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Many authors have pointed out that relative-risk estimates derived from ecologic data
are vulnerable to biases not found in estimates derived from individual-level data. Nev-
ertheless, biases in ecologic studies still are often dealt with in the same manner as
biases in other observational studies, and so are not given adequate treatment. This
commentary reviews and illustrates some of the more recent findings about bias in
ecologic estimates. Special attention is given to problems of ecologic confounder control
when individual risks follow a nonlinear model, and to misconceptions about ecologic
bias that have appeared in the literature. Am J Epidemiol 1994; 139:747-60.
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Editor's note: Two additional invited
commentaries on this topic follow on pp.
761 and 765, and a response by Greenland
and Robins appears on p. 769.

Although the problem of ecologic bias
was described in the social science literature
over 40 years ago (1), specialized epidemio-
logic discussions have become common
only in the last decade (2-6). These discus-
sions may have been inspired by the recog-
nition that, under special assumptions, eco-
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logic studies can supply estimates of
individual-level relative risks (7).

As various discussants have pointed out
(3-6, 8, 9), ecologic relative-risk estimates
can be subject to biases not present in esti-
mates from individual-level observational
studies of the same populations (case-
control and cohort studies). Unlike an
individual-level study, an ecologic study
does not link individual outcome events to
individual exposure or covariate histories,
nor does it link individual exposure and co-
variate histories to one another. It is these
linkage failures that are the source of the
special biases of ecologic studies (1, 2, 6).
There are already a number of epidemio-
logic reviews that illustrate problems arising
from this linkage failure (2, 4, 6, 9), and we
do not want to replicate them here. Instead,
we will focus on more recent findings, not
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748 Greenland and Robins

illustrated in these reviews, of differences in
the way certain methodological problems
affect ecologic and individual-level results
(3,5,8,9). Our examples illustrate this point
for effects of confounder misspecification,
model-form misspecification, and con-
founder measurement error.

Similar to individual-level studies, eco-
logic studies can provide valid tests of the
no-effect hypothesis under broader condi-
tions than those required for valid estimation
from the study (10). Nevertheless, our ex-
amples illustrate that this result may be
of less utility than the corresponding
individual-level result: Under departures
from the null, a test in either type of study
may indicate no association, or even one in
the wrong direction, because of uncon-
trolled nonlinear effects; but, even when
such nonlinearities may be easily detected
and accounted for in individual-level data,
they are often undetectable and impossible
to control in the ecologic summary of the
same data. These problems can be com-
pounded by the paradoxical effects of mea-
surement error and cross-level bias in eco-
logic studies (8).

Our presentation is not intended as a criti-
cism of any particular study or as a general
condemnation of ecologic studies. We do,
however, suggest that the problems we dis-
cuss need to be considered when one criti-
cally evaluates ecologic results.

CONDITIONS FOR NO CONFOUNDING
IN ECOLOGIC AND INDIVIDUAL-LEVEL
STUDIES

Traditionally, an ecologic study of disease
examines the relation between outcome
means (such as disease rates) and exposure
means across various populations. In most
but not all examples, the populations are de-
fined geographically, and so we will refer to
the populations as regions. The algebraic
view provided by Piantadosi et al. (4) and
the geometric view provided by Walter (6)
succinctly summarize earlier results, which
focused on linear regression. It can be seen
from either view that, under the simple
linear-regression model, ecologic bias can-

not occur unless the exposure-specific dis-
ease rates vary across region. This point sug-
gests that ecologic bias can be thought of as
arising from cross-regional variation in risk-
factor distributions, and this suggestion in
turn has led to a view of ecologic bias as a
problem analogous to the problem of con-
founding in individual-level studies (4, 6,
10). The following examples illustrate that,
in applying this analogy, one must take care
to distinguish ecologic and individual levels
of confounding.

Example 1

Suppose we wish to test the hypothesis
that environmental radon levels affect lung-
cancer risk. In an ecologic study, each
region has associated with it two key dis-
tributions relevant to this question: the
regional distribution of radon levels and the
regional distribution of background lung-
cancer risks ("background risks" here means
the risks that would be present if no envi-
ronmental radon were present). Suppose
that radon distributions have somehow been
randomly assigned across regions and the
number of regions is large. Apart from sta-
tistical variation, we may then deduce that
there will be no ecologic association of ra-
don distributions with lung-cancer rates
across regions if there are no radon effects
on either lung-cancer risk or the regional
distributions of background risk factors.
This conclusion holds even if within each
region radon levels are associated with
background risk, so that an individual-level
study in any region would find a spurious
association if control for background risk
was not complete.

