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■ Abstract Consideration of confounding is fundamental to the design, analysis,
and interpretation of studies intended to estimate causal effects. Unfortunately, the
word confounding has been used synonymously with several other terms, and it has
been used to refer to at least four distinct concepts. This paper provides an overview
of confounding and related concepts based on a counterfactual model of causation. In
this context, which predominates in nonexperimental research, confounding is a source
of bias in the estimation of causal effects. Special attention is given to the history
of definitions of confounding, the distinction between confounding and confounders,
problems in the control of confounding, the relations of confounding to exchangeability
and collapsibility, and confounding in randomized trials.

INTRODUCTION

Much epidemiologic and social science research is devoted to estimation of causal
effects in populations and testing causal hypotheses using nonexperimental data.
In such endeavors, issues of confounding invariably arise. Unfortunately, the word
confounding has been used synonymously with several other terms (e.g. spu-
rious association, fictitious association, secondary association, susceptibility bias,
and Simpson’s paradox), and it has been used to refer to at least four distinct
concepts.

In one usage, dating to the middle of the nineteenth century, confounding is a
source of bias in estimating causal effects and corresponds to lack of comparability
between treatment or exposure groups (e.g. 36, 59, 103). In this usage, confound-
ing is sometimes informally described as a mixing of effects of extraneous factors
(called confounders) with the effect of interest. This usage predominates in non-
experimental research, especially in epidemiology and sociology, and is the focus
of this paper.

In a second usage, originating in statistics during the past century, confounding
is a synonym for noncollapsibility of an association parameter over levels of a co-
variate [an association is noncollapsible if its magnitude is different when adjusting
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(conditioning) vs not adjusting for the covariate (e.g. 68, 96, 102)]. Sometimes
this noncollapsibility definition of confounding is applied to causal parameters,
i.e. causal effects instead of association measures.

In a third usage, originating in the experimental-design literature of the early
twentieth century, confounding refers to inseparability of main effects and inter-
actions under a particular study design (e.g. 10, 22). Typically, such confounding
is deliberate because the interactions are not of interest to the investigator and the
main effects can be estimated more efficiently. In the analysis-of-variance litera-
ture, the term aliasing is sometimes used to refer to this concept of confounding.

In a fourth usage, dating to the early nineteenth century, confounding is a
type of measurement problem, resulting from inherent differences between the
variables we measure and the underlying constructs of interest (e.g. 12, 20). Thus,
associations observed between variables may not reflect the associations or effects
of interest. This concept of confounding is sometimes described as an inferential
problem in “construct validity” and is often used in psychology.

The four concepts of confounding are not always distinguished properly. In
particular, the concept of confounding as a source of bias in effect estimation
and the concept of it as noncollapsibility are often treated as identical. Here we
provide a historical overview of these two concepts and the distinctions between
them. Because these distinctions require a formal model for causal effects, we
begin with a discussion of the counterfactual model of causation. We then trace
the history of the concept of confounding from the writings of John Stuart Mill
(58, 59) to its modern counterfactual formalization. We discuss how approaches
to control for confounding fit into this formalization, and we give special atten-
tion to the relations of confounding to exchangeability and randomization. We
then describe how the counterfactual model distinguishes noncollapsibility from
confounding. Our penultimate section covers some issues that arise when consid-
ering confounding in studies of interventions. Given the importance of the concept
in causal inference, we end with a recommendation to include more thorough
discussion of confounding in all types of public-health education.

COUNTERFACTUAL MODEL OF CAUSATION

Overview

The concepts of cause and effect are central to most areas of scientific research.
Thus, it may be surprising that consensus about basic definitions and methods for
causal inference is limited, despite some three centuries of debate. A brief review
cannot do justice to all the history and details of this debate, nor to all the schools
of thought on causation. We recommend Pearl (66) for a comprehensive treatment
of modern causality theory; a brief overview for the health sciences is given in
Greenland (31). We focus here on one conceptualization that has proven useful in
the analysis of confounding. This counterfactual or potential-outcomes approach
has become common in philosophy, statistics, and epidemiology.
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Since the early eighteenth century, philosophers noted serious deficiencies in
common definitions of causation, and these deficiencies remain in modern usage.
For example, Webster’sNew Twentieth Century Dictionary(55) offered “that
which produces an effect or result” as a definition of “cause,” but “to cause” is
among the definitions of “produces.” Informal definitions of “effect” suffer from
the same circularity, because “effect” as a verb is merely a synonym for “cause,”
whereas “effect” as a noun is defined as a “result,” which is in turn defined as an
“effect” in causal contexts.

Hume (47, 48) offered another view of causation that pointed a way out of the
circularity of common definitions: “We may define a cause to be an object, followed
by another,. . .where, if the first object had not been, the second had never existed”
(48, p. 115). Thus, by focusing on specific instances of causation, Hume asserted
that an eventA caused an eventB if occurrence ofA was necessary for occurrence
of B under the observed background circumstances (e.g. see 52, 95). Essentially
the same concept of causation can be found in the works of Mill (58, 59) and Fisher
(21) (see also 92), as well as in later works in statistics and related fields. A typical
example is from MacMahon & Pugh (54, p. 12), who state that “. . . an association
may be classed as presumptively causal when it is believed that,had the cause
beenaltered, the effectwould have beenchanged” (italics added). The italicized
phrases emphasize that the alteration of the antecedent condition (“cause”) and
the subsequent change in the outcome (“effect”) are contrary to what was in fact
observed, i.e. they are counterfactual.

The preceding definition falls short of the formalism necessary for derivation
of statistical methods for causal inference. Such a formalism and derivation first
appeared in Neyman (62). The basic idea is as follows: Suppose thatN units
(e.g. individuals, populations, or objects) are to be observed in an experiment that
will assign each unit one ofK+ 1 treatmentsx0, x1, . . . , xK. The outcome of interest
for unit i is the value of a response variableYi. Suppose thatYi will equalyik if unit
i is assigned treatmentxk. Usually, one treatment level, sayx0, is designated the
reference treatment against which other treatments are to be evaluated; typically,
x0 is “no treatment,” a placebo, or a standard treatment. We define the causal effect
of xk (k ≥ 1) on Yi relative tox0 (the referent) to beyik − yi0. (If the response
variable is strictly positive, we may instead define the causal effect asyik/yi0 or
log yik− log yi0.) In words, a causal effect is a counterfactual contrast between the
outcomes of a single unit under different treatment possibilities.

