 pistoles in half, and give me the 32 of which I am certain besides.” He will then 
have 48 pistoles and the other will have 16.  

Now let us suppose that the first has two points and the other none, and that they are 
beginning to play for a point. The chances are such that if the first wins, he will win all of the 
wager, 64 pistoles. If the other wins, behold they have come back to the preceding case in which 
the first has two points and the other one.  

But we have already shown that in this case 48 pistoles will belong to the one who has 
two points. Therefore if they do not wish to play this point, he should say, “If I win, I shall gain 
all, that is 64. If I lose, 48 will legitimately belong to me. Therefore give me the 48 that are 
certain to be mine, even if I lose, and let us divide the other 16 in half because there is as much 
chance that you will gain them as that I will.” Thus he will have 48 and 8, which is 56 pistoles.  

Let us now suppose that the first has but one point and the other none. You see, 
Monsieur, that if they begin a new throw, the chances are such that if the first wins, he will have 
two points to none, and dividing by the preceding case, 56 will belong to him. If he loses, they 
will he point for point, and 32 pistoles will belong to him. He should therefore say, “If you do 
not wish to play, give me the 32 pistoles of which I am certain, and let us divide the rest of the 56 
in half. From 56 take 32, and 24 remains. Then divide 24 in half, you take 12 and I take 12 which 
with 32 will make 44.  
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By these means, you see, by simple subtractions that for the first throw, he will have 12 
pistoles from the other; for the second, 12 more; and for the last 8.  

But not to make this more mysterious, inasmuch as you wish to see everything in the 
open, and as I have no other object than to see whether I am wrong, the value (I mean the value 
of the stake of the other player only) of the last play of two is double that of the last play of three 
and four times that of the last play of four and eight times that of the last play of five, etc.  

But the ratio of the first plays is not so simple to find. This therefore is the method, for I 
wish to disguise nothing, and here is the problem of which I have considered so many cases, as 
indeed I was pleased to do: Being given any number of throws that one wishes, to find the value 
of the first.  

For example, let the given number of throws he 8. Take the first eight even numbers and 
the first eight uneven numbers as:  

 
2, 4, 6, 8, 10, 12, 14, 16  
 

and  
1, 3, 5, 7, 9, 11, 13, 15.  
 

Multiply the even numbers in this way. the first by the second, their product by the third, their 
product by the fourth, their product by the fifth, etc.; multiply the odd numbers in the same way: 
the first by the second, their product by the third, etc.  

The last product of the even numbers is the denominator and the last product of the odd 
numbers is the numerator of the fraction that expresses the value of the first throw of eight. That 
is to say that if each one plays the number of pistoles expressed by the product of the even 
numbers, there will belong to him [who forfeits the throw] the amount of the other’s wager 
expressed by the product of the odd numbers. This may he proved, but with much difficulty by 
combinations such as you have imagined, and I have not been able to prove it by this other 
method which I am about to tell you. but only by that of combinations. Here are the theorems 
which lead up to this which are properly arithmetic propositions regarding combinations, of 
which I have found so many beautiful properties:  

If from any number of letters, as 8 for example,  
 

A, B, C, D, E, F, G, H,  
 

you take all the possible combinations of 4 letters and then all possible combinations of 5 letters, 
and then of 6, and then of 7, of 8, etc., and thus you would take all possible combinations, I say 
that if you add together half the combinations of 4 with each of the higher combinations, the sum 
will be the number equal to the number of the quaternary progression beginning with 2 which is 
half of the entire number.  

For example, and I shall say it in Latin for the French is good for nothing. 
 If any number whatever of letters, for example 8, 
 

  A, B, C, D, E, F, G, H,  
 
be summed in all possible combinations, by fours, fives, sixes, up to eights, I say, if you add half 
of the combinations by fours, that is 35 (half of 70) to all the combinations by fives, that is 56, 
and all the combinations by sixes, namely 28, and all the combinations by sevens, namely 8, and 
all the combinations by eights namely 1, the sum is the fourth number of the quaternary 
progression whose first term is 2. I say the fourth number for 4 is half of 8.  

The numbers of the quaternary progressions whose first term is 2 are 
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 2, 8, 32, 128, 512, etc.,  
 
of which 2 is the first, 8 the second, 32 the third, and 128 the fourth. Of these, the 128 equals:  
 

+ 35 half of the combinations of 4 letters  
+ 56 the combinations of 5 letters  
+ 28 the combinations of 6 letters  
+ 8 the combinations of 7 letters  
+ 1 the combinations of 8 letters. 

  
That is the first theorem, which is purely arithmetic. The other concerns the theory of the 

points and is as follows:  
It is necessary to say first: if one (player) has one point out of 5 for example, and if he 

thus lacks 4, the game will infallibly be decided in 8 throws, which is double 4.  
The value of the first throw of 5 in the wager of the other is the fraction which has for its 

numerator the half of the combinations of 4 things out of 8 (I take 4 because it is equal to the 
number of points that he lacks, and 8 because it is double the 4) and for the denominator this 
same numerator plus all the higher combinations.  

Thus if I have one point out of 5, 35/128 of the wager of my opponent belongs to me. 
That is to say, if he had wagered 128 pistoles, I would take 35 of them and leave him the rest, 93.  

But this fraction 35/128 is the same as 105/384, which is made by the multiplication of 
the even numbers for the denominator and the multiplication of the odd numbers for the 
numerator.  

You will see all of this without a doubt, if you will give yourself a little trouble, and for 
that reason I have found it unnecessary to discuss it further with you.  

I shall send you, nevertheless, one of my old Tables; I have not the leisure to copy it, and 
I shall refer to it.  

You will see here as always, that the value of the first throw is equal to that of the second, 
a thing which may easily be proved by combinations.  

You will see likewise that the numbers of the first line are always increasing; those of the 
second do the same; those of the third the same.  

But after that, those of the fourth line diminish; those of the fifth etc. This is odd.  
i have no time to send you the proof of a difficult point which astonished M. (de M´er´e) 

so greatly, for he has ability but he is not a geometer (which is, as you know, a great defect) and 
he does not even comprehend that a mathematical line is infinitely divisible and he is firmly 
convinced that it is composed of a finite number of points. I have never been able to get him out 
of it. If you could do so, it would make him perfect.  

He tells me then that he has found an error in the numbers for this reason . If one 
undertakes to throw a six with a die, the advantage of undertaking to do it in 4 is as 671 is to 625.  

If one undertakes to throw double sixes with two dice the disadvantage of the undertaking 
is 24.  

But nonetheless, 24 is to 36 (which is the number of faces of two dice)2 as 4 is to 6 
(which is the number of faces of one die).  

This is what was his great scandal which made him say haughtily that the theorems were 
not consistent and that arithmetic was demented. But you will easily see the reason by the 
principles which you have.  

[Clearly, the number of possible ways in which two dice can fall.] 5 
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 I shall put all that I have done with this in order when I shall have finished the treatise on 
geometry on which I have already been working for some time.   

I have also done something with arithmetic on which subject, I beg you to give me your 
advice. I proposed the lemma which everyone accepts, that the sum of as many numbers as one 
wishes of the continuous progression from unity as 1, 2, 3, 4, being taken by twos is equal to the 
last term 4 multiplied into the next greater, 5.  

That is to say that the sum of the integers in A being taken by twos is equal to the product 
A × (A + 1).  

I now come to my theorem: If one he subtracted from the difference of the cubes of any 
two consecutive numbers, the result is six times all the numbers contained in the root of the 
lesser number.  

Let the two roots R and S differ by unity. I say that R3 − S3 − 1 is equal to six times the 
sum of the numbers contained in S. Let S be called A, then R is A + 1. Therefore the cube of the 
root R or A + 1 is A3 + 3A2 + 3A + 13. The cube of S, or A, is A3, and the difference of these is 
R3 − S3; therefore, if unity he subtracted, 3A2+3A is equal to R3 −S3 −1. But by the lemma, 
double the sum of the numbers contained in A or S is equal to A×(A+1); that is, to A2+A. 
Therefore, six times the sum of the numbers in A is equal to 3A3 + 3A. But 3A3 + 3A is equal to 
R3 − S3 − 1. Therefore R3 − S3 − 1 is equal to six times the sum of the numbers contained in A 
or S. Quod erat demonstrandum.  

No one has caused me any difficulty in regard to the above, but they have told me that 
they did not do so for the reason that everyone is accustomed to this method today. As for 
myself, I mean that without doing me a favor, people should admit this to be an excellent type of 
proof. I await your comment, however, with all deference. All that I have proved in arithmetic is 
of this nature.  

 Here are two further difficulties. i have proved a plane theorem making use of the cube 
of one line compared with the cube of another. I mean that this is purely geometric and in the 
greatest rigor. By these means I solved the problem: “Any four planes, any four points, and any 
four spheres being given, to find a sphere which, touching the given spheres, passes through the 
given points, and leaves on the planes segments in which given angles may be inscribed;” and 
this one: “Any three circles, any three points, and any three lines being given, to find a circle 
which touches the circles and the points and leaves on the lines and are in which a given angle 
may be inscribed.”  

I solved these problems in a plane, using nothing in the construction but circles and 
straight lines, but in the proof I made use of solid loci,6—of parabolas, or hyperbolas. 
Nevertheless, inasmuch as the construction is in a plane, I maintain that my solution is plane, and 
that it should pass as such. This is a poor recognition of the honor which you have done me in 
putting up with my discourse which has been plaguing you so long. I never thought I should say 
two words to you and if I were to tell you what I have uppermost in my heart,—which is that the 
better I know you the more I honor and admire you,—and if you were to see to what degree that 
is, you would allot a place in your friendship for him who is,  

Monsieur, your etc.  
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Fermat to Carcavi Sunday, August 9, 1654  
Monsieur,  

 
I was overjoyed to have had the same thoughts as those of M. Pascal, for I greatly admire 

his genius and I believe him to be capable of solving any problem he attempts. The friendship he 
offers is so dear to me and so precious that I shall not scruple to take advantage of it in 
publishing an edition of my Treatises.  

If it does not shock you, you could both help in bringing out this edition, and I suggest 
that you should be the editors: you could clarify or augment what seems too brief and thus 
relieve me of a care which my work prevents me from taking.  

I would like this volume to appear without my name even, leaving to you the choice of 
designation which would indicate the author, whom you could qualify simply as a friend.   

Here is the course which I have thought out for the second Part which will contain my 
researches on numbers. It is a work which is still only an idea, and for which I may not have the 
leisure to put fully on paper ; but I will send a summary to M. Pascal of all my principles and 
first theorems, in which, I can promise you in advance, he will find everything not only novel 
and hitherto unknown but also astounding.  

If you combine your work with his, everything will succeed and soon be completed, and 
we will thus be able to publish the first Part which you have in your care. If M. Pascal approves 
of my overtures which are based on my great esteem for his genius and his intellect, I will first 
begin to inform you of my numerical results.  

Farewell. I am, Monsieur, your very humble and obedient servant. Fermat.  
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Pascal to Fermat Monday, August 24, 1654  
 
Monsieur,  
 I was not able to tell you my entire thoughts regarding the problem of the points by the 

last post,7 and at the same time, I have a certain reluctance at doing it for fear lest this admirable 
harmony which obtains between us and which is so dear to me should begin to flag, for I am 
afraid that we may have different opinions on this subject.  

I wish to lay my whole reasoning before you, and to have you do me the favor to set me 
straight if I am in error or to indorse me if I am correct. I ask you this in all faith and sincerity for 
I am not certain even that you will be on my side. When there are but two players, your theory 
which proceeds by combinations is very just. But when there are three, I believe I have a proof 
that it is unjust that you should proceed in any other manner than the one I have.  