To make this example more concrete, sup-
pose that radon has no effect, that age, sex,
and smoking are the only important deter-
minants of background risk, and that across
regions no feature of radon distributions is
associated with any feature of the joint age-
sex-smoking distributions. The latter con-
dition would guarantee absence of an eco-
logic association of radon and lung cancer.
This would be true even if, within each re-
gion, older smokers tended to preferentially
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Biases in Ecologic Studies 749

live in low-radon dwellings; in this case, age
and smoking effects would make radon ap-
pear protective at the individual (within-
region) level, even though there would be no
association at the ecologic level.

Example 2

Consider the converse of example L Sup-
pose that, within each region, radon expo-
sure has somehow been randomly assigned
across individuals, and there are many in-
dividuals in each region. Apart from statis-
tical variation, we may then deduce that
there will be no individual-level association
of radon levels with lung-cancer rates within
regions if there are no radon effects. This
conclusion holds even if, across regions, ra-
don distributions are associated with the dis-
tributions of background risk across regions,
so that an ecologic study would find a spu-
rious association if control for the distribu-
tion of background risk was not complete.

To make this example more concrete,
again suppose that radon has no effect, that
age, sex, and smoking are the only important
covariates, and that radon levels within re-
gions are unassociated with age, sex, or
smoking. The latter condition would guar-
antee absence of an individual-level asso-
ciation of radon and lung cancer. This would
be true even if older smokers tended to pref-
erentially live in regions with low radon lev-
els; in this case, age and smoking effects on
regional rates would make radon appear pro-
tective at the ecologic (cross-regional) level,
even though there would be no association
at the individual level.

The preceding examples illustrate that
conditions that guarantee no confounding in
an ecologic study are logically independent
of the conditions that guarantee no con-
founding in an individual-level study of the
same population. In practice, epidemiolo-
gists are (rightfully) loathe to assume either
such condition in observational studies.
When randomization is not a tenable hy-
pothesis, attention turns to identification,
measurement, and control of potential
confounders—the determinants of back-
ground risk. Such control crucially hinges

on adequate measurement of the potential
confounders.

EFFECTS OF NONLINEARITY AND
NONADDmVITY

In individual-level studies, a confounder
measured without error can be fully con-
trolled by using stratification or by using an
approximately correct regression model,
and the degree of confounding produced by
a confounder can be estimated by comparing
the estimates obtained before and after ad-
justment for a confounder. Nevertheless, a
crude measurement or surrogate for a con-
founder may be inadequate to achieve full
control. For example, adjustment for a
smoking indicator (yes/no) may be inad-
equate to remove all confounding by smok-
ing, even if the indicator is measured with-
out error. To ensure full control, a more
detailed summary of smoking history would
be needed, and thus we would say that an
analysis based on the smoking indicator
alone would suffer from confounder mis-
specification. Similar comments would ap-
ply for any other variable with a complex,
time-varying history, such as nutrient
intake.

The situation is no different in principle
for ecologic studies. Here, however, each
confounder is much more complex than an
individual history, and hence misspecifica-
tion is even more difficult to avoid. For ex-
ample, if in an individual-level study the
main potential confounder is the smoking
history of an individual, in the correspond-
ing ecologic study the analogous potential
confounder will be the distribution of all
smoking histories across all individuals
within each region. In typical ecologic stud-
ies, the summaries available for each region
may be grossly inadequate to control con-
founding by the summarized covariate. This
is especially true if nonlinearity or nonad-
ditivity of effects ("effect modification") is
present at the individual level, as one would
expect in studies of epithelial cancers (such
as lung cancer).