Neyman’s formalism is sometimes referred to as the potential-outcomes model
of causation, and it has reappeared in various guises (e.g. see 13, 17, 41, 90). By
defining effects as contrasts of potential outcomes,yik gives precise meanings to
words such as cause, effect, and affect. For example, “changingX from x0 to xk

affectsYi” is an assertion thatyik− yi0 6= 0. Note, however, that because only one
of the potential outcomesyik can be observed in any one unit, an individual effect
yik− yi0 cannot be observed in isolation from the reference (baseline) outcomeyi0.

Counterfactual analysis can be viewed as a special type of latent-variable ana-
lysis, in whichyik remains latent for any individuali who did not receive treatment
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k (e.g. see 5). The potential-outcomes model can also be derived from a structural-
equations approach familiar in the social sciences (65, 66).

Restrictions of Counterfactuals

There are several crucial restrictions that the potential-outcomes definition places
on the notion of causal effects (and hence cause) (38). Most important, causal
effects are defined only for comparisons of treatment levels. To state, for example,
that “drinking two glasses of wine a day lengthened a person’s life by 4 years” is
meaningless by itself. A reference level (e.g. no wine consumption) must be at least
implicit to make sense of this statement. Sometimes, in fact, the reference level
requires specification of other factors that might be affected by the counterfactual
condition (e.g. keeping beer and liquor consumption constant in the absence of
wine consumption). Another restriction of the counterfactual model as presented
here is that causes refer to factors that can be potentially manipulated, such as drug
treatments, but not to fixed personal attributes such as gender and race (e.g. see
46, 49, 60, 91). Finally, implicit in most discussions of potential outcomes is that
the outcome for a given unit under a specific treatment does not depend on the
treatment given to any other unit, i.e. the stability assumption (17, 91, 92). This
assumption is likely to be violated when the outcome is contagious or the exposure
represents a set of social conditions. Fortunately, the counterfactual approach can
be extended to situations in which stability is violated (40).

Objections to Counterfactuals

Counterfactual approaches are sometimes criticized because, in considering causes
of past events, they invoke consideration of distributions for events that never
occurred and hence cannot be observed. As a consequence, some important features
of these distributions remain empirically untestable, and thus some causal infe-
rences based on counterfactuals will depend entirely on untestable assumptions
(18).

It is our view that this property of counterfactual inferences reflects a strength
of the counterfactual approach, rather than a weakness. It is an unfortunate but true
fact that many important causal questions are simply not answerable, at least not
without employing assumptions that are untestable given ethical considerations or
limitations of current knowledge and technology. Examples include assumptions
of no confounding (the focus of this paper), assumptions about independence
of unit-specific susceptibilities or responses, and various distributional assump-
tions (13, 14, 44, 65, 66, 80, 86, 87, 91). Inferences from counterfactual approaches
properly reflect this harsh epistemic reality when they display sensitivity to such
assumptions.

More constructively, the counterfactual approach also aids in precise formula-
tion of assumptions needed to identify causal effects statistically, which in turn can
aid in developing techniques for meeting those assumptions. The basic example
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on which we focus is the assumption of exchangeability of response distributions
under homogeneous treatment assignment, which is met when treatment is success-
fully randomized or, more generally, when treatment assignment is independent
of the potential outcomesyik.

CONFOUNDING AND CONFOUNDERS

Background

Counterfactual approaches to causal inference emphasize the importance of ran-
domization in assuring identifiability of causal effects (30, 36, 38, 62, 70, 86, 91–
93). In observational studies, however, no such assurance is available, and issues
of confounding become paramount.

One of the earliest systematic discussions of “confounded effects” is in Mill
(59 Ch. 10) (although in Chapter 3 Mill lays out the primary issues and acknowl-
edges Francis Bacon as a forerunner in dealing with them). There, Mill listed a
requirement for an experiment intended to determine causal relations: “. . . none
of the circumstances [of the experiment] that we do know shall have effects sus-
ceptible of being confounded with those of the agents whose properties we wish
to study.”

It should be noted that, in Mill’s time, the word experiment referred to an
observation in which some circumstances were under the control of the observer,
as it still is used in ordinary English, rather than to the notion of a comparative
trial. Nonetheless, Mill’s requirement suggests that a comparison is to be made
between the outcome of his experiment (which is, essentially, a trial with no control
group) and what we would expect the outcome to be if the agents we wish to study
had been absent. If the outcome is not what one would expect in the absence of
the study agents, his requirement ensures that the unexpected outcome was not
brought about by extraneous circumstances. If, however, those circumstances do
bring about the unexpected outcome, and that outcome is mistakenly attributed to
effects of the study agents, the mistake is one of confounding (or confusion) of the
extraneous effects with the agent effects.

Much of the modern literature follows the same informal conceptualization
given by Mill. Terminology is now more specific, with “treatment” used to refer to
an agent administered by the investigator and “exposure” often used to denote an
unmanipulated agent. The chief development beyond Mill is that the expectation
for the outcome in absence of the study exposure is now almost always explic-
itly derived from observation of a control or reference group that is untreated or
unexposed. For example, Clayton & Hills (8, p. 133) state that, in observational
studies, “. . . there is always the possibility that an important influence on the out-
come. . . differs systematically between the comparison [exposed and unexposed]
groups. It is then possible [that] part of the apparent effect of exposure is due to
these differences, [in which case] the comparison of the exposure groups is said
to beconfounded” (emphasis in the original).
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As discussed below, confounding is also possible in randomized experiments
because of systematic elements in treatment allocation, administration, and com-
pliance and because of random differences between comparison groups (22, 30,
36, 38, 87).