But the method which I have disclosed to you and which I have used universally is 
common to all imaginable conditions of all distributions of points, in the place of that of 
combinations (which I do not use except in particular cases when it is shorter than the general 
method), a method Which is good only in isolated cases and not good for others.  

I am sure that I can make it understood, but it requires a few words from me and a little 
patience from you. 2. This is the method of procedure when there are two players. If two players, 
playing in several throws, find themselves in such a state that the first lacks two points and the 
second three of gaining the stake, you say it is necessary to see in how many points the game will 
be absolutely decided.  

It is convenient to suppose that this will be in four points, from which you conclude that 
it is necessary to see how many ways the four points may be distributed between the two players 
and to see how many combinations there are to make the first win and how many to make the 
second win, and to divide the stake according to that proportion. I could scarcely understand this 
reasoning if I had not known it myself before; but you also have written it in your discussion.  

Then to see how many ways four points may be distributed between two players, it is 
necessary to imagine that they play with dice with two faces (since there are but two players), as 
heads and tails, and that they throw four of these dice (because they play in four throws).  

Now it is necessary to see how many ways these dice may fall. That is easy to calculate. 
There can be sixteen, which is the second power of four; that is to say, the square. Now imagine 
that one of the faces is marked a, favorable to the first player. And suppose the other is marked b, 
favorable to the second. Then these four dice can fall according to one of these sixteen 
arrangements.  

 
 
 

a a a a a a a a b b b b b b b b 
a a a a b b b b a a a a b b b b 
a a b b a a b b a a b b a a b b 
a b a b a b a b a b a b a b a b 
1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 2 

 
and, because the first player lacks two points, all the arrangements that have two a’s make him 
win. There are therefore 11 of these for him. And because the second lacks three points, all the 
arrangements that have three b’s make him win. There are 5 of these. Therefore it is necessary 
that they divide the wager as 11 is to 5.  

There is your method, when there are two players, whereupon you say that if there are 
more players. it will not be difficult to make the division by this method. 3. On this point, 
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Monsieur, I tell you that this division for the two players founded on combinations is very 
equitable and good, but that if there are more than two players, 8 it is not always just and I shall 
tell you the reason for this difference. I communicated your method to [some of] our gentlemen, 
on which M. de Roberval made me this objection: That it is wrong to base the method of division 
on the supposition that they are playing in four throws seeing that when one lacks two points and 
the other three, there is no necessity that they play four throws since it may happen that they play 
but two or three, or in truth perhaps four.  

Since he does not see why one should pretend to make a just division on the assumed 
condition that one plays four throws, in view of the fact that the natural terms of the game are 
that they do not throw the dice after one of the players has won; and that at least if this is not 
false, it should he proved.  

Consequently he suspects that we have committed a paralogism. I replied to him that I 
did not found my reasoning so much on this method of combinations, which in truth is not in 
place on this occasion, as on my universal method from which nothing escapes and which carries 
its proof with itself. This finds precisely the same division as does the method of combinations.  

Furthermore, I showed him the truth of the divisions between two players by 
combinations in this way. Is it not true that if two gamblers finding according to the conditions of 
the hypothesis that one lacks two points and the other three, mutually agree that they shall play 
four complete plays, that is to say, that they shall throw four two-faced dice all at once,—is it not 
true, I say, that if they are prevented from playing the four throws, the division should be as we 
have said according to the combinations favorable to each?  

He agreed with this and this is indeed proved. But he denied that the same thing follows 
when they are not obliged to play the four throws. I therefore replied as follows: It is not clear 
that the same gamblers, not being constrained to play the four throws, but wishing to quit the 
game before one of them has attained his score, can without loss or gain be obliged to play the 
whole four plays, and that this agreement in no way changes their condition? For if the first gains 
the two first points of four. will he who has won refuse to play two throws more, seeing that if he 
wins he will not win more and if he loses he will not win less? 

 For the two points which the other wins are not sufficient for him since he lacks three, 
and there are not enough [points] in four throws for each to make the number which he lacks. It 
certainly is convenient to consider that it is absolutely equal and indifferent to each whether they 
play in the natural way of the game, which is to finish as soon as one has his score, or whether 
they play the entire four throws.  

Therefore, since these two conditions are equal and indifferent, the division should he 
alike for each. But since it is just when they are obliged to play the four throws as I have shown, 
it is therefore just also in the other case. That is the way I prove it, and, as you recollect, this 
proof is based on the equality of the two conditions true and assumed in regard to the two 
gamblers, the division is the same in each of the methods, and if one gains or loses by one 
method, he will gain or lose by the other, and the two will always have the same accounting.   

Let us follow the same argument for three players and let us assume that the first lacks 
one point, the second two, and the third two. To make the division, following the same method 
of combinations, it is necessary to first discover in how many points the game may he decided as 
we did when there woe two players. This will be in three 9 points for they cannot play three 
throws without necessarily arriving at a decision. It is now necessary to see how many ways 
three throws may he combined among three players and how many are favorable to the first, how 
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many to the second, and how many to the third, and to follow this proportion in distributing the 
wager as we did in the hypothesis of the two gamblers.  

It is easy to see how many combinations there are in all. This is the third power of 3; that 
is to say, its cube, or 27. For if one throws three dice at a time (for it is necessary to throw three 
times), these dice having three faces each (since there are three players), one marked a favorable 
to the first, one marked b favorable to the second, and one marked c favorable to the third,—it is 
evident that these three dice thrown together can fall in 27 different ways as: 

  
 

 
 

 
Since the first lacks but one point, then all the ways in which there is one a are favorable 

to him. There are 19 of these. The second lacks two points. Thus all the arrangements in which 
there are two b’s are in his favor. There are 7 of them. The third lacks two points. Thus all the 
arrangements in which there are two c’s are favorable to him. There are 7 of these. If we 
conclude from this that it is necessary to give each according to the proportion 19, 7, 7, we are 
making a serious mistake and I would hesitate to believe that you would do this.   

There are several cases favorable to both the first and the second, as aab has the a which 
the first needs, and the two b’s which the second needs. So too, the ace is favorable to the first 
and third. It therefore is not desirable to count the arrangements which are common to the two as 
being worth the whole wager to each, but only as being half a point. For if the arrangement 
occurs, the first and third will have the same right to the wager, each making their score.  

They should therefore divide the wager in half. If the arrangement aab occurs, the first 
alone wins. It is necessary to make this assumption. There are 13 arrangements which give the 
entire wager to the first, and 6 which give him half and 8 which are worth nothing to him. 
Therefore if the entire sum is one pistole, there are 13 arrangements which are each worth one 
pistole to him, there are 6 that are each worth Y2 a pistole, and 8 that are worth nothing.  

Then in this case of division, it is necessary to multiply 13 by one pistole which makes 13 
6 by one half which makes 3 8 by zero which makes 0 Total 16 and to divide the sum of the 
values 16 by the sum of the arrangements 27, which makes the fraction 16/27 and it is this 
amount which belongs to the first gambler in the event of a division; that is to say, 16 pistoles out 
of 27. 10 The shares of the second and the third gamblers will be the same: There are 4 
arrangements which are worth 1 pistole; multiplying, 4 There are 3 arrangements which are 
worth 3/2 pistole; multiplying, 11 2 And 20 arrangements which are worth nothing 0 Total 27 
Total 51 2  

Therefore 5 1 2 pistoles belong to the second player out of 27, and the same to the third. 
The sum of the 5 1 2 , 5 1 2 , and 16 makes 27. 5.  

It seems to me that this is the way in which it is necessary to make the division by 
combinations according to your method, unless you have something else on the subject which I 
do not know.  

But if I am not mistaken, this division is unjust. The reason is that we are making a false 
supposition,—that is, that they are playing three throws without exception, instead of the natural 
condition of this game which is that they shall not play except up to the time when one of the 
players has attained the number of points which he lacks, in which case the game ceases.  
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It is not that it may not happen that they will play three times, but it may happen that they 
will play once or twice and not need to play again. But, you will say, why is it possible to make 
the same assumption in this case as was made in the case of the two players?  

Here is the reason: In the true condition [of the game] between three players, only one 
can win, for by the terms of the game it will terminate when one [of the players] has won. But 
under the assumed conditions, two may attain the number of their points, since the first may gain 
the one point he lacks and one of the others may gain the two points which he lacks, since they 
will have played only three throws.  

When there are only two players, the assumed conditions and the true conditions concur 
to the advantage of both. It is this that makes the greatest difference between the assumed 
conditions and the true ones.  

If the players, finding themselves in the state given in the hypothesis,—that is to say, if 
the first lacks one point, the second two, and the third two; and if they now mutually agree and 
concur in the stipulation that they will play three complete throws; and if he who makes the 
points which he lacks will take the entire sum if he is the only one who attains the points; or if 
two should attain them that they shall share equally,- in this case, the division should be made as 
I give it here. the first shall have 16, the second 5 1 2 , and the third 5 1 2 out of 27 pistoles, and 
this carries with it its own proof on the assumption of the above condition.  

But if they play simply on the condition that they will not necessarily play three throws, 
but that they will only play until one of them shall have attained his points, and that then the play 
shall cease without giving another the opportunity of reaching his score, then 17 pistoles should 
belong to the first, 5 to the second, and 5 to the third, out of 27. And this is found by my general 
method which also determines that, under the proceeding condition, the first should have 16, the 
second 5 1 2 , and the third without making use of combinations,—for this works in all cases and 
without any obstacle.  

These, Monsieur, are my reflections on this topic on which I have no advantage over you 
except that of having meditated on it longer, but this is of little [advantage to me] from your 
point of view since your first glance is more penetrating than are my prolonged endeavors.  

I shall not allow myself to disclose to you my reasons for looking forward to your 
opinions. I believe you have recognized from this that the theory of combinations is good for the 
case of two players by accident, as it is also sometimes good in the case of three gamblers, as 
when one lacks one point, another one, and the other two,8 because, in this case, the number of 
points in which the game is finished is not enough to allow two to win, but it is not a general 
method and it is good only in the case where it is necessary to play exactly a certain number of 
times.  

Consequently, as you did not have my method when you sent me the division among 
several gamblers, but [since you had] only that of combinations, I fear that we hold different 
views on the subject. I beg you to inform me how you would proceed in your research on this 
problem. I shall receive your reply with respect and joy, even if your opinions should be contrary 
to mine.  

I am etc.  
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Fermat to Pascal Saturday, August 29, 1654  
 
Monsieur,  
Our interchange of blows still continues, and I am well pleased that our thoughts are in 

such complete adjustment as it seems since they have taken the same direction and followed the 
same road.  

Your recent Trait´e du triangle aritbm´etique and its applications are an authentic proof 
and if my computations do me no wrong, your eleventh consequence went by post from Paris to 
Toulouse while my theorem, on figurate numbers,  which is virtually the same, was going from 
Toulouse to Paris. I have not been on watch for failure while I have been at work on the problem 
and I am persuaded that the true way to escape failure is by concurring with you.  

But if I should say more, it would he of the nature of a Compliment and we have 
banished that enemy of sweet and easy conversation. It is now my turn to give you some of my 
numerical discoveries, but the end of the parliament augments my duties and I hope that out of 
your goodness you will allow me due and almost necessary respite.  

I will reply however to your question of the three players who play in two throws. When 
the first has one [point] and the others none, your first solution is the true one and the division of 
the wager should he 17, 5, and 5. The reason for this is self-evident and it always takes the same 
principle, the combinations making it clear that the first has 17 changes while each of the others 
has but five.  