We will give several highly simplified
and extreme examples that we hope will
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750 Greenland and Robins

make clear how bias due to ecologic con-
founder misspecification can arise from
nonlinearity and nonadditivity of the under-
lying individual-level regression. These ex-
amples show that ecologic covariate sum-
maries can be inadequate to detect and
control confounding by a covariate with
nonlinear and nonadditive effects, and that
ecologic product terms can be inadequate to
ameliorate this problem. In these examples,
all measured variables are discrete and vary
according to simple systematic rules. (Par-
allel examples can be given in which all
measured variables are continuous and have
random components (9), but such examples

require integral calculus for complete analy-
sis.) For concreteness, we will suppose that
our objective is to estimate the effect of
radon levels in dwellings (measured in
picocuries/Hter (pCi/liter)) on lung-cancer
rates. The most prominent confounders are
age, smoking, and sex. For simplicity, we
will eliminate age and sex from the ex-
amples by restricting our hypothetical study
to males in a narrow age range. The ex-
amples illustrate the anomalies that can arise
when the available ecologic summary of a
confounder is inadequate for control of the
confounder, and the confounder's effect is
nonlinear.

Example 3

Suppose that our study data are limited to regional values of mean radon, mean smoking
(in packs per day), and lung-cancer rates among males aged 70-74 years, for 41 regions
indexed by r - 0, . . . , 40. Suppose also that

a) Radon levels are homogeneous within each region (so that the mean level is
every resident's level) but vary across regions according to the rule

regional radon level = xr = 0.1 + 0.3/r,

ranging from 0.1 in region 0 to 2.0 in region 40.

b) Let u be a standard Gaussian (normal) random variable. The percents of men
who smoke 0, 1, and 2 packs (0, 20, or 40 cigarettes) per day are

Po,. = 53 — 0.2r + 1.5u (expectation ranging from 45 to 53) and

pu — 34 + 0.4r — u (expectation ranging from 34 to 50), so that

P2, = 100 - Pa, - pu = 13 — 0.2r — 0.5w (expectation ranging from 5 to 13).

Here, smokers are fewer but tend to smoke more in low-numbered regions; these
trends counterbalance each other, so that the expected mean cigarettes per day
E(20plr + 40p2,)/100 shows no trend across region.

c) The lung-cancer rate per 105 person-years among individuals at radon level
x smoking 5 cigarettes a day is

R(xj) = 40(1 + 0.2x)exp(0.1s), (1)

so that radon has a linear "no-threshold" dose-response relation to lung cancer at
each level of smoking, but also has a multiplicative interaction with smoking.
Note that the rate ratio for 5 pCi/liter radon versus none is 1 + 0.2(5) = 2.0, and
the smoking rate ratio for one pack (20 cigarettes) per day versus none is
exp[(0.1)20] = 7.4.

Conditions (a) and (b) imply that radon and smoking levels will in expectation be nearly
uncorrelated across regions. Conditions (a)-(c) imply that the lung-cancer rate in region r
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Biases in Ecologic Studies 751

will be

Rr = [pJi^O) + PlrR(xr,20) + P2rR(xr,40)]/100

= 0.40(1 + O-aOfro, + plre
2 + PlTe% (2)

A set of ecologic data generated under assumptions (a)-(c) is given in figures 1—3. Even
though the lung-cancer rates Rr show the strong upward relation to smoking one would expect
from model 1, and the ecologic correlation between radon and smoking is only 0.01, there
is a significant negative ecologic association of radon with lung cancer rates. For these data,
an ordinary ecologic linear regression of the regional rates RT on radon level xr and mean
smoking level sr yields the fitted line

Rr = -1.5 - 39.8xr + 40.8s,.,

which in turn yields a rate-ratio estimate for 5 pCi/liter of radon versus none (evaluated at
the mean cross-regional smoking level, 12 cigarettes per day) of

-1.5 - 39.8(5) + 40.8(12)
— —- = 0 59

-1.5 + 40.8(12)
Similarly, an ecologic log-linear regression yields

Rr = exp(5.07 - 0.093*, + 0.094sr),

which in turn yields rate-ratio estimates of exp[(-0.093)5] = 0.63 for 5 pCi/liter radon versus
none and exp[(0.094)20] = 6.6 for one pack a day of cigarettes versus none. More generally,
under assumptions (a)-(c), the expected radon rate-ratio estimates from the ecologic linear

0.8 1.2 1.6

Regional radon level in p C i / l i t e r

FIGURE 1. Lung cancer rates plotted against regional radon levels, with least-squares line, example 3.
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752 Greenland and Robins

10.8 1 1.2 11.6 12.0 12.4

Mean cigarettes/day

12.8 13.2

FIGURE 2. Lung cancer rates plotted against regional mean cigarette consumption, with least-squares line,
example 3.

and log-linear regressions are 0.59 and 0.62, even though the expected smoking rate-ratio
estimates from the same regressions are nearly unbiased, mean smoking has almost no
expected ecologic correlation with radon, and smoking has no association with radon within
regions (because radon is constant within regions).