Confounding

Attempts to quantify the above notion of confounding can be traced at least as
far back as the work of Pearson et al (68) and Yule (102) on spurious correlation,
but these attempts ran afoul of the absence of a formal model for causal effects
[see Aldrich (1) for a review of this work]. Various mathematical formalizations of
confounding have since been proposed. Perhaps the one closest to Mill’s concept is
based on the counterfactual model for effects. Suppose our objective is to determine
the effect of applying a treatment or exposurex1 on a parameterµof the distribution
of the outcomeYin populationA, relative to applying treatment or exposurex0. That
is, we wish to contrast the marginal distributionsFA( y1) andFA( y0) of the potential
outcomes under treatments 1 and 0, using some parameter (summary)µ of the
distributions. For example, populationAcould be a cohort of breast-cancer patients,
treatmentx1 could be a new hormone therapy,x0 could be a placebo therapy, and the
parameterµ could be the expected survival or the 5-year survival probability in the
cohort;µ could also be a vector or even a function, such as an entire survival curve.
The populationA is sometimes called the target population or index population,
the treatmentx1 is sometimes called the experimental or index treatment, and the
treatmentx0 is sometimes called the control or reference treatment.

Suppose thatµ will equal µA1 if x1 is applied to populationA, andµ will
equalµA0 if x0 is applied to that population; the causal effect ofx1 relative tox0 is
defined as the change fromµA0 toµA1, which could be measured by the difference
parameterµA1−µA0 (or by the ratio parameterµA1/µA0 if µ is strictly positive). IfA
is observed under treatmentx1,µwill equalµA1, which is observable or estimable,
butµA0 will be unobservable. Suppose, however, we expectµA0 to equalµB0, where
µB0 is the value of the outcomeµ observed or estimated for a populationB that was
administered treatmentx0. The latter population is sometimes called a control or
reference population. A comparison of populationA treated withx1 to populationB
treated withx0 is an association parameter (i.e. the observable association between
treatment and outcome in the combined populationA andB). We say confounding
is present if in factµA0 6= µB0. When confounding is present, there would be some
difference between the outcomes of populationsA andB even if both populations
(rather than justB) were untreated.

If confounding is present, a crude (unadjusted) association parameter obtained
by substitutingµB0 forµA0 in the effect measure will not equal the causal parameter,
and the association parameter is said to be confounded. For example, ifµB0 6= µA0,
thenµA1−µB0, (which measures the association of treatments with outcomes
across the two populations) is confounded forµA1−µA0 (which measures the
effect of treatmentx1 on populationA). Thus, saying an association parameter
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TABLE 1 Actual (observable) and counterfactual (unobservable) expected numbersa

and average risks (R) of an outcome event (Y = 1) in two populations,A (in which
everyone is actually exposed,X = 1) andB (in which everyone is actually unexposed,
X = 0), by exposure status: examples of effect and (crude) association measures

Population A Population B

X = 1 X = 0 X = 1 X = 0
Actual Counterfactual Counterfactual Actual

Outcome
Y = 1 30 20 30 10
Y = 0 70 80 70 90
Total 100 100 100 100

Riskb RA1 = 0.30 RA0 = 0.20 RB1 = 0.30 RB0 = 0.10

Effectc RA1 − RA0 = 0.10 RB1− RB0 = 0.20
RA1/RA0 = 1.5 RB1/RB0 = 3.0

aCell values are the expected frequencies of individuals in each population under actual and counterfactual
conditions of exposure.
bProbability ofY= 1.
cContrasts of outcomes when everyone is exposed (X = 1) versus when everyone is unexposed (X = 0) within
each population. Compare with the associations (observable contrasts between populationsA and B) in the
combined population: risk difference,RA1− RB0 = 0.20; risk ratio,RA1/RB0 = 3.0.

such asµA1−µB0 is confounded for a causal parameter such asµA1−µA0 is syno-
nymous with saying the two parameters are not equal.

To illustrate the counterfactual definition of confounding, we take the risk (prob-
ability) of an outcome event (Y= 1) as the outcome parameterµof interest. Table 1
shows the actual risks (RA1 andRB0) and counterfactual risks (RA0 andRB1) for two
populations:A, which is entirely exposed (X = 1); andB, which is entirely unex-
posed (X = 0). If A is the target population, we measure the effect of the exposure
on outcome risk in this population by contrastingRA1 with RA0, e.g. by taking
their difference, 0.30− 0.20 = 0.10, or their ratio, 0.30/0.20 = 1.5. Because
RA0 is unobservable, however, this counterfactual contrast is also unobservable.
The association between exposure and outcome risk in the combined population
(A+ B) is a contrast between the two observable risks,RA1 andRB0, e.g. 0.30−
0.10 = 0.20 (the risk difference) or 0.30/0.10 = 3.0 (the risk ratio). Because
the actual risk in the reference populationB (RB0 = 0.10) differs from the coun-
terfactual risk in the target populationA (RA0 = 0.20), these two association
parameters differ from their corresponding effect parameters in populationA, and
we say the association in the combined population is confounded for the effect in
populationA.

The above formalization has several interesting implications. One is that con-
founding depends on the outcome parameter. For example, suppose populationsA
andBwould have a different 5-year survival probabilitiesµA0andµB0under placebo
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treatmentx0, so thatµA1−µB0 is confounded for the actual effectµA1−µA0 of treat-
ment on 5-year survival. It is then still possible that 10-year survivalν under the
placebo would be identical in both populations, i.e.νA0 could still equalνB0, so that
νA1− νB0 is not confounded for the actual effect of treatment on 10-year survival.
(We should expect no confounding for 200-year survival because no treatment is
likely to raise the 200-year survival probability of human patients above zero.)

Another important implication is that confounding depends on the target popula-
tion of inference. The preceding example, withA as the target, had different 5-year
survivalsµA0 andµB0 for A andB under placebo therapy and, hence,µA1 − µB0
was confounded for the effectµA1 − µA0 of treatment on populationA. A lawyer
or ethicist may also be interested in what effect the hormone treatmentx1 would
have had on populationB. Writing µB1 for the (unobserved) outcome ofB under
treatmentx1, this effect onB may be measured byµB1− µB0. SubstitutingµA1 for
the unobservedµB1 yieldsµA1−µB0. This measure of association is confounded for
µB1−µB0 (the effect of treatmentx1 on 5-year survival in populationB) if and only
if µA1 6= µB1. Thus, the same measure of associationµA1−µB0 may be confounded
for the effect of treatment on neither, one, or both of populationsA andB.