For the rest, there is nothing that I will not write you in the future with all frankness. 
Meditate however, if you find it convenient, on this theorem: The squared powers of 2 
augmented by unity11 are always prime numbers. [That is,] The square of 2 augmented by unity 
makes 5 which is a prime number;  

The square of the square makes 16 which, when unity is added makes 17, a prime 
number; The square of 16 makes 256 which, when unity is added, makes 257, a prime number; 
The square of 256 makes 65536 which, when unity is added, makes 65537, a prime number; and 
so to infinity.  

This is a property whose truth I will answer to you. The proof of it is very difficult and I 
assure you that I have not yet been able to find it fully. I shall not set it for you to find unless I 
come to the end of it. This theorem serves in the discovery of numbers which are in a given ratio 
to their aliquot parts, concerning which I have made many discoveries.  

We will talk of that another time. I am Monsieur, yours etc. 
 Fermat.  
At Toulouse, the twenty ninth of August, 1654.  
 
 
Fermat to Pascal Friday, September 25, 1654  
 
Monsieur,  
Do not be apprehensive that our argument is coming to an end. You have strengthened it 

yourself in thinking to destroy it and it seems to me that in replying to M. de Roberval for 
yourself you have also replied for me.  

In taking the example of the three gamblers of whom the first lacks one point, and each of 
the others lack two, which is the case in which you oppose, I find here only 17 combinations for 
the first and 5 for each of the others; for when you say that the combination ace is good for the 
first, recollect that everything that is done after one of the players has won is worth nothing.  

But this combination having Made the first win on the first die, what does it matter to the 
third gains two afterwards, since even when he gains thirty all this is superfluous? The 
consequence, as you have well called it “this fiction,” of extending the game to a certain number 
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of plays serves only to make the rule easy and (according to my opinion) to make all the chances 
equal; or better, more intelligibly to reduce all the fractions to the same denomination.  

So that you may have no doubt, if instead of three parties you extend the assumption to 
four, there will not be 27 combinations only, but 81; and it will be necessary to see how many 
combinations make the first gain his point later than each of the others gains two, and how many 
combinations make each of the others win two later than the first wins one.  

You will find that the combinations that make the first win are 51 and those for each of 
the other two are 15, which reduces to the same proportion. So that if you take five throws or any 
other number you please, you will always find three numbers in the proportion of 17, 5, 5.  

And accordingly I am right in saying that the combination ace is [favorable] for the first 
only and not for the third, and that cca is only for the 13 third and not for the first, and 
consequently my law of combinations is the same for three players as for two, and in general for 
all numbers. 2.  

You have already seen from my previous letter that I did not demur at the true solution of 
the question of the three gamblers for which I sent you the three definite numbers, 17, 5, 5. But 
because M. de Roberval will perhaps be better satisfied to see a solution without any 
dissimulation and because it may perhaps yield to abbreviations in many cases, here is an 
example:  

The first may win in a single play, or in two or in three. If he wins in a single throw, it is 
necessary that he makes the favorable throw with a three-faced die at the first trial. A single die 
will yield three chances. The gambler then has 1/3 of the wager because he plays only one third. 
If he plays twice, he can gain in two ways,-either when the second gambler wins the first and he 
the second, or when the third wins the throw and when he wins the second. But two dice produce 
9 chances. The player than has 2/9 of the wager when they play twice. But if he plays three 
times, he can win only in two ways, either the second wins on the first throw and the third wins 
the second, and he the third; or when the third wins the first throw, the second the second, and he 
the third; for if the second or the third player wins the two first, he will win the wager and the 
first player will not. But three dice give 27 chances of which the first player has 2/27 of the 
chances when they play three rounds. The sum of the chances which makes the first gambler win 
is consequently 1/3, 2/9, and 2/27, which makes 17/27.  

This rule is good and general in all cases of the type where, without recurring to assumed 
conditions, the true combinations of each number of throws give the solution and make plain 
what I said at the outset that the extension to a certain number of points is nothing else than the 
reduction of divers fractions to the same denomination.  

Here in a few words is the whole of the mystery, which reconciles us without doubt 
although each of us sought only reason and truth. 3. I hope to send you at Martinmas an 
abridgment of all that I have discovered of note regarding numbers. You allow me to be concise 
[since this suffices] to make myself understood to a man [like yourself who comprehends the 
whole from half a word. What you will find most important is in regard to the theorem that every 
number is composed of one, two, or three triangles;12 of one, two, three, or four squares; of one, 
two, three, four, or five pentagons; of one, two, three, four, five, or six hexagons, and thus to 
infinity.  

To derive this, it is necessary to show that every prime number which is greater by unity 
than a multiple of 4 is composed of two squares, as 5, 13, 17, 29, 37, etc. Having given a prime 
number of this type, as 53, to find by a general rule the two squares which compose it. Every 
prime number which is greater by unity than a multiple of 3, is composed of a square and of the 
triple of another square, as 7, 13, 19. 31, 37, etc. Every prime number which is greater by 1 or by 
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3 than a multiple of 8, is composed of a square and of the double of another square, as 11, 17, 19, 
41, 43, etc. 12[I.e., triangular numbers.]  

There is no triangle of numbers whose area is equal to a square number. This follows 
from the invention of many theorems of which Bachet vows himself ignorant and which are 
lacking in Diophantus. I am persuaded that as soon as you will have known my way of proof in 
this type of theorem, it will seem good to you and that it will give you the opportunity for a 
multitude of new discoveries, for it follows as you know that multi pertranseant ut augeatur 
scientia. When I have time, we will talk further of magic numbers and I will summarize my 
former work on this subject.  

I am, Monsieur, most heartily your etc. 
Fermat.  
The twenty-fifth of September.  
I am writing this from the country, and this may perhaps delay my replies during the 

holidays.  
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Pascal to Fermat Tuesday, October 27, 1654 
 
 Monsieur,  
Your last letter satisfied me perfectly.  
I admire your method for the problem of the points, all the more because I understand it 

well. It is entirely yours, it has nothing in common with mine, and it reaches the same end easily. 
Now our harmony has begun again. But, Monsieur, I agree with you in this, find someone 
elsewhere to follow you in your discoveries concerning numbers, the statements Of which you 
were so good as to send me. For my own part, I confess that this passes me at a great distance; I 
am competent only to admire it and I beg you most humbly to use your earliest leisure to bring it 
to a conclusion.  

All of our gentlemen saw it on Saturday last and appreciate it most heartily. One cannot 
often hope for things that are so fine and so desirable. Think about it if you will, and rest assured 
that I am etc.  

Pascal.  
Paris, October 27, 1654.  
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Fermat to Pascal Sunday, July 25, 1660  
Monsieur,  
As soon as I discovered that we were nearer to one another than we had ever been before, 

I could not resist making plans for renewing our friendship and I asked M. de Carcavi to be 
mediator: in a word I would like to embrace you and to talk to you for a few days ; but as my 
health is not any better than yours, I very much hope that you  will do me the favour of coming 
half way to meet me and that you will oblige me by suggesting a place between Clermont and 
Toulouse, where I would go without fail towards the end of September or the beginning of 
October.  

If you do not agree to this arrangement, you will run the risk of seeing me at your house 
and of thus having two ill people there at once. I await your news with impatience and am, with 
all my heart,  

Yours ever, 
 Fermat.  
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Pascal to Fermat  
Tuesday, August 10, 1660  
Monsieur,  
You are the most gallant man in the world and assuredly I am the one who can best 

recognize your qualities and very much admire them, especially when they are combined with 
your own singular abilities. Because of this I feel I must show my appreciation of the offer you 
have made me, whatever difficulty I still have in reading and writing, but the honour you do me 
is so dear to me that I cannot hasten too much in answering your letter. 1 will tell you then, 
Monsieur, that if I were in good health, I would have flown to Toulouse and I would not allow a 
man such as you to take one step for a man such as myself.  

I will tell you also that, even if you were the best Geometrician in the whole of Europe, it 
would not be that quality which would attract me to you, but it is your great liveliness and 
integrity in conversation that would bring me to see you. For, to talk frankly with you about 
Geometry, is to me the very best intellectual exercise: but at the same time I recognize it to be so 
useless that I can find little difference between a man who is nothing else but a geometrician and 
a clever craftsman. Although I call it the best craft in the world, it is after all only a craft, and I 
have often said it is fine to try one’s hand at it but not to devote all one’s powers to it.  

In other words, I would not take two steps for Geometry and I feel certain you are very 
much of the same mind. But as well as all this, my studies have taken me so far from this way of 
thinking, that I can scarcely remember that there is such a thing as geometry. I began it, a year or 
two ago, for a particular reason; having satisfied this, it is quite possible that I shall never think 
about it again. Besides, my health is not yet very good, for I am so weak that I cannot walk 
without a stick nor ride a horse, I can only manage three or four leagues in a carriage.  

It was in this way that I took twenty-two days in coming here from Paris. The doctors 
recommended me to take the waters at Bourbon during the month of September, and two months 
ago I promised, if I can manage it, to go from there through Poitou by river to Saumur to stay 
until Christmas with M. le duc de Roannes, governor of Poitou, who has feelings for me that I do 
not deserve. But, since I go through Orleans on my way to Saumur by river and if my health 
prevents me from going further. I shall go from there to Paris. 

 There, Monsieur, is the present state of my life, which I felt obliged to describe to you so 
as to convince you of the impossibility of my being able to receive the honour you have so 
kindly offered me. I hope, with all my heart, that one day I shall be able to acknowledge it to you 
or to your children, to whom I am always devoted, having a special regard for those who bear the 
name of the foremost man in the world. I am, etc.  

Pascal.  
De Bienassis,  
10th August, 1660  
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Simon Laplace 
 
 

 According to some, the 1760s the teenaged Simon Laplace had a problem. Born into a 
family that was not poor, but committed to agriculture, his parents consigned him to a safe, 
secure, but inconspicuous existence.  
 However, incessantly pulled by the restless drive to discover, he determined that he 
would go another way, even if that new way required money.  With no money of his own, and 
his family unable to contribute, he turned to an unusual and untapped source ─ his neighbors!  

Through his unique combination of force of personality, unshakeable will, and an 
uncanny knack to discern what people needed to hear, young Simon went from house to house, 
alternately asking, cajoling, and demanding that the different households, themselves poor, 
provide money for his training. The astonished neighbors acceded to his request, committing 
their hard earned money to his education.  

There has been no community that has earned a greater return on investment, then 
Beaumont-en-Auge, Laplace’s home town. 

Whether it is true or not, it speaks to the remarkable drive of the young man who earned 
the sobriquet, “The Newton of France” [1].  

Yet, when he arrived at the university, according to some, young Laplace was treated 
badly [2] by  D'Alembert,  a mathematician, philosopher, and musical theorist was particularly 
unimpressed with the enthusiastic Simon Laplace,  d’Alembert dispatched the young man to a 
collection of  thick mathematics tomes, telling Laplace to return when he had mastered them.  

Several days later, Laplace returned.  
D’Alembert upon questioning Laplace, realized that he had in fact mastered the material. 

The teacher dropped  all reservations, accepted him as a mathematical prodigy.  
After completing some university training, Laplace presented a well-received paper 

before the French Academy of Science in 1773 in which he demonstrated the stability of 
planetary motion. He was twenty-four years old, yet he followed with the first of four works that 
rocketed the field of probability forward into a perilous but promising future. 

His manuscript, entitled Mémoire sur la Probabilité des Causes par les Évènements 
provided further justification for the use of what would become known as the prior distribution, 
establishing the legitimacy of the inversion approach in probability and setting the stage for the 
first Bayesian computation.  