Because radon and mean smoking are nearly uncorrelated in example 3, the results of the
linear and log-linear regressions are unchanged if mean smoking is dropped from the re-
gression. Thus, in both ecologic regressions, smoking does not appear to be a confounder.
However, both regressions yield an inverse association of radon and lung cancer, despite the
fact that radon is a positive risk factor in the underlying model used to generate the data,
and the estimate of smoking effect is nearly unbiased. This occurs for two reasons: 1) the
strong ecologic association of the radon and smoking distributions—an association that is
not adequately summarized by the association of radon and mean smoking level; and 2) the
nonlinear smoking effect. In essence, ecologic control of smoking, based as it is only on the
smoking mean, is ineffective at removing the confounding by smoking. (Note that, in the
example, there are no other sources of confounding: radon and smoking were assumed to
be the only determinants of lung cancer within age and sex groups.)

More striking examples occur if radon and mean smoking are correlated across regions,
even to a small degree. In such cases, smoking will appear to be a confounder, but it is
possible for the smoking-adjusted estimate to be more biased than the unadjusted estimate.
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Biases in Ecologic Studies 753

Example 4

be
Let everything be as in example 3, except let the percent smoking 0 and 1 pack per day

Po, — 53 — 0.25r + 1.5u (expectations ranging from 43 to 53),

plr = 34 + 0.45r — u (expectations ranging from 34 to 52).

The expected ecologic correlation of radon and mean smoking will now be about 0.3. If
smoking is omitted from the regressions, the expected linear and log-linear ecologic esti-
mates of the rate-ratio for 5 pCi/liter radon versus none are 0.64 and 0.67. If, however,
smoking is included in the regression, these expected radon estimates become 0.53 and 0.58,
even though the smoking estimates are (as in example 3) nearly unbiased.

The additional bias produced by smoking adjustment in example 4 occurs because the
crude estimate is already downwardly biased; since mean smoking is positively correlated
with both radon and cancer, adjustment for this variable can only further diminish the radon
rate ratio. If mean smoking had been negatively correlated with radon, adjustment for it
would have increased the radon rate ratio and thus lessened the bias.

Thus far, our examples have concerned point estimation. Their implications for interval
estimation are straightforward, however: Since most confidence intervals are arithmetically
or geometrically centered on the point estimate, a bias in the point estimate implies a cor-
responding bias in the confidence interval. The following example shows that the problems
can also afflict ecologic tests of the null hypothesis.

^ 0.0 0.4 0.8 12 1.6

Regional radon level in pCi/liter

2.0 2.4

FIGURE 3. Scatterplot of regional radon levels and regional mean cigarette consumption, with least-squares line,
example 3.
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754 Greenland and Robins

Example 5

Consider again example 3. If we change
this example by setting the radon coefficient
in equation 1 to 0 instead of 0.2, the true
radon rate-ratio will be 1, but the expected
estimates (at 5 pCi/liter) from the linear and
log-linear ecologic regressions will be 0.06
and 0.28, whether or not smoking is con-
trolled. This implies that the statistic for test-
ing the null hypothesis will be centered
on a value far below 0, and hence will be
invalid.

It has been pointed out (11) that use of
product ("interaction") terms in ecologic re-
gressions can adjust for bias due to nonad-
ditivity in certain special cases. The above
examples show that product terms need not
always help, however: If the product of ra-
don and mean smoking is added to the linear
and log-linear regressions, the expected ra-
don rate ratios evaluated at the mean cross-
regional smoking level would be little
changed. Thus, in examples 3—5, the prob-
lematic nonlinear effects are not controlled
by adding a product term to the ecologic
regression.