Consider again the example in Table 1 in which we compared the risks of an
outcome event in exposed populationA and unexposed populationB. If we are
interested in the exposure effect in populationB, i.e. if we now treatB as the target
population instead ofA, the difference and ratio effect parameters areRB1−RB0 =
0.30− 0.10= 0.20 andRB1/RB0 = 0.30/0.10= 3.0, which are larger than the
effects in populationA. Because the actual risk in exposed populationA (RA1 =
0.30) is equal to the counterfactual risk in target populationB (RB1 = 0.30), these
effect parameters are equal to the corresponding association parameters for the
combined population (see Table 1). Thus, we say the association in the combined
population is not confounded for the effect in populationB, even though the asso-
ciation was confounded for the effect in populationA (see above).

A third implication is that absence of confounding (µA0 = µB0), which is a
population condition, is not sufficient to identify the sharp null hypothesis of no
causal effects at the unit level (yi1 = yi0 for all units i) because causal effects of
treatment may cancel out (36). For example, suppose the outcome parameterµ is
the average risk of a disease during a given period, with half of persons inA and
half in B havingyi1 = 1 andyi0 = 0 (treatmentx1 causes disease) and half having
yi1 = 0 andyi0 = 1 (treatmentx1 prevents disease). ThenµA1 = µA0 = µB0 = 1/2,
so that there is no confounding and no identifiable effect of treatment on the
outcome distribution; nonetheless, every person is affected by treatment. Neyman
(63) and Stone (99) make the analogous point that randomization does not identify
the sharp null hypothesis.

Components of Associations

We may write the difference in the outcome parameters of populationsA andB as

µA1− µB0 = (µA1− µA0)+ (µA0− µB0), 1.
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which shows thatµA1− µB0 is a mix of the true treatment effectµA1− µA0 and a
bias termµA0−µB0 (39, 51). Nonidentifiability of the true effectµA1−µA0 follows
if the biasµA0 − µB0 is not identifiable, as is the case in typical epidemiologic
studies (36).

By rearranging Equation 1, we may obtainµA0 − µB0 as a measure of bias in
µA1− µB0 due to confounding:

µA0− µB0 = (µA1− µB0)− (µA1− µA0). 2.

When the outcome parametersµ are risks (probabilities), epidemiologists use
instead the analogous ratio

(µA1/µB0)/(µA1/µA0) = µA0/µB0 3.

as a measure of the bias due to confounding (7, 56);µA0/µB0 is sometimes called the
confounding risk ratio. The latter term is somewhat confusing, as it is sometimes
mistakenly thought to refer to the effect of a particular confounder on risk. This
is not so, although the ratio does reflect the net effect of the differences in the
confounder distributions of populationsA andB.

Confounders

The above formalization of confounding invokes no explicit differences (imbal-
ances) between populationsA andB with respect to circumstances or covariates
that might affectµ (36). It seems intuitively clear that ifµA0 andµB0 differ, then
A andB must differ with respect to factors that affectµ. This intuition has led
some authors to define confounding in terms of differences in covariate distribu-
tions among the compared populations (e.g. 99). Nonetheless, confounding, as we
have defined it, is not an inevitable consequence of covariate differences;A and
B may differ profoundly with respect to covariates that affectµ, yet confound-
ing (bias in effect estimation) may be absent. In other words, a covariate diffe-
rence betweenA andB is a necessary but not sufficient condition for confounding
because the effects of the various covariate differences may balance out in such a
way that no confounding is present.

Suppose now that populationsA andB differ with respect to certain covariates
that affectµ and that these differences have led to confounding. The responsible
covariates are then termed confounders of the association measure. In the above
example, withµA1 − µB0 confounded for the effectµA1 − µA0, the factors that
led to µA0 6= µB0 are the confounders. A variable cannot be a confounder (in
this sense) unless (a) it can causally affect the outcome parameterµ within treat-
ment groups, and (b) it is distributed differently among the compared populations,
i.e. there is an association between treatment (or exposure) status and the covari-
ate in the total (combined) population [e.g. see Yule (102), who uses such terms
as fictitious association rather than confounding]. Note that conditionb does not
necessarily imply that the covariate is a determinant (cause) of treatment. The two
necessary conditions (a andb) are sometimes offered together as a definition of
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a confounder. Nonetheless, counterexamples show that the two conditions are not
sufficient for a variable with more than two levels to be a confounder as defined
above (38).

If a covariate satisfying conditiona is time-dependent (i.e. if it can vary over
time within units), conditionb must be further restricted: (c) A covariate cannot
be a confounder if its association with treatment status in the population is due
entirely to effects of the treatment on the covariate (e.g. 38, 89). Thus, for example,
the covariate may not be a confounder if it is an intermediate variable in the causal
pathway between treatment and outcome, i.e. treatment affects the covariate, which
affects the outcome. It is possible, however, for the same covariate at different times
to be both a confounder of the treatment effect and an intermediate variable (70, 74).
This situation arises when the covariate affects treatment and then treatment affects
the covariate, as for example in a study of the effect of antihypertensive medication
on stroke risk, with blood pressure the covariate.

Although definitions of confounder similar to that just given are common in
epidemiology texts (e.g. 50, 89), they are not universal. Some authors (e.g. 57, 83)
define a confounder more broadly as any variable for which adjustment is helpful
in reducing bias in effect estimation. Under this broader definition, a covariate may
be a confounder even if it is not a cause of the outcome, as long as the covariate
is a surrogate (proxy) for such a cause. Variables that are confounders by virtue
of their effects on the outcome parameter (as in the previous definition) are then
called causal confounders. For example, a proxy confounder might be affected by
a causal confounder and be a determinant of treatment.