In doing so, Laplace opened a door into either a lush valley of intellectual and 
philosophical fruit, or a sharp precipice that would tear the young field of probability apart The 
stark differences between his derivations and those of Bayes make it unlikely that he relied on 
Bayes initial work. However, Laplace’s legendary, regrettable tendency to pirate and then 
disparage the work of others forces us to keep this an open question.  

Laplace moved forward with the development of the probability generating function [3] 
in addition to the Laplace transforms.  

 Even his warmest admirers acknowledged Laplace’s vanity and selfishness. He was 
contemptuous of the benefactors of his youth, ungrateful to his policial friends, and his 
appropriation without acknowledgment of the work of others was reprehensible. Yet,  he was 
also very protective and generous toward his students. In one case, he suppressed a paper of his 
own in order that a pupil might have the sole credit of the investigation [4]. 
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He worked for a short time as the Minister of the Interior, but was quickly discharged 
because of his inability to keep small administrative problems simple.  In his later years, he 
debated the true meaning of God, and died in Paris on March 5, 1827, at 78 years of age. 
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Thomas Bayes and Richard Price 
 
 

 
In 1763, a paper entitled, “An Essay Towards Solving a Problem in the Doctrine of Chances” 
appeared in the Philosophical Transaction of the Royal Society of London [1]. Few paid attention 
to the contents of this confusing paper. However, if a dogged reader persisted, they would have 
learned two remarkable things. First, its author was a reverend. Second, he was dead [2]! The 
Reverend Thomas Bayes, having published only three manuscripts during his entire life, died 
two years before the appearance of his final manuscript, and in fact, he never submitted this final 
manuscript for publication, it being identified and posthumously offered for publication by his 
friend, Reverend Richard Price.  

Similarities and differences mark the relationship of these two men. Both were ministers. 
Born in 1702, Thomas was the son of the nonconformist minister Joshua Bayes. Nonrebellious, 
he followed his father into the ministry, becoming a Presbyterian minister in the village of 
Tumbridge Wells (about twenty-five miles south of London) at the age of twenty-nine. His first 
paper was on religious matters.*  

His second written in 1736, entitled, “An Introduction to the Doctrine of Fluxions, and a 
Defense of the Mathematicians Against the Objections of the Author of the Analyst”, was a 
gentle defense of Newton’s calculus, a publication many believed earned him entrance into the 
prestigious Royal Academy of Science. However, once admitted, he remained quiet and 
unremarkable, never publishing again for the remaining twenty-five years of his life.  

The rebellious, articulate Richard Price, however, was quite another matter. Also born 
into a family of ministers, Price quickly rejected the strict religious teachings of his family. 
Openly rejecting the prevalent Christian doctrines of original sin and eternal damnation, he 
earned the ire of many traditionalists.  

Undaunted, he entered the ministry himself, and upon reaching the pulpit, shared his 
iconoclastic convictions with his parishioners. Contending that individuals had the obligation to 
use not just the Bible, but their own conscience and the best of their reasoning skills to resolve a 
moral dilemma made him the focal point of local criticism. Undaunted, he went on to argue 
against the deity of His Majesty the King. 

This outspoken iconoclast and the insular, enigmatic Bayes had two things in common. 
One was the ministry, although clearly their theological views differed. The second was an 
affection for mathematics. While very little is left of Bayes work, Price’s intense interest in 
probability is well established. It was through mathematics that the activist Price and the 
reserved Bayes became friends. 
 Thus, it was no surprise that, upon Reverend Bayes’ death in 1761, his bereaved family 
would call upon Reverend Price to examine and organize Bayes’ papers and notebooks, leading 
Price to discover the scattered writing of his dead friend. 
 The rest is speculation. Price recognized the topic of the paper was probability. Maybe 
the two of them had some earlier conversations about the interesting notion of using the past to 
                                                 
* In 1731, Bayes published “Divine Benevolence, or an Attempt to Prove that the Principal End of the Divine Providence and 
Government Is the Happiness of His Creatures.”  
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predict the future. Nevertheless, Price went about the task of revising Bayes’ manuscript draft. 
Bayes had written an introduction ─ Price replaced it. In addition, Price added an appendix [3]. 
Others suggest that Price made other substantial changes, amplifying the use of probability in a 
revolutionary way. Finally, Price read the revised manuscript before the Royal Society on 
September 23, 1763, two years after Bayes’ death, giving full credit to his friend. In 1765, two 
years after the manuscript was published, Price was himself admitted to the Royal Society for his 
own work on probability.* 

The precise contributions of Bayes and Price in the 1763 manuscript remains a mystery. 
However, we can say that, while it was ultimately Bayes’ bombshell, the hand that repacked the 
explosives and lit the fuse belonged to Reverend Price. The paper itself, like a slowly burning 
fuse, languish unnoticed for a decade,† until its ideas were modified and amplified by Simon 
Laplace.  
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Hawking is the current holder of this chair. 
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Andrey Kolmogorov 
 

 
The  modern, axiomatic treatment of probability can be attributed to Andrey 

Kolmogorov, one of the greatest probabilitsts of the 20th century. And, with this as a foundation, 
he went on to make substantial contributions to the fields of stochastic processes, information 
theory, fluid mechanics, and epidemiologic modeling.  

Andrey Kolmogorov was born in 1903 in Tambov, Russia approximately 300 miles south 
of Moscow.  His mother, Kolmogorova, died in childbirth. Little is known about his father; some 
believe he was deported from St. Petersburg for taking part in protests against the czars and later 
killed in the Russian Civil War.¹  

In the absence of both parents, Andrey was raised by two aunts at his grandfather’s 
estate. He attended the village school, there demonstrating genuine curiosity about mathematics; 
the school newspaper printed several of his mathematical and literary works.  

In 1910, his aunt adopted him, moving him to Moscow where he attended high school, 
graduating in 1920. During this time, Kolmogorov became interested and developed a perpetual 
motion machine. Even his teachers were unable to find its flaws.  

Kolmogorov could be quite intense in his work and at the same time, enjoy an easygoing 
existence. For example, after high school, he wrote a treatise on Newton’s law of mechanics, 
while working as a railway conductor.²  

He then decided to continue his education, entering Moscow State University. He spent 
the rest of his career at this university, becoming a faculty member, and then department chair.  

However, at first, he was uncommitted to mathematics, devoting energy to metallurgy 
and Russian history, about which he was passionate.  

He first attracted notice as a mathematical intellectual with a paper on set operations, 
published in 1922. This was an advance on the wok of Suslin, who was advancing the field of 
Borel sets.*  Kolmogorov went on to publish eight papers while an undergraduate student.³, 
including one in June 1922  in which he constructed a summable function that diverged almost 
everywhere.  

This stunning and unexpected finding in the world of mathematics, boosted him to 
international acclaim before graduating from Moscow State University in 1925.  

He immediately began work under Luzin’s supervision, producing in that year his first 
paper on probability. This was published jointly with Khinchin and contains the “three series 
theorem” as well as results on inequalities of partial sums of random variables, which would 
become the basis for martingale inequalities and stochastic systems. By this time, he had 
eighteen publications including papers on the strong law of large numbers and the law of the 
iterated logarithm. 

In 1929, Kolmogorov earned his doctor of philosophy degree from Moscow State 
University. In 1931 he became a professor there, devoting himself to a rigorous examination of 
the underlying tenets of probability. He reformulated probability in  a 1933 paper in which he 
assembled its development from a fundamental collection of axioms, much like Euclid-
developed geometry. 

That same year, he  published his classic book, Foundations of the Theory of Probability, 
laying the modern axiomatic foundations of probability theory and establishing his reputation as 
the world’s leading expert in this field.⁴ It was in this work that he developed the concept of 
                                                 
* Borel sets is the σ-algebra of all open sets of real numbers.  
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probability not as a stand-alone field typified by unique relationships but wholly encompassed in 
the larger field of measure theory (i.e., probability is just one of many types of measures). 

He demonstrated intense interest in problems of differentiation and integration and 
measures of sets. In every one of his papers dealing with such a variety of topics, he introduced 
an element of originality, a breadth of approach, and depth of thought. 

In 1935, Kolmogorov became the first chairman of the Department of Probability Theory 
at the Moscow State University. 

In a 1938 paper, Kolmogorov “established the basic theorems for smoothing and 
predicting stationary stochastic processes”—a paper that would have major military applications 
during the Cold War. In 1939, he was elected a full member (academician) of the USSR 
Academy of Sciences.  

During this time, Kolmogorov contributed to the field of ecology. In fact, his study of 
stochastic processes (random processes), especially Markov processes, led him and the British 
mathematician Sydney Chapman to independently develop the pivotal set of equations in the 
field, which have been give the name of the Chapman-Kolmogorov equations. These equations 
have been instrumental in the mathematical development of the spread of disease. 

Later on, Kolmogorov changed his research interests to the area of turbulence, where his 
publications beginning in 1941 had a significant influence on the field. In classical mechanics, he 
is best known for the Kolmogorov-Arnold-Moser theorem (first presented in 1954 at the 
International Congress of Mathematicians). He was a founder of algorithmic complexity theory, 
often referred to as Kolmogorov complexity theory, which he began to develop around this time. 

Kolmogorov married in 1942. Active not only in mathematics, he devoted time to 
working with gifted children. In addition, he pursued interests in literature and in music. 

Kolmogorov served his alma mater, Moscow State University, in different faculty 
positions and department chairs. However, he retained an abiding interest in his students. He 
commonly invited students to take long outdoor walks with him, discussing concepts in 
mathematics. 

Kolmogorov died in Moscow in 1987. His remains can be found in the Novodevichy 
cemetery. 
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Bernhard Riemann 
 

Monastyrsky wrote  
It is difficult to recall another example in the history of nineteenth-century mathematics when a 
struggle for a rigorous proof led to such productive results.  
 

Georg Friedrich Bernhard Riemann is the father of integral calculus. He was also an 
influential German mathematician who made lasting contributions to analysis, number theory, 
and differential geometry, some of them enabling the later development of general relativity.¹ 

 Riemann was born in 1826 in the kingdom of Hannover, which would become part of 
Germany, and showed an early interest in mathematics and history. Encouraged by his family, he 
entered preparatory school in Hannover, later moving to Lüneburg ² 

Riemann was born in 1826 in the kingdom of Hannover, later to become part of 
Germany. Bernhard was the second of their six children. His father, a Lutheran minister acted as 
teacher to his children and he taught Bernhard until he was ten years old.  

 Encouraged by his family and a teacher named Schulz, who assisted in his education,  
Bernhard entered preparatory school in Hannover, later moving to Lüneburg ² 

There, Bernhard seems to have been a good, but not outstanding, pupil who worked hard at 
the classical subjects such as Hebrew and theology.   

However, his remarkable mathematical talent was noticed by Schmalfuss, the director of 
the gymnasium. Six days after giving Riemann a textbook on number theory by Legendre, 
Riemann returned the 859-page book, saying, "That was a wonderful book! I have mastered it."  

 In 1846, Riemann matriculated at Göttingen University. In accordance with his father’s 
wishes, he began in the faculty of theology, but he soon transferred to the faculty of philosophy 
to pursue science and mathematics.³ 

 With this experience Bernhard, always close to his family, asked his father if he could 
transfer to the faculty of philosophy so that he could study mathematics.⁴ Being very close to his 
family, he would not change courses without his father's permission. 

 Receiving his father’s blessing, Bernhard then took courses in mathematics from Moritz 
Stern and the mathematical giant Carl Frederick Gauss. However, there is no evidence that at this 
time, Gauss, quite unsociable, ever had any personal contact with Riemann.⁵ 

 Riemann studied the work of Cauchy, who had created the ε δ−  method of calculus, and 
his work on integration through the development of the Riemann integral is still taught today. 