One may legitimately ask if the same
problems would occur if, instead of mean
smoking levels, we had some other sum-
mary of regional smoking levels, such as
percent smoking (i.e., plr + p^,). In ex-
amples 3-5, this percent is highly correlated
with both radon and lung cancer, so that ad-
justment for percent smoking would further
reduce the estimates. In fact, if percent
smoking (instead of mean smoking) is added
to the linear and log-linear regressions, the
expected radon rate ratios become 0.12 and
0.37 in example 3,0.21 and 0.36 in example
4, and -0.19 and 0.17 in example 5. (It is a
peculiar property of the linear estimate that
it can take on negative values.) If the product
of radon and percent smoking is also added
to these regressions, the ratios become 0.12
and 0.30 in example 3, 0.07 and 0.27 in ex-
ample 4, and -0.25 and 0.14 in example 5,
slightly worse than without the product
term. Thus, in all three examples, the bias is
worse using percent smoking instead of
mean smoking.

REQUIREMENTS FOR ECOLOGIC
CONTROL OF CONFOUNDING

We have given examples in which
smoking could not be adequately con-
trolled by either of the usual ecologic sum-
maries of smoking distributions. What if
we had information on both mean and per-
cent smoking, and we entered them both in
the ecologic regressions? Here, at last, we
would see reasonable ecologic estimates:
In example 3, the expected linear and log-
linear radon rate ratios would become 2.9
and 3.6, and in example 4, these ratios
would become 2.8 and 3.5; these figures
are on the correct side of the null and cer-
tainly represent dramatic improvements
over the figures obtained controlling either
mean smoking or percent smoking alone
(although they remain biased because the
ecologic regressions are misspecified and
cannot fully control for the interaction of
radon and smoking (cf. references 3, 9)).

In example 5, the ratios would become 1.0
and 1.4 on control of both smoking vari-
ables. In fact, the expected linear-regression
radon coefficient would be zero, illustrating
that a valid ecologic test of the null can be
constructed from the linear model if one has
sufficiently detailed information on expo-
sure and covariates and all misclassification
is nondifferential (10). This result is some-
what analogous to a corresponding result for
individual-level studies, although, for indi-
vidual-level studies, the result holds for both
linear and log-linear models.

It appears, then, that one answer to the
bias illustrated in examples 3-5 is to con-
trol for more than just a single summary of
the covariate distribution (11). More spe-
cifically, suppose a covariate has K pos-
sible levels. Then, one may summarize re-
gional covariate distributions with a set of
K variables plr, ... p^, representing the
proportion of each region at each covariate
level (i.e., the marginal distribution of the
covariate). If there are no exposure effects,
regional effects, or other risk factors, the
rate at level k of the covariate will be a
constant /3t across regions, and so the rate
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in region r will be

R = (3)

which is a linear regression model. Thus, a
valid test for exposure effect may be ob-
tained by testing whether an exposure term
significantly improves the fit when added
to model 3. An equivalent test will be ob-
tained if the set of proportions (the p^) are
replaced by a full-rank linear transform of
the set. In examples 3-5, the mean and
proportion smoking and the constant term
are such a transform, and there are no con-
founders besides smoking; thus, one ob-
tains a valid test for radon effect if one
controls for mean and proportion smoking
in a linear model with an intercept term.

Unfortunately, equation 3 is less useful
than it might at first appear. In any realistic
example, most covariates (such as smoking)
will have many levels, but only one or per-
haps two ecologic summaries will be avail-
able. Furthermore, nonlinearity and nonad-
ditivity of effects among multiple covariates
can distort ecologic estimates in ways that
cannot be controlled simply by using sum-
maries of the marginal distributions of each
covariate (9, 11). In such cases, the within-
region joint distribution of the covariates
(e.g., the joint smoking-age-sex distribu-
tion) may be needed to fully control ecologic
confounding (11). Data on joint covariate
distributions are rarely if ever available in
ecologic studies. In contrast, the analogous
individual-level study would directly ob-
serve the joint covariate distribution.

Despite these limitations, one may con-
siderably improve ecologic results if mul-
tiple summary statistics are available on
each covariate. There is, however, one fur-
ther caution that should be recognized when
adding such summaries to an ecologic re-
gression: If, as is usually the case, the out-
come variable has been standardized, then
the covariates need to be standardized using
the same standard distribution as used for
the outcome. Otherwise, the addition of the
covariates to the regression may not help,
and may even worsen bias. Furthermore, the
exposure must be standardized using the

same standard distribution if bias is to be
avoided. In general, if some but not all the
variables in a regression have been standard-
ized, or if different variables have been stan-
dardized to different distributions, severe
bias may result (12). Standardization bias
may be especially common in ecologic
analyses, because disease rates are usually
age-standardized, whereas ecologic expo-
sures and covariates (such as radon, smok-
ing, income, etc.) are usually not (e.g., as in
reference 13).