It is important to recognize that the necessary conditions of a confounder dis-
cussed above apply to a source population of persons at risk of becoming study
cases (i.e. of contributing an outcome event to the study data). Thus, we cannot
necessarily depend on associations observed in our data to determine whether a
given covariate is a confounder of a particular effect if the entire source population
is not observed (as in most case-control studies). Furthermore, even if we observe
the entire source population, we cannot be sure whether a covariate satisfies or fails
conditiona (i.e. whether it is a cause of the outcome) because we only observe
the association of that covariate with the outcome, and that association may itself
be confounded or otherwise biased as an effect estimate. For example, observing
no association between a risk factor and disease status among unexposed subjects
does not indicate that the factor is not a confounder, for that association may itself
be confounded for the effect of that factor. Because of such problems, we must
rely on prior knowledge of these associations and effects to identify confounders
in a study (e.g. 36, 57, 66, 83).

Another limitation in applying conditionsa–c to the identification of con-
founders in observational research is that application of these conditions to each
covariate (potential confounder) must be made conditional on all other potential
confounders being considered. Whether it is desirable to control for a certain co-
variate (to reduce bias) depends on what other covariates are being controlled by the
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investigator. Thus, when we cannot identify all potential confounders and specify
the causal effects among them, our definition (indeed, any definition) of confounder
becomes conditional on what else has been controlled (see Sufficient Control). This
complexity reflects the notion that the concept of confounding is more fundamental
than is the concept of confounder (36). [For extensions of the above ideas to regress-
ion models, see chapter 20 of Rothman&Greenland (89),and Greenland et al (38).]

CONTROL OF CONFOUNDING

Control via Design

Perhaps the most obvious way to avoid confounding is to obtain a reference pop-
ulation B for which µB0 is known to equalµA0. Among epidemiologists, such a
population is sometimes said to be comparable to or exchangeable withA when
considering the outcome under the reference treatment. In practice, such a pop-
ulation may be difficult or impossible to find. Thus, an investigator may attempt
to construct such a population or to construct exchangeable index and reference
populations. These constructions may be viewed as design-based methods for the
control of confounding.

Restriction and Matching Perhaps no approach is more effective for preventing
confounding by a known risk factor than restriction. For example, gender imbal-
ances cannot confound a study restricted to women. Nonetheless, restriction on
many factors can reduce the number of available subjects to unacceptably low
levels and may greatly reduce the generalizability of results as well. Matching
the treatment populations on confounders overcomes these drawbacks and, if suc-
cessful, can be as effective as restriction. For example, gender imbalances cannot
confound a study in which the compared exposure groups have identical propor-
tions of women. Unfortunately, differential losses to observation may undo the
initial covariate balances produced by matching. Another problem is that matches
may become difficult or impossible to find if one attempts to match on more than
a few factors.

Although matching on confounders can reduce bias in observational studies,
the statistical advantage of matching is not to control for confounders, which can
be done in the analysis without matching (see below), but to control for these
confounders more efficiently (with less random error) than if matching had not
been used (e.g. 89, pp. 147–61). Because the process of matching differs for cohort
studies (unexposed subjects are matched to exposed subjects) and case-control
studies (controls are matched to cases), the relative gain or loss in efficiency by
matching differs by study design. Furthermore, in case-control studies, matching
does not alter the source population, and matching on a correlate of the exposure
introduces a selection bias that must be corrected in the analysis by controlling for
the matching variables.
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Randomization Neither restriction nor matching prevents (although they may
diminish) imbalances on unrestricted, unmatched, or unmeasured covariates. In
contrast, randomized treatment allocation (randomization) offers a means of deal-
ing with confounding by covariates not explicitly accounted for by the design.
It must be emphasized, however, that this solution is only probabilistic and sub-
ject to severe practical constraints. For example, protocol violations (e.g. non-
compliance) and loss to follow-up may produce systematic covariate imbalances
between the groups (and consequent confounding), and random imbalances may
be severe, especially if the study size is small (22, 88). Blocked (stratified) ran-
domization can help ensure that random imbalances on the blocking factors will
not occur, but it does not guarantee balance of unblocked factors. Thus, even in
a perfectly executed randomized trial, the no-confounding condition,µA0 = µB0,
is not a realistic assumption for inferences about causal effects. Successful ran-
domization simply ensures that the difference,µA0−µB0, and hence the bias due
to confounding, has expectation zero and converges to zero under the randomiza-
tion distribution; it also provides a permutation distribution for causal inferences
(17, 22, 86).

Exchangeability Under randomization, the parametersµA0 andµB0 (andµA1 and
µB1 as well) are outcomes of a known random process and so can be treated as
objective random variables (thoughµA0 andµB1 remain unobserved). Successful
randomization also rendersµA0 andµB0 unconditionally exchangeable in the sub-
jective probabilistic sense (15), and it rendersµA1 andµB1 exchangeable. These
consequences of randomization imply that any bias due to confounding is random
with a known distribution; therefore, randomization permits derivation of statis-
tical procedures for estimating treatment effects, e.g. by substitutingµB0 for µA0
and then allowing for random differences betweenµA0 andµB0 (73). This benefit
applies regardless of what the parameterµ represents, i.e. randomization yields
exchangeability for all parameters of the outcome distribution. In addition, it can be
argued that randomization should lead us to use the entire (treated plus untreated)
study group as the target population, rather than just the treated (exposed) group
(73).

Without randomization, one can still viewµA0 andµB0 as random variables
from a Bayesian perspective, and a practical and sufficient design-based approach
to confounding when estimating effects on the exposed study group (groupA) is to
find or construct comparison groups such thatµA0 andµB0 are exchangeable. This
perspective translates into the traditional advice to search for “natural experiments”
(i.e. situations in which a compelling argument can be made that the exposure was
effectively randomized by natural circumstances).

Control via Analysis

Design-based methods are often infeasible or insufficient to produce exchange-
ability. Thus, there has been an enormous amount of work devoted to analytic
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adjustments for confounding. With a few exceptions, these methods are based
on observed covariate distributions in the compared populations. Such methods
will successfully control confounding only to the extent that enough confounders
are accurately measured and employed in the analysis. Then, too, many methods
employ parametric models at some stage, and their success thus depends on the
faithfulness of the model to reality. There is a tension between the demands of
adjusting for enough covariates and the dependence of the analysis on modeling
assumptions. This issue cannot be covered in depth here, but a few basic points
are worth noting.