His ability did draw the attention of another Göttingen mathematician, Moritz Stern. 
After a year Riemann moved to the University of Berlin, where he could benefit from the 
teaching of  Jacobi,  Steiner, Dirichlet, and Eisenstein. It was Dirichlet who influenced Riemann 
the most, and was to become his collaborator. In 1850 Riemann returned to Göttingen, where he 
would spend the rest of his career.  

Until Riemann’s work, the mathematical process of integration was not an accepted field 
of study. The process of integration was seen as simply the reverse of finding the derivative of a 
function, so essential in differential calculus (co-discovered by Isaac Newton and Gauss). 
Riemann developed the powerful tool of studying limits using the ε δ−  method of examining a 
function’s behavior across very small regions. 

He then developed the theory of the integral on its own (separate and apart from 
derivatives) through a limiting process of what has come to be known as Riemann sums. 

This work established Riemann as an important mathematician. In addition, he developed 
a very powerful geometric theory that resolved a number of outstanding problems. He is 
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associated with among the most important but unproved statements in number theory, the 
Riemann hypothesis.* 

In 1859 Dirichlet, who had succeeded to Gauss's professorship in 1855, himself died after 
a serious illness. Riemann was appointed his successor. In the same year he was elected a 
corresponding member of the Berlin Academy of Sciences. As a newly elected member, 
Riemann was required to send a report of his most recent work to the Academy.  

His report, titled "On the number of primes less than a given magnitude", was of 
fundamental importance in number theory. Riemann showed that various results about the 
distribution of prime numbers were related to the analytic properties of the Riemann zeta 
function. Some of his results were rigorously established by Hadamard and Vallée-Poussin in 
1896, but the Riemann hypothesis remains unproved.  

Riemann married in July 1862 and later that year, developed tuberculosis. In order to 
recuperate, he travelled to Italy several times, befriending the mathematicians Betti and 
Beltrami.⁶ He died in the Italian village of Selasca, where he spent his last weeks with his wife 
and three-year-old daughter. 
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⁴ http://mathshistory.st-andrews.ac.uk/Biographies/Riemann.html, last accessed 1-14-2020 
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* This involves the Riemann zeta function, which is a function ζ(s) of a complex variable s defined as follows. If the 
real part of s is greater than 1, define ζ(s) to be the sum of the convergent series ∑n &ge 1 n-s, then extend ζ(s) to the 
whole complex plane by analytic continuation. The Riemann hypothesis states: “If ζ(s) = 0 and the real part of s is 
between 0 and 1, then the real part of s is exactly 1/2.” This seemingly esoteric condition is of fundamental 
importance for the distribution of prime numbers. 
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Georg Cantor 
 

The one mathematician above all who is responsible for catapulting set theory from an arcane 
finite and useful contrivance to the basis of modern mathematics is Georg Cantor. 

He probably died for it.  
The oldest of six children, Georg Cantor was known at an early age for his abilities as a 

violinist.[1] Although born in the western merchant colony of St. Petersburg, Russia, his family 
moved to Germany in part to escape the brutal Russian winters. In 1862 Cantor, pleased that his 
father gave him permission to study mathematics, began his study in Zurich. However, this was 
interrupted by his father’s death a year later. [2] After receiving a substantial inheritance, Cantor 
moved his work to Berlin where he completed his dissertation on number theory in 1867.  

Cantor accepted a position at the University of Halle, where he spent his entire career, 
married Vally Guttmann and started a family that eventually expanded to six children.  

During this time, Cantor entered into correspondence with Richard Dedekin who through 
a series of challenges and questions, helped propel Cantors work on rational and irrational 
numbers. The work was illuminating, and to some shocking. Gösta Mittag-Leffler, in response to 
one of Cantor’s submissions to his journal jested, saying that Cantor’s writing  was “about one 
hundred years too soon." Cantor, sensitive about criticism, was injured by this comment.[2] 
 This was also the reaction to Cantor’s work on set theory. 

Before Cantor, set theory was an interesting but boring back eddy in mathematics. The 
number of set elements was always finite, and with that the field was concise but constrained 
with no room for growth.   

In ten years, Cantor turned that idea on its head.  
Between 1874 and 1884, Cantor focused on the concept of infinity, which up until that 

time had been more the philosopher’s purview than the mathematicians.  
It was well known for example that the number of whole numbers was infinite, and it 

followed that there must be an infinite number of rational numbers as well (since whole numbers 
are themselves rational). However, there is an infinite number of rational numbers in . 
Adding that infinite set to the infinite set of whole numbers must mean, it was thought, that there 
were more rational numbers than whole numbers. Yet, both sets were infinite. How could there 
be more numbers than those contained in an infinite set?  

Cantor placed his efforts here. He first defined  finite and infinite sets, then divided the 
infinite sets into “denumerable” or countable versus nondenumerable or uncountable sets. He 
introduced the power set of a set A, which is the set of all possible subsets of A. He later proved 
that the size of the power set of A is strictly larger than the size of A, even when A is an infinite 
set; this result soon became known as Cantor's theorem. These are cornerstone of modern set 
theory.  

However this was also a bombshell in a world that conflated high mathematics with 
divinity. At the time there was one and only one concept of infinity, and according to the 
religious culture of the day, infinity was were God lived.  

[ ]0,1



Cantor  621 
 

 
 

Critics concluded that Cantor’s work denied the “one God, one infinity” assumption. 
They then pushed, saying that he denied the existence of one God, and that the multiple infinity 
concept − since it must imply multiple Gods − meant Cantor was a pantheist.  

Cantor understood that the concept of the existence of an actual infinity was an important 
shared concern within the realms of mathematics, philosophy and religion; preserving the 
relationships was important to him. But, he was driven to continue with his development of an 
entire theory and arithmetic of infinite sets, called cardinals and ordinals, which extended the 
arithmetic of the natural numbers.  

His notation for the cardinal numbers was the Hebrew character א with a natural number 
subscript. This represents the size of an infinite set. For example, 0א is the cardinality of the 
whole numbers. He affirmed that there could be an infinite number of sets that each have greater 
number of elements than other infinite numbers of sets.   

Infinite sets could be of different sizes and therefore different cardinalities. Despite our 
imaginations, infinity was far more complex than anyone imagined. Yet the denouncements 
continued. 
 Cantor continued his pioneering work, even in the face of growing admonitions and 
negativism from one of his long standing colleagues - Dedekin. He developed the one-to-one 
concept which is a foundation of set theory.  By developing his famous Cantor set, he 
demonstrated the existence of sets of real numbers that have the same cardinality as the real 
numbers, but were nowhere dense (just as the natural numbers are nowhere dense). Rational sets 
on the other hand, were dense but countable. 
 These distinctions caused havoc with a bedrock of mathematics – the real number line, 
and the biting remonstrations continued.  

Cantor suffered his first known bout of depression in 1884 after a damaging series of 
attacks on his work by Kronecker. Doubting whether he would ever return to mathematics, he 
was place in a sanatorium in 1899. He recovered within a few weeks, but shortly thereafter, his 
youngest son died.   

After a paper denouncing his work was presented by König at the Third International 
Congress of Mathematicians to an audience including Cantor’s colleagues, wife, and daughters, 
Cantor relapsed. He suffered from chronic depression for the rest of his life. Retiring in 1913, he 
lived out the rest of his life in poverty until he died in a sanatorium in 1919.  
 
                                                 
1 https://en.wikipedia.org/wiki/Georg_Cantor 
 
2 http://mathshistory.st-andrews.ac.uk/Biographies/Cantor.html 
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Thomas Joannes Stieltjes 
 
 Stieltjes was born in Zwolle, Holland in 1856.[1] His father was a well renowned civil 
engineer and a member of the Dutch Parliament, permitting his son to gain entrance to the 
university at the Polytechnical School in Delft in 1873. However Stieltjes repeated failed his 
technical exams, preferring to read the works of Gauss and Jacobi.  

His father help his gain employment at the Leiden Observatory. While there, Stieltjes 
began a lifelong correspondence with Charles Hermite in celestial mechanics and mathematics, 
devoting his spare time to mathematical research. He began a lifelong correspondence with 
Hermite, writing 432 letters in 12 years [2] 

However, in 1883, Stieltjes besieged the director of the observatory to release him from 
his obligatory observational work so that he could devote more time to mathematics. His wife 
agreed to support him, and Stieltjes devoted himself to mathematics.  

Stieltjes proposed an important generalization of the integral for studying continued 
fractions. Combined with Bernhard Riemann’s definition and now known as the Riemann-
Stieltjes integral, it is widely used for applications in physics. Commonly theoreticians affix the 
name of this mathematician to integration. Riemann integration is sometimes referred to as 
Riemann-Stieltjes integration, and as in this treatise, Lebesgue integration is referred to as 
Lebesgue-Stieltjes integrals.  

In addition, his work on continued fractions was the first general treatment of the subject 
as a part of complex analysis and laid the groundwork for the development of Hilbert spaces—
infinite-dimensional vector spaces, developed by the German mathematician David Hilbert, that 
were later used in formulating quantum mechanics.[3]  

After many years, and the intervention of Hermite, Stieltjes received an honorary 
doctorate from Leiden University, enabling him to become a professor where he first started his 
training. 
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Henri Lebesgue 
 
 

  
Reduced to general theories, mathematics would be a beautiful form without content. It 

would quickly die.  
 
In 1875, Henri Lebesgue (pronounced La-BÁK) was born in Beauvais, France. His father, a 
typesetter, and mother, a school teacher, created a library for their son that he used from an early 
age. After his father died of tuberculosis, his mother was forced to support the two of them.  

Henri Lebesgue’s life might have been quite inconsequential but for one of his teachers. 
Lebesgue at an early age displayed uncharacteristically high mathematical aptitude. However, 
his mother had no funds to commit to her son’s higher education. A teacher of Lebesgue was 
also in no position to financially support. However, this teacher, in a remarkable act of self-
sacrifice, raised money from the citizens of the local communities for Henri to attend school. 
With this benevolence, Lebesgue could attend the Collège de Beauvais and then at Lycée Saint-
Louis and Lycée Louis-le-Grand in Paris.1 

Lebesgue entered the and was awarded his teaching diploma in mathematics in 1897. It 
was when he matriculated at École Normale Supérieure in Paris that he learned of  Émile Borel's 
work on the rudiments of measure theory, and Camille Jordan's work on Jordan measure.  For 
the next two years he studied in its library where he read Baire's papers on discontinuous 
functions and realized that much more could be achieved in this area.  

Lebesgue's first paper was published in 1898 and was titled "Sur l'approximation des 
fonctions". It dealt with Weierstrass' theorem on approximation to continuous functions by 
polynomials. His next papers focused on surfaces applicable to a plane, the area of skew 
polygons, surface integrals of minimum area with a given bound, and the final note gave the 
definition of Lebesgue integration for a function   

He was appointed professor at the Lycée Centrale at Nancy where he taught from 1899 to 
1902.  

Building on the work of others, including that of Émile Borel and Camille Jordan, 
Lebesgue formulated the theory of measure in 1901 and in his famous paper Sur une 
généralisation de l'intégrale définie, which appeared in the Comptes Rendus on 29 April 1901, he 
gave the definition of the Lebesgue integral that generalizes the notion of the Riemann integral 
by extending the concept of the area below a curve to include many discontinuous functions.  