MEASUREMENT ERROR

Apart from basic demographic variables,
most covariates used in ecologic regressions
represent rather crude measurements. One
relatively recent finding is that measurement
error can have profoundly different conse-
quences for ecologic and individual-level
studies; for example, nondifferential mis-
classification of a dichotomous exposure
will usually produce bias away from the null
in ecologic studies, exactly the opposite of
its usual effect in individual-level studies
(8). As another example, nondifferential
misclassification of a dichotomous con-
founder may have little effect on ecologic
control of the confounder (which, however,
may have been poor even without misclas-
sification) (14).

For variables with multiple levels, the ef-
fects of measurement error on ecologic es-
timates are less predictable, in part because
these effects can interact with confound-
ing and nonadditivity to produce various
anomalies.

Example 6

Consider again examples 3—5. Suppose
that, in each case, 10 percent of all smokers
misreported themselves as nonsmokers, and
an additional 10 percent of two-pack smok-
ers misreported themselves as one-pack
smokers, regardless of radon or disease sta-
tus. The observed mean smoking levels
would now be 18plr + 34/?^ cigarettes per
day. With mean smoking in the regressions,
the expected radon rate-ratio estimates from
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756 Greenland and Robins

the linear and log-linear regressions would
now be 0.54 and 0.59 in example 3,0.49 and
0.55 in example 4, and 0.03 and 0.27 in ex-
ample 5. In each case, the expected esti-
mates after misclassification are slightly
lower and thus more biased than before, and
the additional bias produced by the misclas-
sification is away from the null, even though
the misclassification is nondifferential. Note
also that in example 4, in which control for
mean smoking does nothing if smoking is
not misclassified, control for mean smoking
after misclassification produces a more bi-
ased estimate than no control. If both mean
smoking and proportion smoking are en-
tered in the regression, the slight downward
bias in the radon estimate produced by
smoking misclassification is toward the
null, and hence toward the true radon rate
ratio.

The potential consequences of misclassi-
fication can easily be explored via sensi-
tivity analysis of the ecologic regression
(8, 15); such analyses illustrate that the
linear rate-ratio estimate can be extraordi-
narily sensitive to even small degrees of
misclassification.

CROSS-LEVEL BIAS

One important breakdown in the analogy
between ecologic-bias and individual-level
confounding occurs because in etiologic re-
search, the target of inference for both eco-
logic and individual-level studies is the
same: Both study effects at the individual
level. For an individual-level study, these
target effects are at the same level as the
units of analysis. But, for an ecologic study,
these target effects are at a finer level than
the units of analysis. As a result, an ecologic
study can be unbiased for ecologic effects
(in particular, ecologic confounding may be
absent) and yet still be biased for individual-
level effects. Many of the classic social sci-
ence examples of ecologic bias are of this
form.

Example 7

A study of 19th-century suicide patterns
in Prussian provinces, cited by Morgenstera

(2), found that suicide rates increased mono-
tonically with the percent of province that
was Protestant (as opposed to Catholic).
This result might have been ecologically
unconfounded, in the sense that percent
Protestant might have been unassociated
with any other ecologic risk factor, so that
the observed association represented a true
effect of percent Protestant on provincial
suicide rates. It does not, however, follow
that being Protestant was a risk factor for
suicide in individuals. In fact, the opposite
could have been true: The increased suicide
rate in predominantly Protestant provinces
could have been due to an increase in sui-
cides among Catholics when the latter were
subjected to the pressures of minority status
in predominantly Protestant provinces. In
this case, the variable "percent Protestant"
would have been responsible for the excess
suicide rate via an individual-level interac-
tion with the individual-level religion vari-
able, and being Protestant would actually
have been protective against suicide among
individuals.

Note that the phenomenon just described
would have revealed its presence or absence
if any province free of the true individual-
level risk factor in the interaction (Catholi-
cism) had been observed: If Catholics were
indeed the source of the excess suicides
in the predominantly Protestant provinces,
in the absence of ecologic confounding a
completely Protestant province should have
exhibited a lower suicide rate than the
predominantly Protestant provinces. Con-
versely, if Protestantism was the individual-
level risk factor responsible for the ob-
served ecologic trend, a completely Protes-
tant province should have had the highest
rate of all.