The simplest methods of adjustment begin with stratification on confounders. A
covariate cannot be responsible for confounding within a stratum that is internally
homogeneous with respect to that covariate. This is so, regardless of whether the
covariate was used to define the stratum. For example, gender imbalances cannot
confound observations within a stratum composed solely of women. It would seem
natural, then, to control confounding due to measured factors by simply stratifying
on them all. Unfortunately, one would then confront the well-known sparse-data
problem: Given enough factors, few if any strata would have subjects in both
treatment groups, thereby making comparisons biased, inefficient, or impossible
(38a, 79).

One solution to this sparse-data problem begins by noting that within-stratum
homogeneity on a covariate is unnecessary to prevent confounding by that co-
variate. Within-stratum balance is sufficient, because comparisons within a stra-
tum cannot be confounded by a covariate that is not associated with treatment
within the stratum. Hence, a given stratification should be sufficient to control
confounding by a set of covariates if the covariates are balanced across the strata,
i.e. unassociated with treatment within the strata. Subject to any modeling re-
strictions used for score estimation, balance in probability for a set of covariates
could be achieved by exact stratification on the estimated propensity score, where
the propensity score is defined as the probability of treatment given the covari-
ates in the combined (treated and untreated) study population (87). They further
showed that this score was the coarsest score that would produce balance in prob-
ability. Stratification on the estimated propensity score thus reduces adjustment
for multiple covariates to stratification on a single variable and lowers the risk
of sparse-data problems if the model used for propensity scoring is correct. Un-
fortunately, in sparse data there may be little power to test whether the model is
correct.

The most common method for avoiding sparse-data problems is to use regres-
sion models for the dependence of the outcome on the treatment and covariates;
such strategies are described in many textbooks (e.g. 8, 50, 89). Hybrid methods
that combine regressions on treatment and outcome have also been developed
[see Robins & Greenland (82) and Rosenbaum (86) for examples]. Nonetheless,
theoretical results indicate that no approach can completely solve sparse-data prob-
lems, insofar as sample size will always limit the number of degrees of freedom
available for covariate adjustment (84), although flexibility in using these degrees
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of freedom can be greatly improved via hierarchical regression (mixed or multi-
level modeling) (32, 32a).

Sufficient Control

Without randomization, the evaluation of within-stratum or residual confounding
becomes a major concern. For this purpose, we define a stratification on a set of
variables as sufficient for estimation of stratum-specific causal effects if, within
strata,µA0 andµB0 are exchangeable. Randomization ensures sufficiency of the set
of measured variables not affected by treatment. In the absence of randomization,
however, causal inferences become dependent on and sensitive to the assumption
that the set of variables available for analysis is sufficient. It is almost always
possible that this set is insufficient because some confounder essential for suffi-
ciency has not been recorded; thus, causal inferences from observational studies
almost always hinge on subject-matter priors (“judgments”) about unmeasured
confounders. Sensitivity of results to possible unmeasured confounders can be
assessed via formal sensitivity analysis (14, 85, 86).

There are several methods for deducing the implications of background as-
sumptions. For example, assumptions about the directions and absences of causal
relations among variables (measured and unmeasured) can be conveniently en-
coded in a causal graph or path diagram, in which arrows (directed arcs) represent
cause-effect relations. Conditional on the assumptions underlying the graph, the
question of sufficiency of a set of variables (such as the set of measured variables)
can be easily answered using a simple graphical algorithm called the “back-door
criterion” (35, 64, 66). The same algorithm allows one to determine whether sub-
sets of a sufficient set are themselves sufficient. Thus, by sequential deletion of
variables from the original set and application of the criterion to the reduced sub-
sets, we may identify minimally sufficient subsets (i.e. sufficient subsets with no
sufficient proper subsets). The need for such identification arises, for example,
in epidemiologic studies in which numerous “lifestyle” covariates (diet, phys-
ical activity, smoking and drinking habits, etc) are measured and are potential
confounders of the effect under study. Here, the total set of covariates may be
sufficient for control as defined above, but impractical to control in its entirety,
even when using propensity score or outcome-regression methods (38). Graphical
identification of sufficient subsets operates on background assumptions rather than
data. An analogous statistical approach was proposed by Robins (77).

A setSthat is sufficient for estimating stratum-specific effects will also be suf-
ficient for estimating a summary measure of the effect of treatment on the entire
target population. The converse is not true, however: Stratum-specific confounding
may be in opposite directions across strata and thus “average out” within the sum-
mary measure. Consequently, a setSmay be sufficient for estimating a summary
effect even though insufficient for estimating stratum-specific effects (36). This
notion is formalized in the discussion of residual confounding given by Greenland
et al (38).
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COLLAPSIBILITY

Consider theI × J × K contingency table representing the joint distribution of
three discrete variablesX (exposure),Y (outcome), andZ (covariate), the
I × J marginal table representing the joint distribution ofX andY, and the set
of conditionalI × J subtables (strata) representing the joint distributions ofX and
Y within levels ofZ. Generalizing Whittemore (100) (who considered log-linear
model parameters), we say a measure of association ofX andY is strictly collapsi-
ble acrossZ if it is constant across the strata (subtables) and this constant value
equals the value obtained from the marginal table (ignoringZ ).

Noncollapsibility (violation of collapsibility) is sometimes referred to as
Simpson’s paradox, after a celebrated article by Simpson (96). This phenomenon
had been discussed by earlier authors, including Yule (102; see also 11). Some
statisticians reserve the term Simpson’s paradox to refer to the special case of non-
collapsibility in which the conditional and marginal associations are in opposite
directions, as in Yule’s and Simpson’s numerical examples. Simpson’s algebra and
discussion, however, dealt with the general case of inequality. The term collapsi-
bility seems to have arisen in later work (see 6).

Table 2 provides some simple examples. The difference of probabilities that
Y= 1 (the risk difference) is strictly collapsible. Nonetheless, the ratio of proba-
bilities thatY= 1 (the risk ratio) is not strictly collapsible because the risk ratio
varies across theZ strata, and the odds ratio is not collapsible because its marginal
value does not equal the constant conditional (stratum-specific) value. Thus, col-
lapsibility depends on the chosen measure of association.