This all occurred before he earned his PhD 
This generalisation of the Riemann integral revolutionized the integral calculus. In 1902 

he earned his Ph.D. from the Sorbonne with the seminal 130 page thesis on "Integral, Length, 
Area", submitted with Borel, four years older, as advisor. This work expanded the application of 
integral calculus to intensely discontinuous functions, revolutionizing the field [2]   

Curiously, Lebesgue did not concentrate throughout his career on the field which he had 
himself started. This was because his work was a striking generalisation, yet Lebesgue himself 
was fearful of generalizations.  He made major contributions in other areas of mathematics, 
including topology, potential theory, the Dirichlet problem, the calculus of variations, set theory, 
the theory of surface area and dimension theory.  

By 1922 when he published Notice sur les travaux scientifique de M Henri Lebesgue he 
had written nearly 90 books and papers. After 1922 he remained active, but his contributions 
were directed towards pedagogical issues, historical work, and elementary geometry.  
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Measurable Functions 
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Giuseppe Vitali 
 

 
Giuseppe Vitali (26 August 1875 – 29 February 1932) was an Italian mathematician who made 
several contributions to several branches of mathematical analysis.  He is most famous for the 
Vitali set with which he was the first to give an example of a non-measurable subset of real 
numbers. 

Cared for at home by his mother Zenobia Casadio who looked after him and his four 
siblings,[1] his early schooling took place in Ravenna, where his prowess in mathematics was 
not particularly encouraging.  However, his performance in secondary school improved so much 
that his instructor,  Giuseppe Nonni advised his son’s training, urging him to continue in 
mathematics.  

Vitali then studied for two years at the University of Bologna, beginning in the autumn of 
1895. His main teachers at Bologna were sufficiently impressed by Vitali that they supported his 
application for a scholarship to study at the Scuola Normale Superiore in Pisa.  

Vitali was awarded the scholarship and began his studies at Pisa in the autumn of 1897. 
He published three papers in 1900, and earned his teaching diploma in 1902.  

After the award of his teaching diploma, Vitali left university level mathematics to teach 
high school. This was likely due to financial difficulties. He ultimately returned to mathematics 
after a period of political activity. 

His significant mathematical discoveries include a theorem on set-covering, the notion of 
an absolutely continuous function and a criteria for the closure of a system of orthogonal 
functions. Since he worked very much on his own, his work involves some rediscovering of 
known results but also some remarkably original discoveries. 

His most significant output took place in the first eight years of the twentieth century 
when Lebesgue’s concepts of measure and integration were revolutionizing the principles of the 
theory of functions of real variables. He provided examples of nonmeasurable subsets of real 
numbers. [2]  

In 1926, Vitali developed a serious illness and, with a paralyzed arm, he could no longer 
write. Nevertheless about half his research papers were written in the last four years of his life 
after the illness struck.  

On 29th February 1932 he delivered a lecture at the University of Bologna and was 
walking in conversation with fellow mathematician Ettore Bortolotti when he collapsed and died 
in the street. He was 56 years of age. 
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The Bernoullis 
 
 

Leon Bernoulli was a doctor in Antwerp, which at that time was in the Spanish 
Netherlands. The family, of Belgium origin, were refugees fleeing from persecution by the 
Spanish rulers of the Netherlands. Nicolaus Bernoulli was an important citizen of Basel, being a 
member of the town council and a magistrate. He had three sons 

 
• Jacob Bernoulli (1654–1705; also known as James or Jacques) Mathematician after 

whom Bernoulli numbers are named. 
• Nicolaus Bernoulli (1662–1716) Painter and alderman of Basel. 
• Johann Bernoulli (1667–1748; also known as Jean) Mathematician and early adopter of 

infinitesimal calculus.* 
Originally from Antwerp, they settled in  Basel, Switzerland. He counseled one to go into 

theology, the other, medicine. However, both went their own ways, choosing mathematics over 
his strenuous objections.  This resistance was not uncommon in the Bernoulli family, as they 
chose against the more lucrative business careers advocated by their father.  

 
 

Jacob Bernoulli 
During the time that Jacob Bernoulli was taking his university degrees he began studying 
mathematics and astronomy against the wishes of his parents.  

However, until 1676 he followed his family’s wished and completed a degree in 
theology. Moving to Geneva, Jacob, worked as a tutor, then traveled to France where he spent 
two years studying under Descarte. In 1681 Bernoulli travelled to the Netherlands where he met 
many mathematicians including Hudde, then he went to England where he met Boyle and 
Hooke. As a result of his travels, Bernoulli began a correspondence with many mathematicians 
which he carried on over many years.  

Having discovered his true love for mathematics and theoretical physics, he lectured and 
taught on these topics regularly. In 1683, Jacob returned to Switzerland, delivering a collection 
of important lectures on solids and liquids at the Univeristy of Basel in 1683. A year later, he 
married Judith Stupanus. They were to have two children, a son who was given his grandfather's 
name of Nicolaus and a daughter. These children, unlike many members of the Bernoulli family, 
did not go on to become mathematicians or physicists.  

One of the most significant events concerning the mathematical studies of Jacob 
Bernoulli occurred when his younger brother, Johann Bernoulli, began to work on mathematical 
topics. Johann was told by his father to stay away from mathematics and to study medicine, but 
while he was studying that topic he asked his brother Jacob to teach him mathematics. They also 
studied the publications of von Tschirnhaus. The Bernoullis were the first to try to understand 
and apply the rather abstract  ideas of Leibniz's on the calculus.  

Jacob Bernoulli's first important contributions were a pamphlet on the parallels of logic 
and algebra published in 1685.  In addition, Jacob Bernoulli published five treatises on infinite 

                                                 
* Infinitesimal calculus is a synonym for what we know as simply “calculus” 
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series between 1682 and 1704. Bernoulli also studied the exponential series which came out of 
examining compound interest.  

In May 1690 in a paper published in Acta Eruditorum, Jacob Bernoulli showed that the 
problem of determining the curve along which a particle will descend under gravity from any 
point to the bottom in exactly the same time,  After finding the differential equation, Bernoulli 
then solved it by what we now call separation of variables. Jacob Bernoulli's paper of 1690 is 
important for the history of calculus, since the term integral appears for the first time with its 
integration meaning. [1] 

Jacob Bernoulli's most original work was Ars Conjectandi published in Basel in 1713, 
eight years after his death. The work was incomplete at the time of his death but it is still a work 
of the greatest significance in the theory of probability.  

 
Johann Bernoulli 
His parents tried to set Johann Bernoulli on the road to a business career but, like his other 
brother Jacob, he disliked it intensely. While taking courses in medicine, he studied mathematics 
with his brother Jacob, who lectured on experimental physics there, where they both immersed 
themselves in studying Leibniz's calculus papers  

Making his way to Paris, he met de l'Hôpital, where they engaged in many deep 
mathematical conversations, during which he instructed de l'Hôpital in the calculus. After Johann 
left Paris, de l'Hôpital published the first calculus book, which includes what we now call 
l'Hôpital's Rule, a publication that without an acknowledgment of Johann’s own lectures, 
distressed him.  

 However, Johann began a lengthy series of conversations with Leibniz which was to 
prove very fruitful. In 1694 he investigated series using the method of integration by parts. He 
summed series, and discovered addition theorems for trigonometric and hyperbolic functions 
using the differential equations they satisfy. Johann also had great success in integrating 
differential equations. As a result he was offered the chair of mathematics at Groningen.  

Johann married and had several children, three of which also became mathematicians: 
Nicolaus, Daniel, and Johann. Oddly, just as his father had done, Johann tried to force his own 
son Daniel from going into mathematics and physics.  

Johann did compete against his brother Jacob, a competition that became contentious, and 
bitter.  Yet, it was at the request of his father-in-law that, Johann began a  sea voyage back to his 
home town of Basel in 1705. It was just after he began this voyage that Johann learned of his 
older brother’s death.[2]. Johann was given his brother’s chair of mathematics, where he made 
important contributions to mechanics with his work on kinetic energy. 

It was in 1713 that Johann became involved in the Newton-Leibniz controversy. He 
strongly supported Leibniz and added weight to the argument by showing the power of his 
calculus in solving certain problems which Newton had failed to solve with his methods. It was 
Johann’s influential support that delayed acceptance of Newton's physics in Europe.  

Johann received great acclaim during his lifetime, and was called the "Archimedes of his 
age". This is inscribed on his tombstone.   

 
Daniel Bernoulli 
Daniel Bernoulli was the son of Johann Bernoulli. Like his father, he rebelled against parental 
direction for his career. Unfortunately, there was also interfamily rivalry, jealousy and bitterness.  

Daniel was sent to Basel University at the age of 13 to study philosophy and logic. He 
obtained his baccalaureate examinations in 1715 and went on to obtain his master's degree in 
1716. Johann was determined that Daniel should become a merchant and he tried to place him in 
an apprenticeship.  

In Venice Daniel was severely ill and so was unable to carry out his intention of 
travelling to Padua to further his medical studies. However, while in Venice he worked on 
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mathematics and his first mathematical work was published in 1724 when, with Gold Bach’s 
assistance, Mathematical exercises was published.  

Bernoulli’s interests were eclectic. While in Venice, Daniel he designed an hour glass to 
be used at sea so that the trickle of sand was constant even when the ship was rolling in heavy 
seas. He submitted his work on this to the Paris Academy and in 1725, the year he returned from 
Italy to Basel, he learnt that he had won the prize of the Paris Academy.  

Daniel had also attained fame through his work Mathematical exercises and on the 
strength of this he was invited to take up the chair of mathematics at St Petersburg.  Meanwhile, 
his brother Nicolaus(II) Bernoulli was also offered a chair of mathematics at St Petersburg so in 
late 1725 the two brothers travelled to St Petersburg.  

Within eight months of their taking up the appointments in St Petersburg Daniel's brother 
died of fever. He thought of returning to Basel and wrote to his father telling him how unhappy 
he was in St Petersburg. Johann Bernoulli was able to arrange for one of his best pupils, Leonard 
Euler, to go to St Petersburg to work with Daniel. Undoubtedly the most important work which 
Daniel Bernoulli did while in St Petersburg was his work on hydrodynamics.  

This work contains for the first time the correct analysis of water flowing from a hole in a 
container. [3]One other remarkable discovery appears in Chapter 10 of Hydrodynamica where 
Daniel discussed the basis for the kinetic theory of gases. He was able to give the basic laws for 
the theory of gases and gave, although not in full detail, the equation of state discovered by Van 
der Waals a century later.  

He and his younger brother left St Petersburg in 1733, making visits to Danzig, Hamburg, 
Holland and Paris before returning to Basel in 1734. Although Daniel had left St Petersburg, he 
continued his collaboration with Euler;  and the two exchanged many ideas on vibrating systems 

Intense father-son rivalry attended Daniel Bernoulli’s entry regarding astronomy for the 
1734 Grand Prize of the Paris Academy, His father also submitted an entry and the father-son 
pair were declared joint winners of the Grand Prize. Their joint victory intensified the rivalry 
between them.[4]  

Daniel Bernoulli's accepted of many of Newton's theories and his use of these together 
with the results generated from Leibniz’s calculus fueled his work   

Daniel Bernoulli was much honored in his own lifetime. He was elected to most of the 
leading scientific societies of his day including those in Bologna, St Petersburg, Berlin, Paris, 
London, Bern, Turin, Zurich and Mannheim.  
 

In addition to  Jacob, Johann, and Daniel, the Bernoulli family produced many notable 
artists and scientists, with particular emphasis on mathematics. in: 

 
• Nicolaus I Bernoulli (1687–1759) Mathematician. 
• Nicolaus II Bernoulli (1695–1726) Mathematician; worked on curves, differential 

equations, and probability. 
• Daniel Bernoulli (1700–1782) Developer of Bernoulli's principle and St. Petersburg 

paradox. 
• Johann II Bernoulli (1710–1790; also known as Jean) Mathematician and physicist. 
• Johann III Bernoulli (1744–1807; also known as Jean) Astronomer, geographer, and 

mathematician. 
• Jacob II Bernoulli (1759–1789; also known as Jacques) Physicist and mathematician. 