The bias phenomenon in example 7 may
be ascribed to the fact that an ecologic (re-
gional) variable (percent Protestant) had ef-
fects on individual risk, in addition to effects
of the corresponding individual-level vari-
able (religion) that the ecologic variable
summarized. In both social and infectious-
disease epidemiology, as well as in commu-
nity intervention studies, ecologic effects
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may be of direct interest; a classic example
is the phenomenon of "herd immunity," in
which the overall prevalence of immunity in
a region, as well as individual immune sta-
tus, determines the risk of individuals within
the region (16). For noncontagious diseases,
however, ecologic effects may not be of di-
rect interest, and may in fact obscure the
individual-level effect of interest.

Example 8

Suppose we obtained data on mean air-
borne asbestos levels, mean smoking levels,
and lung-cancer rates at a large number
of industrial facilities that used asbestos-
containing materials, and suppose we
wished to use these data to estimate the ex-
cess lung-cancer caseload due to this indus-
trial asbestos exposure. (Here, the ecologic
"regions" are the facilities.) A regression
of the rates on asbestos and smoking
means could produce a severely attenuated
asbestos-lung cancer association under the
following scenario: Suppose that within
each facility there was a wide range of ex-
posure levels according to specific job as-
signment. Employers at facilities with ex-
tensive asbestos use had become aware of
their potential liability and the potential in-
teraction of asbestos and smoking at a fairly
early time, and had selectively reassigned
smokers to low-exposure jobs; in contrast,
no selective reassignment was done at fa-
cilities with low exposure. The employer ac-
tions at high-exposure facilities would have
prevented a large number of cases that
would have been produced by asbestos-
smoking interactions, and so would have
greatly reduced the lung-cancer rates at the
high-exposure facilities from what they
would have been otherwise. The asbestos-
lung cancer dose-response from the ecologic
regression would be reduced (and in theory
could even be reversed) by such a phenom-
enon. This would be true even if asbestos
followed the same linear "no-threshold"
model that radon followed in example 3.

The attenuated dose-response in example
8 reflects a "true" ecologic effect of the
ecologic asbestos variable on the region-

factory-specific disease rates: High asbestos
levels led to employer intervention, which
led to lower lung-cancer rates than would
have occurred without the intervention. But
this ecologic dose-response understates the
effect of high individual-level asbestos ex-
posure on individual risks. This downward
bias of the ecologic estimate for the
individual-level effect is not, however, a
form of ecologic confounding: The bias
would occur with full magnitude even if
smoking distributions were identical in all
the study facilities, so that the asbestos and
smoking marginal distributions were eco-
logically unassociated.

On the other hand, the bias in example 8
does depend on the asbestos-smoking asso-
ciation and interaction on the individual
level. As in example 7, this bias could have
revealed its presence if some homoge-
neously exposed facilities were observed
and those facilities were identified as such.
In such facilities, no internal association of
asbestos and smoking would be possible,
and so some sort of ecologic association of
asbestos and smoking would be necessary
for smoking to distort the ecologic associa-
tion of asbestos and lung cancer among
those facilities.

We refer to an incorrect extrapolation
from unbiased estimates of ecologic effects
to unobserved individual-level effects as
"cross-level bias" (although the latter term is
sometimes used to refer to any ecologic
bias). As the examples suggest, it is possible
to detect cross-level bias if one can identify
and observe homogeneously exposed re-
gions. In the extreme, ecologic bias in com-
parisons limited to homogeneously exposed
regions (as in examples 3-6) can be viewed
as purely an issue of confounding, albeit
with special complexities of measurement
and control of confounders. If exposure has
no effect on any individual, then there will
be no individual-level or ecologic effects,
and so cross-level bias cannot occur. Thus,
cross-level bias will not affect the validity of
an ecologic test of the null hypothesis, al-
though it still must be considered in inter-
preting a significant result.
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More generally, one may show that cross-
level bias will not occur if the individual-
level effects of all variables (including un-
measured background factors) follow a
multiple linear-regression model with no re-
gional effects and no interactions (17). Nev-
ertheless, given the usual inappropriateness
of the multiple-linear model and the absence
of homogeneously exposed regions, the pos-
sibility of cross-level bias adds a dimension
to ecologic bias beyond that of simple con-
founding.