Now suppose that a measure is not constant across the strata, but that a partic-
ular summary of the conditional measures does equal the marginal measure. This
summary is then said to be collapsible acrossZ. As an example, in Table 2 the

TABLE 2 Examples of collapsibility and noncollapsibility in a three-way distributiona:
X, exposure;Y, outcome;Z, covariate

Z = 1 Z = 0 Total

X = 1 X = 0 X = 1 X = 0 X = 1 X = 0

Y = 1 0.20 0.15 0.10 0.05 0.30 0.20

Y = 0 0.05 0.10 0.15 0.20 0.20 0.30

Riskb 0.80 0.60 0.40 0.20 0.60 0.40

Risk difference 0.20 0.20 0.20

Risk ratio 1.33 2.00 1.50

Odds ratio 2.67 2.67 2.25

aCell values are proportions of the total population.
bProbability ofY = 1 givenX andZ.

A
nn

u.
 R

ev
. P

ub
lic

 H
ea

lth
 2

00
1.

22
:1

89
-2

12
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

70
.1

62
.2

45
.1

8 
on

 1
0/

17
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



P1: GDL

February 28, 2001 14:14 Annual Reviews AR124-12

204 GREENLAND ¥ MORGENSTERN

ratio of risks standardized to the marginal distribution ofZ is

{[ P(Z = 1)P(Y = 1|X = 1, Z = 1)] + [ P(Z = 0)P(Y = 1|X = 1, Z = 0)]}/
{[ P(Z = 1)P(Y = 1|X = 0, Z = 1)] + [ P(Z = 0)P(Y = 1|X = 0, Z = 0)]}

= [0.50(0.80)+ 0.50(0.40)]/[0.50(0.60)+ 0.50(0.20)]

= 1.50, 4.

which is equal to the marginal (crude) risk ratio. Thus, both the risk ratio and
risk difference are collapsible in Table 2 because there is no association in the
total sample betweenZ andX, i.e. the same proportion (50%) of persons in each
stratum ofZ is exposed (X = 1). Various tests of collapsibility and strict col-
lapsibility have been developed for polytomous variables and multidimensional
tables (3, 19, 27, 34, 100), and extensions to regression models have also been
given (9, 43).

Confounding Vs Noncollapsibility

Much of the statistics literature does not distinguish between the concept of
confounding as a bias in effect estimation and the concept of noncollapsibility.
Nonetheless, the two concepts are distinct: For certain effect parameters, con-
founding may occur with or without noncollapsibility and noncollapsibility may
occur with or without confounding (36, 38, 57, 101). Mathematically identical con-
clusions have been reached by other authors, albeit with different terminology in
which noncollapsibility corresponds to “bias” and confounding corresponds to
“covariate imbalance” (24, 42). As shown below, the counterfactual definition of
confounding is nonparametric and specific to causal inference, whereas collapsi-
bility depends on the choice of association parameter and requires no reference to
causality, effects, or confounding.

Noncollapsibility Without Confounding Table 3 gives the response distribu-
tions under treatmentsx1 andx0 for a hypothetical target populationA, and the
response distribution under treatmentx0 for a hypothetical reference populationB.
SupposeA receives treatmentx1, B receivesx0, we wish to estimate the effect that
receivingx1 rather thanx0 had onA, andZ is unaffected by treatment. If we take
the odds of response as the outcome parameterµ, ignoring the covariateZ, we get
µA1 = 0.6/(1− 0.6) = 1.50, andµA0 = µB0 = 0.4/(1− 0.4) = 0.67. Hence,
there is no confounding of the odds ratio byZ: µA1/µA0 = µA1/µB0 = 1.50/
0.67 = 2.25 ( just as there is no confounding of the risk ratio and the risk dif-
ference byZ). Nonetheless, the covariateZ is associated with response inA
and B. Furthermore, the odds ratio is not collapsible overZ: Within levels of
Z, the odds ratios, comparingA under treatmentx1 to eitherA or B underx0,
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TABLE 3 Distribution of responses (Y) for hypothetical index
populationA under treatmentsx1 andx0, and for reference
populationB under treatmentx0: example of noncollapsibility
without confounding of the odds ratio

Response probability (Y = 1) if

Stratum X = x1 X = x0 Stratum size

Population A
Z = 1 0.8 0.6 1000
Z = 0 0.4 0.2 1000
Total 0.6 0.4

Population B
Z = 1 NUa 0.6 1000
Z = 0 NU 0.2 1000
Total NU 0.4

aNU, Not used in example.

are (0.8/0.2)/(0.6/0.4) = (0.4/0.6)/(0.2/0.8) = 2.67, which is higher than the
unconditional (crude) odds ratio of 2.25 obtained whenZ is ignored.

The preceding example illustrates a peculiar property of the odds ratio as an
effect measure: Treatmentx1 (relative tox0) elevates the odds of response by 125%
in populationA, yet within each stratum ofZ it raises the odds by 167%. IfZ is as-
sociated with response conditional on treatment but unconditionally unassociated
with treatment, the stratum-specific odds ratios must be farther from 1 than the
unconditional odds ratio if the latter is not 1 (25, 42). This phenomenon is often
interpreted as a “bias” in the unconditional odds ratio, but in fact there is no bias
if one takes care to not misinterpret the unconditional effect as an estimate of the
stratum-specific or individual effects (29, 57).