 
 
Bernoulli Distribution and Introduction to Random Variables 
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Skewness and Kurtosis for the Bernoulli Distribution. 
Moment Generating and Probability Generating Functions 
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Alexandre-Théophile Vandermonde  
 
 
 
The founder of the theory of determinants, Alexandre Théophile Vandermonde was born 

in Paris on February 28, 1735. His work in mathematics was limited to only two years.  
He was plagued by ill health his entire life, and as a boy took the advice of his parents.  

His father, a physician who after spending twelve years in the Orient and now practicing 
medicine in Paris, encouraged his son to avoid the physically demanding medical profession and 
instead study music which his bright son thoroughly enjoyed.  

He pursued a music career, but abruptly changed direction at thirty five years of age. At 
this point, he devoted himself to mathematics, and from  1771-1773  presented four papers to the 
Académie des Sciences in 1771, elected to the academy after the first one. These four papers 
represent his total mathematical output.   

The first of these four papers presented a formula for the sum of the mth powers of the 
roots of an equation. It also presented a formula for the sum of the symmetric functions of the 
powers of such roots, using original techniques separate from those of others who published 
beforehand.   

In his second paper Vandermonde considered the problem of the knight's tour on the 
chess board. *This paper is an early example of the study of topological ideas. Vandermonde’s 
consideration of the intertwining of the curves generated by the moving knight were extended 
first by Gauss and then Maxwell to be useful in generating the ideas of electrical circuits.  

In his third paper Vandermonde studied combinatorial ideas.  At the time there was no 
symbol to represent the factorial.  He defined the symbol  

 
[p]n = p(p - 1)(p - 2)(p - 3) ... (p - n + 1) 

and 
[p]-n = 1 / {(p + 1)(p + 2)(p + 3) ... (p + n)}. 

 
In addition, he gave an identity for the expansion of [x + y]n . 
The final of Vandermonde's four papers studied the theory of determinants and is credited 

with being the first mathematician to prepare a systematic treatment of the theory of 
determinants.[1] The determinant named after him is one in which the elements of each row or 
column are: 1, r, r2, ..., rn-1 of a geometric progression.  

After 1772, Vandermonde dropped out of the mathematics world as precipitously as he 
entered it. Vandermonde's election to the Académie des Sciences did motivate him to work hard 
for the Academy and to publish other works on science and music.  

Revolution began with the storming of the Bastille on 14 July 1789. The politics of 
Revolution in France long before this event had been so exciting for Vandermonde, and some 
speculate that this intense interest in concert with declining health sapped much of his 
intellectual and physical strength. [2]   
                                                 
   
* The object of this chess puzzle it to construct the sequence of moves by a knight chess piece on a chessboard, 
permiting the knight to land on each square of the board one and only one time.  
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He died on January 1, 1796 in Paris. 
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Augustin Louis Cauchy  
 
“He met his death with such calm that made us ashamed of our unhappiness” 
 
 
The French mathematician Augustin Louis Cauchy (1789-1857) provided the foundation for 
modern rigor in mathematical analysis.[1]  

Born in Paris on Aug. 21, 1789, 38 days after the fall of the Bastille, the first world he 
knew was one of political upheaval.[2] His father, Louis François, was a parliamentary lawyer, 
lieutenant of police, and ardent royalist. Sensing the political wind, he moved the family to his 
country cottage at Arcueil, where they lived for nearly 11 years, themselves schooling their son. 
The family moved back to Paris in 1800 when the political situation stabilized. Laplace and 
Lagrange were visitors at the Cauchy family home and Lagrange in particular seems to have 
taken an interest in young Cauchy's mathematical education, advising Cauchy's father to 
continue his education.[2] 

In 1810 Cauchy took up his first job in Cherbourg to work on the port facilities for 
Napoleon's English invasion fleet. In addition to his heavy workload Cauchy undertook 
mathematical researches, proving in 1811 that the angles of a convex polyhedron are determined 
by its faces.  

In his spare time he began to review all mathematics, "clearing up obscurities" and 
inventing new methods for the "simplification of proofs and the discovery of new propositions", 
giving the word "determinant" its modern meaning. 

 Cauchy felt that he had to return to Paris if he was to make an impression with 
mathematical research, but apparently suffered a severe depressive episode. Recovering he 
arrived in Paris, he chose to stay in Paris and pursue his career.  

Cauchy’s work as an academician was transformative. Cauchy was a brilliant academic 
success, although his countenance as an evangelical Catholic creative difficulty for him.  

Cauchy understood the power of the printing press. There were occasions when he would 
produce two full-length papers in one week. He overwhelmed the community of mathematicians 
with his published word.  

At the age of 27 Cauchy was elected to the Académie des Sciences-an unusual honor for 
so young a man.   

Cauchy cemented the logical foundation of differential calculus with the concept of the 
limit. His definition of continuity and the derivative in terms of limits presaged future 
constructions. In addition, he founded complex functional analysis  

Cauchy permitted politics to adumbrate his work when he refused to take an oath of 
allegiance to King Philippe after having sworn and oath to King Charles. Stripped of all his 
positions, he left his family in Paris, and began a period of self-exile in Switzerland.   

Cauchy died on May 23, 1857, after a short illness. The following is a quote from one of 
his children.  

“Having remained fully alert, in complete control of his mental powers, until 3.30 
a.m.. my father suddenly uttered the blessed names of Jesus, Mary and Joseph. For the 
first time, he seemed to be aware of the gravity of his condition. At about four o'clock, his 
soul went to God. He met his death with such calm that made us ashamed of our 
unhappiness.” 

 His last words were "Men die but their works endure." 
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Siméon-Denis Poisson  
 
Born at Pithviers on June 21, 1781, Simeon Poisson* developed many novel applications of 
mathematics for statistics and physics, contributions that came after a stunning single day 
coincidence.   

Siméon’s father had been a private soldier, and on his retirement was given a small 
administrative post in his native village. When the French revolution broke out, his father 
assumed the government of the village, and soon became a local dignitary. Commonly required 
to be away from home most of the day,  he left Siméon in the care of a nursemaid, who, caring 
for the young boy in a countryside home, struggled with her own desperate fear of wild animals 
nearby. Meanwhile, young Siméon asked to play outside.  

She allowed him to play, but only in the manner that permitted her to quell her fear of his 
being devoured by local beasts. She first spied a nail high up on an outside wall and quickly 
found a cord. She promptly secured the cord around the nail, and lifting Simeon, she fastened the 
other end to his clothes, leaving him suspended. Now feeling at ease, she allowed the boy to 
dangle high enough above the ground and protected from the animals she supposed were lurking 
nearby. And this he did, hour and hour, day in and day out. [1] 

Yet Siméon enjoyed this, entertaining himself  by swinging from side to side for hours at 
a time. It was this activity that he identified years later as the force behind his attraction for the 
mechanics and process of pendular motion.   

Educated by his father, he was both encouraged and pushed to go into medicine. His 
uncle, a physician himself, offered to teach him the craft, and to give Siméon a feel for the field, 
started him repetitively pricking the veins of cabbage-leaves with a lancet. [2] Young Poisson 
soon mastered this and was given permission to begin lancing boils on humans. However, after 
lancing a boil on his first patient who died several hours later, the distraught Poisson swore he 
would have nothing more to do with medicine.  

When he returned home, he stumbled across a question set among his father’s official 
papers. They were from the Polytechnic school.  He was fascinated by their mathematical 
structure.  

This day’s horrors and discoveries determined Poisson’ career.  
At the age of seventeen he entered the Polytechic. One year later, his first paper, focused 

on a discussion of finite differences impressed his colleagues and quickly appeared in an 
important journal. As soon as he had finished his studies, he was appointed as a lecturer.  

Throughout Poisson’s  life he held various scientific posts and professorships. He made 
the study of mathematics his hobby as well as his business, writing between 300-400 
manuscripts and books on a variety of mathematical topics, including pure mathematics, the 
application of mathematics to physical problems, the probability of random events, the theory of 
electrostatics and magnetism (which led the forefront of the new field of quantum mechanics), 
physical astronomy, and wave theory. 

One of Siméon Poisson's lasting contributions was the development of equations to 
analyze random events, later dubbed the Poisson distribution.  

                                                 
 *Taken from  http://www.sci.sdsu.edu/~ smaloy/MicrobialGenetics/topics/ mutations/poisson.html, and Wikipedia. 
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The fame of this distribution is often attributed to the following story. Many soldiers in 
the Prussian Army died due to kicks from horses. To determine whether this was due to a 
random occurrence or the wrath of god, the Czar commissioned the Russian mathematician 
Ladislaus Bortkiewicz to determine the statistical significance of the events.[3] Fourteen corps 
were examined, each for twenty years providing a wealth of information time.  For over half this 
period, there were absolutely no deaths from horse kicks; for the remaining half, the number 
death ranged from 1-4,  identifying the event as relatively uncommon.  Poisson applied his 
distribution and found that it fit remarkably well.  

His excellent writing on celestial mechanics also stand out, and these contributions put 
him on a level with  Pierre-Simon Laplace. In the earliest of these papers,  Poisson improved 
Lagrange’s findings on the stability of planetary orbits.  

Poisson’s memoir was remarkable inasmuch as it reinvigorated Lagrange in his old age to 
author his own writings, thereby producing one of his greatest manuscripts.  In fact he did 
Poisson’s memoir the honor of making a copy with his own hand, that was posthumously found.  

In mathematics,  his most important works were a series of papers on definite integrals 
and his advances in Fourier analysis, which paved the way for the research of the German 
mathematicians Peter Dirichlet and Bernhard Riemann.  

Poisson died April 25, 1840. 
                                                 
1 http://www.sci.sdsu.edu/~ smaloy/MicrobialGenetics/topics/ mutations/poisson.html 
2. https://en.wikipedia.org/wiki/Sim %C3%A9on_Denis_Poisson  
3. https://onlinelibrary.wiley.com/doi/full/10.1111/anae.13261  

http://www.sci.sdsu.edu/%7E
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Guido Fubini  
 
Born in January 1879, Guido Fubini demonstrated an early aptitude for  mathematics 
demonstrating in secondary school his powerful aptitude for mathematics.* 

In 1896 Fubini entered the Scuola Normale Superiore di Pisa where he was encouraged to 
undertake geometry.[1] Most young doctoral students take a few years to make themselves well 
known in their area. However, Fubini was lucky for his teacher Bianchi was about to publish an 
important work on differential geometry, and he included Fubini’s thesis in his treatise.   

Going against the grain, upon graduation, Fubini put his thesis aside and began work in a 
completely different topic. Fubini's interests were exceptionally wide moving from his early 
work on differential geometry towards analysis. In 1908 Fubini moved to Turin where he taught 
both at the Politecnico and at the University of Turin.  

He taught courses on these analysis topics at both the Politecnico and the University in 
Turin.  
  During this time his research focused primarily on topics in mathematical analysis, 
especially differential equations, functional analysis, and complex analysis. However, when 
World War I began, like many contemporary scientists, he began working in quantitative areas 
with military applications. However, at the conclusion of the war, he examined issues in 
acoustics and electrical circuits.   

In mathematical analysis Fubini's theorem, is a result which gives conditions under which 
it is possible to compute a double integral using iterated integrals. As a consequence it allows the 
order of integration to be changed in iterated integrals. It is applied in the derivation of the Beta 
distribution and the normal distribution.  