MISCONCEPTIONS IN ECOLOGIC
REGRESSION

Before closing, we would like to point out
a few mathematical errors that have ap-
peared in the literature on ecologic bias.

Most of the literature on ecologic biases
has been based on multiple-linear regres-
sion models, and much of the recent con-
troversy concerning ecologic studies re-
volves around whether the conclusions
based on such models are trustworthy (5,
11, 18-22). In individual-level studies, it is
generally recognized that linear-regression
models are not well suited to modeling
rates and do not conform well to most can-
cer and cardiovascular data sets. One in-
valid rationale for their use in ecologic
studies is based on the notion that a linear
model should approximate the true model
because of Taylor's theorem (18). The
chief flaw in this rationale is that adequacy
of a linear Taylor approximation to a re-
gression depends on nonlinear and nonad-
ditive effects being small over the range of
the regressor variables. Such a condition is
not likely to be satisfied in most ecologic
regressions, such as those involving age
and cancer. Other mathematical flaws in
this type of rationale have been detailed
elsewhere (23).

More relevant to our present discussion is
that inadequacy of a multiple-linear ap-
proximation to the ecologic regression is not
the source of the biases we discuss; rather,
it is nonlinearities in the individual-level re-
gression that can lead to ecologic bias, even

if the ecologic regression appears to be ap-
proximately linear, as in examples 3-5. In
typical applications, large nonlinearities
will be present in the individual-level re-
gression; for example, age and smoking
have enormous nonlinear and nonadditive
effects on lung cancer (24).

Another, related, misconception is that
important departures from linearity in the
individual-level model will be detected by
a test of fit of the ecologic linear model.
But again, the ecologic relations may ap-
pear linear even when the individual-level
model generating the data is highly nonlin-
ear. Examples 3-5 and figures 1 and 2 il-
lustrate this point: The R2 for each of the
linear models that include smoking exceed
0.9, despite the fact that the individual-
level model is far from a multiple-linear
form. In contrast, a test of fit of the linear
model for individual-level data following
(say) model 1 would almost certainly re-
ject the linear model if the sample size
was at all adequate.

Another misconception is that use of a
large number of regions will somehow in-
sure a random cross-regional relation be-
tween exposure and the covariates (18). In
reality, large numbers do not insure random-
ness of exposure and covariate distributions
in observational studies, whether ecologic
or individual-level, nor do they insure that
such biases as might occur will cancel each
other out. Furthermore, uncorrelatedness of
particular distributional summaries (such as
means) does not guarantee that such uncor-
relatedness holds for all important aspects of
the distributions; example 3 is an illustration
of this point.

Finally, it is sometimes assumed that for
ecologic bias to occur, region itself must be
a confounder on the individual level after
other factors are controlled. Examples 3-5
provide counterexamples: In each case,
there is no term for region in the individual-
level rate model (model 1), and so region has
no effect at the individual level. Hence, an
individual-level study could ignore region in
the analysis without introducing any bias.
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CONCLUSION

Covariate control in ecologic studies re-
quires attention to details not ordinarily of
concern in individual-level studies. When,
as is usually the case, important nonlinearity
or nonadditivity can be expected among ex-
posure and covariate effects, it may be nec-
essary to obtain and control for multiple
summaries of joint covariate distributions in
order to insure that control is adequate. Un-
fortunately, for many potential confounders
(such as diet and life-style), such summaries
are unlikely to be available, and those mar-
ginal summaries that are available may be
too crude to provide effective control. For
covariates for which summaries are avail-
able, one must be alert to avoid improper
application of control methods (e.g., im-
proper combinations of standardization and
regression). If important nonlinearity or
nonadditivity is present and one cannot ob-
serve homogeneously exposed regions, one
may need to consider the possibility of
cross-level bias. One will also have to con-
sider the potentially paradoxical effects of
misclassification on ecologic regression re-
sults (8). Finally, although not discussed
here, ecologic studies of open populations
will also need to consider potential biases
due to migration (25).

As with other observational studies, eco-
logic studies can give useful results if biases
such as those discussed here can be ruled out
or quantified. Nevertheless, bias evaluation
can be especially difficult in ecologic stud-
ies of geographic regions because of the
many potentially interacting covariates that
may differ across regions. When biases can-
not be ruled out with available data, further
exploration will require individual-level
studies.
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