Confounding Without Noncollapsibility To create a numerical example in which
the odds ratio is collapsible and yet is confounded for the overall effect, we need
only modify Table 3 slightly, e.g. by changing the stratum size forZ = 0 in pop-
ulationB to 1500. With this change, the proportion withZ = 1 in populationB
drops from 1000/2000 = 0.5 to 1000/2500 = 0.4, the unconditional response
probability in populationBunder treatmentx0 drops from 0.4 to 0.4(0.6)+ 0.6(0.2)
= 0.36, and the unconditional response oddsµB0 in populationBunderx0 becomes
0.36/(1− 0.36)= 0.5625. Thus,µB0 = 0.5625< 0.67= µA0, with consequent
confounding of the odds ratio byZ: µA1/µA0, the true effect, equals 2.25 (as be-
fore), which is less than the unconditional odds ratioµA1/µB0 = 1.50/0.5625=
2.67. (Similarly, the risk difference and risk ratio are also confounded.) Nonethe-
less, this unconditional odds ratio equals the stratum-specific odds ratios in popu-
lationA, which are unchanged from the previous example.
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Conditions for Equivalence

The example in Table 3 shows that whenµ is the odds of the outcome,µA0
may equalµB0 (no confounding) even when the odds ratio is not collapsible
over the confounders. Conversely, the modified example shows that we may have
µA0 6= µB0 even when the odds ratio is collapsible. A probabilistic explanation of
the discrepancy between nonconfounding and collapsibility is thatµA0 will equal
µB0 wheneverZ is sufficient for control and is unconditionally unassociated with
treatment, as in Table 3, whereas collapsibility of the odds ratio will occur when-
everZ is unassociated with treatment conditional on response, as in the modified
example (6). Thus, the discrepancy is just a consequence of the nonequivalence of
unconditional and conditional associations.

If the effect measure is the difference or ratio of response proportions, results
from Gail (24) imply that this measure will be collapsible overZ if Z has the same
distribution inA andB (i.e. if Z and treatment are unconditionally unassociated).
It follows that, when examining such measures, the above phenomena (noncol-
lapsibility without confounding and confounding without noncollapsibility) cannot
occur ifZ is sufficient for control. More generally, when the effect measure can be
expressed as the average effect on population members, the conditions for noncol-
lapsibility and confounding will be identical, provided the covariates in question
form a sufficient set for control. In such cases, noncollapsibility and confounding
become equivalent, which may explain why the two concepts are often not distin-
guished. The nonequivalence of the two concepts for odds ratios simply reflects
the fact that the unconditional effect of a treatment on the odds is not the average
treatment effect on population members (29).

CONFOUNDING IN INTERVENTION
STUDIES: Further Issues

In this section we briefly discuss some special issues of confounding that arise in
studies of interventions, such as clinical trials and natural experiments.

Adjustment in Randomized Trials

Some controversy has existed about adjustment for random covariate imbalances
in randomized trials. Although Fisher asserted that randomized comparisons were
“unbiased,” he also pointed out that they could be confounded in the sense used
here (e.g. 22, p. 49). Fisher’s use of the word unbiased was based on what would be
expected before the randomization was carried out; therefore, it is of little guidance
for analysis of a given trial. Some arguments for accounting for the actual result
of the randomization process are given in Greenland & Robins (36) and Robins &
Morgenstern (83). Other arguments for adjustment in randomized trials have been
given by Rothman (88), Miettinen & Cook (57), and Senn (94).
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Intent-to-Treat Analysis

In a randomized trial, noncompliance can easily lead to confounding in compar-
isons of the groups actually receiving treatmentsx1 andx0. One somewhat con-
troversial solution to noncompliance problems is intent-to-treat analysis, which
defines the comparison groupsAandBby treatment assigned rather than treatment
received. Detractors of intent-to-treat analysis consider it an attempt to define away
a serious problem, especially when treatment received is the treatment of scientific
interest. Supporters of intent-to-treat analysis emphasize that intent-to-treat tests
(tests of assigned-treatment effects) remain valid tests of received-treatment effects
under broader conditions than conventional tests of received-treatment effects [for
a discussion of these and related issues, see Goetghebeur & van Houwelingen
(28)].

A crucial point is that confounding can affect even intent-to-treat analyses. For
example, apparently random assignments may not be random, as when blinding
is insufficient to prevent the treatment providers from protocol violations or when
there is differential loss to follow-up. Even when these problems do not occur,
random imbalances remain possible. A more subtle problem is that noncompli-
ance can produce bias away from the null in an intent-to-treat analysis of a trial
that examines whether two treatments are equivalent (i.e. an equivalence trial)
(78). To illustrate, suppose treatmentsA andB are both 100% effective and thus
completely equivalent with respect to their effect on the outcome, so that the equiv-
alence null is satisfied. Suppose, however, that treatmentA causes a harmless but
unpleasant flushing sensation, whereas treatmentB does not; consequently, com-
pliance is 70% forA but 100% for treatmentB. Then the intent-to-treat test will
reject the null hypothesis of equivalence solely because of the lower compliance
with treatmentA. Thus, in this example, noncompliance confounds the intent-to-
treat analysis away from the correct null hypothesis of equivalence. Many authors
have proposed instrumental-variable methods to adjust for possible bias due to
noncompliance (e.g. 2, 4, 77) [see Greenland (33) for a nontechnical overview of
these methods].

CONCLUSION

Concepts of confounding have been discussed by philosophers and scientists for
centuries. It is only in more recent decades, however, that precise formal defini-
tions of these concepts have emerged. These developments underscore the im-
portance of subject-matter (prior) knowledge in making causal inferences from
observational data, and they make explicit the distinction between counterfactual
and collapsibility-based concepts of confounding: The counterfactual definition of
confounding is nonparametric and specific to causal inference, whereas collapsi-
bility depends on the choice of association parameter and requires no reference
to causality or effects. Given its importance to causal inference, we recommend a
more thorough discussion of confounding in all types of public-health education.
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Most of our discussion has assumed that both the treatment variable and the
confounders can be fully characterized by fixed covariates. Further subtleties can
arise when these variables are time-dependent (see 67, 70–72, 77). We also have
not considered issues of confounding in separating indirect and direct effects of
treatments or exposures on outcome, i.e. effects mediated vs effects not mediated
by measured covariates (for discussions of these issues, see 65, 67, 70, 77, 81, 82).

We wish to end on the cautionary note that confounding is but one of many
problems that plague studies of cause and effect. Biases of comparable or even
greater magnitude can arise from measurement errors, selection (sampling) biases,
and systematically missing data, as well as from model-specification errors. Even
when confounding and other systematic errors are absent, individual causal effects
will remain unidentified by statistical observations (37, 38, 80). It remains a serious
challenge to create a theory that can encompass all these problems coherently and
also yield practical methods for data analysis.
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