He was nearing the end of his career when the political situation in Italy suddenly put him 
in an exceptionally difficult position. A series of decrees removed Jews from positions of 
influence in government, banking and education. Fubini was forced to retire from his chair in 
Turin. Ultimately, he removed his family to New York City.  

Taking an interest in the engineering problems that his sons were solving, he wrote a 
textbook on the mathematical challenges of this work. The textbook appeared posthumously, 
jointly authored with G Albenge, This last textbook was one of an impressive collection of 
important textbooks on analysis which included books which described analysis courses which 
he had given and also books which were collections of problems.  

He died in June 1943. 
                                                 
1 http://mathshistory.st-andrews.ac.uk/Biographies/Fubini.html 

                                                 
 
* Developed from http://www-groups.dcs.st-and. ac.uk/history/Biographies/ Fubini.html and 
http://en.wikipedia.org/wiki/Guido_Fubini 
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Agner Krarup Erlang 

 
 
Agner Krarup Erlang (January 1, 1878 – February 3, 1929) was a Danish mathematician, 
statistician and engineer, who invented the fields of traffic engineering and queuing theory.[1] 
  Agner Erlang's mother, Magdalene Krarup, broke with the family tradition that all sons 
became clergymen and all daughters married clergymen when she married Hans Nielsen Erlang, 
a schoolmaster and parish clerk. Agner was the second of his parents' four children, having an 
older brother Frederik and two younger sisters Marie and Ingeborg.  His sedulous father and 
mother made a happy if simple home for their family in difficult financial times.  

Agner was a bright child, who preferred reading to playing with the other boys.  Educated 
at his father's school when he was young, he became enamored of astronomy, encouraged by his 
maternal grandfather who also loved it, but went one step further by writing poems about 
astronomical objects. After his primary education, Agner was tutored at home by his father and 
another teacher from his father's school. He took his Praeliminaereksamen examination in 
Copenhagen at the age of fourteen after having to obtain special permission to take the test 
because he was below the minimum age and passed with special distinction.  

After graduating with majors in mathematics and physics, astronomy and he taught high 
school for the next seven years. He was quite good at it.  

With  his heavy red full beard and his manner of dressing he appeared more artist then 
science technician. However, he was extremely modest, preferring the peaceful atmosphere of 
his study to festivities; he never touched alcoholic liquors nor smoked tobacco.  He never 
married, devoting himself to collecting books on history, philosophy and poetry.  

Friends found him to be a good and generous source of information on many topics. He 
was known to be a charitable man, needy people often came to him at the laboratory for help, 
which he would usually give them in an unobtrusive way.  

At meetings of the Mathematical Association he met Johan Ludwig Jensen, chief 
engineer at the Copenhagen Telephone Company, who persuaded Erlang to work with him on 
problems arising from telephone call waiting times. [2] 

Erlang published his first paper on the theory of probability and telephone conversations 
in 1909. In this paper he showed that if telephone calls were made at random they followed the 
Poisson distribution, and he gave a partial solution to the delay problem. In 1917 he  again 
published, this time giving a formula for loss and waiting time which was soon used 
internationally. The Erlang distribution is named for him.  

In the twenty years that Erlang worked for the Copenhagen Telephone Company he never 
had to take a day off through illness. However, in January 1929, at the age of 51 he began 
suffering from abdominal pains and went into hospital for an operation. He died a few days later.  
 
                                                 
1. http://www-history.mcs.st-and.ac.uk/Biographies/Erlang.html  
2. http://en.wikipedia.org/wiki/Agner_Krarup_Erlang. 
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Carl Friedrich Gauss 
 
 
Johann Carl Friedrich Gauss, the Prince of Mathematicians was born April30, 1777.  His 
influence on mathematics which he dubbed the "the queen of sciences".[1]* 

Born into a poor family, his illiterate mother never recorded the date of his birth, only 
remembering that it was on a Wednesday, forty eight days before Easter.†  

When he, at three years old, informed his father of a mistake in a complicated payroll 
calculation stating the correct answer, his family recognized the prodigy they had among them.  
In school, when his teacher gave the problem of summing the integers from 1 to 100 (an 
arithmetic series ) to his students (who ranged from 6 to 16 years of age), Carl, turned in the 
answer (5050) on his slate at once.‡ At age 19, Gauss demonstrated a method for constructing a 
heptadecagon using only a straightedge  and compass  which had eluded the Greeks. Gauss also 
showed that only regular polygons  of a certain number of sides could be constructed in that 
manner (a heptagon, for example, could not be constructed.)  

The year 1796 was most productive for both Gauss and number theory. He discovered a 
construction of the heptadecagon on 30 March. He further advanced modular arithmetic, greatly 
simplifying manipulations in number theory. On 8 April he became the first to prove the 
quadratic reciprocity law, permitting mathematicians to determine the solvability of any 
quadratic equation in modular arithmetic. The prime number theorem, conjectured on 31 May, 
gives a good understanding of how the prime numbers are distributed among the integers. Gauss 
also discovered that every positive integer is representable as a sum of at most three triangular 
numbers on 10 July and then jotted down in his diary the famous note: "ΕΥΡΗΚΑ!”. On October 
1 he published a result on the number of solutions of polynomials with coefficients in finite 
fields, which 150 years later led to the Weil conjectures.[2] 

He completed Disquisitiones Arithmeticae, his magnum opus, in 1798 at the age of 21, 
though it was not published until 1801. This work was fundamental in consolidating number 
theory as a discipline and has shaped the field to the present day. 

Gauss proved the fundamental theorem of algebra,  which states that every polynomial  
has a root of the form   In fact, he gave four different proofs, the first of which appeared in 
his dissertation. In 1801, he proved the fundamental theorem of arithmetic, which states that 
every natural number  can be represented as the product  of primes in only one way.  

In 1801, Gauss developed the method of least squares fitting,  10 years before Legendre, 
but did not publish it. The method enabled him to calculate the orbit of the asteroid  Ceres, which 
had been discovered by Piazzi from only three observations. Piazzi could only track Ceres for a 
few months, following it for three degrees across the night sky. Then it disappeared temporarily 
behind the glare of the Sun. Several months later, when Ceres should have reappeared, Piazzi 

                                                 
*Taken from http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss  
† Gauss would later solve this puzzle about his birthdate in the context of finding the date of Easter, and in the 
process derived methods to compute dates  in both past and future years. 
‡ It is notable that his teacher, known for his apathetic attitude toward his students, took an interest in Gauss, 
teaching him much about mathematics and offering him encouragement.  

.a bi+
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could not locate it.* Gauss, who was 23 at the time, heard about the problem and tackled it. After 
three months of intense work, he predicted a position for Ceres in December 1801—just about a 
year after its first sighting—and this turned out to be accurate within a half-degree when it was 
rediscovered by Franz Xaver von Zach on 31 December at Gotha, and one day later by Heinrich 
Olbers in Bremen. However, after his independent discovery, Legendre accused Gauss of 
plagiarism. 

 Gauss published his monumental treatise on celestial mechanics Theoria Motus in 1806. 
He became interested in the compass through surveying and developed the magnetometer and, 
with Wilhelm Weber measured the intensity of magnetic forces. With Weber, he also built the 
first successful telegraph.  

Gauss is reported to have said "There have been only three epoch-making 
mathematicians: Archimedes, Newton and Eisenstein. There is also a story (perhaps apocryphal)  
that in 1807 he was interrupted in the middle of a problem and told that his wife was dying. He is 
purported to have said, "Tell her to wait a moment 'til I'm through".  

Gauss arrived at important results on the parallel postulate,  but failed to publish them. 
Credit for the discovery of non-Euclidean geometry therefore went to Janos Bolyai and 
Lobachevski. However, he did publish his seminal work on differential geometry  in 
Disquisitiones circa superficies curves. The Gaussian curvature  (or "second" curvature) is 
named for him. He also discovered the Cauchy integral theorem  for analytic functions,  but did 
not publish it.  

Gauss's personal life was overshadowed by the early death of his first wife, Johanna 
Osthoff, in 1809, soon followed by the death of one child, Louis. Gauss plunged into a 
depression from which he never fully recovered. He married again, to Johanna's best friend 
named Friederica Wilhelmine Waldeck but commonly known as Minna. When she died in 1831 
after a long illness,  one of his daughters, Therese, took over the household and cared for Gauss 
until the end of his life.  

Gauss was an ardent perfectionist and a hard worker. He was never a prolific writer, 
refusing to publish work which he did not consider complete and above criticism. This was in 
keeping with his personal motto pauca sed matura ("few, but ripe"). His personal diaries indicate 
that he had made several important mathematical discoveries years or decades before his 
contemporaries published them. Many of his results were subsequently repeated by others, since 
his terse diary remained unpublished for years after his death. This diary was only 19 pages long, 
but later confirmed his priority on many results he had not published.  

Though he did take in a few students, Gauss was known to dislike teaching. It is said that 
he attended only a single scientific conference, which was in Berlin in 1828. However, several of 
his students became influential mathematicians, among them Richard Dedekind, Bernhard 
Riemann, and Friedrich Bessel. Before she died, Sophie Germain was recommended by Gauss to 
receive her honorary degree. 

In 1831 Gauss developed a fruitful collaboration with the physics professor Wilhelm 
Weber, leading to new knowledge in magnetism (including finding a representation for the unit 
of magnetism in terms of mass, length and time) and the discovery of Kirchhoff's circuit laws in 
electricity. It was during this time that he formulated his namesake law. In 1840, Gauss 
published his influential Dioptrische Untersuchungen, in which he gave the first systematic 
analysis on the formation of images under a paraxial approximation (Gaussian optics). Among 
his results, Gauss showed that under a paraxial approximation an optical system can be 
characterized by its cardinal points and he derived the Gaussian lens formula. 

                                                 
* The mathematical tools of the time were not able to extrapolate a position from such a scant amount of 
data. 
 

 



Gauss  641 
 

 
 

In 1854, Gauss notably selected the topic for Bernhard Riemann's now famous 
Habilitationvortrag, Über die Hypothesen, welche der Geometrie zu Grunde liegen. On the way 
home from Riemann's lecture, Weber reported that Gauss was full of praise and excitement. 

Gauss died in Göttingen, in the Kingdom of Hannover  in 1855 and is interred in the 
Albanifriedhof cemetery there.  
 
                                                 
1 http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss 
2 . http://scienceworld.wolfram.com/biography/Gauss.html. 
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Sydney Chapman 
 

Sydney Chapmen, and English mathematician, co-discovered the system of difference-
differential equations used in queuing theory, operations research, and epidemiology with 
Andrey Kolmogorov.  

Chapman initially engineering at the University of Manchester but become so 
enthusiastic for mathematics that he stayed for one further year to take a mathematics degree. He 
held the Beyer Chair of Applied Mathematics at Manchester from 1919 to 1924.[1]   

In 1946, Chapman was elected to the Sedleian Chair of Natural Philosophy at Oxford, 
and was appointed fellow of The Queen's College, Oxford. In 1953, on his retirement from 
Oxford, Chapman took research and teaching opportunities all over the world, including at the 
University of Alaska and the University of Colorado, as well as opportuniees in Cairo, Istanbul, 
Prague, and Tokyo.  

Chapman's most noted mathematical accomplishments were in the field of Markov 
processes. He and Kolmogorov independently developed the difference differential equations so 
useful in many fields.  
 
In 1970, Chapman died in Boulder, Colorado, at the age of 82.The lunar Crater Chapman is 
named in his honor. 
 
References 
 
                                                 
1 https://en.wikipedia.org/wiki/Sydney_Chapman_(mathematician) last accessed April 13, 2020. 
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