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Abstract

While investigators designing clinical trials face the important issue of endpoint selection, an equally troublesome concern can
be the a priori selection of the endpoint analysis. In this latter circumstance, there may be only one endpoint of interest in the
clinical trial, but several competing endpoint analyses are available (e.g., an analysis of the endpoint that is adjusted for clinical
center versus an analysis that is adjusted for geographic region versus an unadjusted analysis). An example that demonstrates the
unsatisfactory conclusions that ambiguous choices can produce is offered.

A procedure utilizing conditional probability is provided that permits the conservation of type I error when the investigators
have one endpoint and several worthy competitor endpoint analyses that are each prospectively identified and carried out at the
trial's conclusion. When the high levels of dependence among these analyses are taken into account, it is possible to carry out the
hypothesis tests in a way that 1) provides practicable type I error levels for each analysis, and 2) conserves the familywise type I
error. In circumstances in which the endpoint and all members of the family of analyses are selected during the design phase of the
trial, this procedure provides confirmatory conclusions as opposed to exploratory findings.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Randomized clinical trials can be costly, and the natural tendency of many investigators is to increase the yield of
these expensive experiments by maximizing the number of statistical evaluations. However, clinical trial investigators
have been wisely counseled against yielding to the temptation of executing an undisciplined analysis plan. The
requirements of the prospective selection of endpoint analyses in clinical trials have been well described in the literature
[1–4], and the standard of good investigator practice mandates the clear choice of the clinical trial's endpoints and
analysis plans during the design phase of the study. In fact, specific information is now available to investigators that
guides the endpoint selection process during the trial's planning period, assisting them in deciding whether an analysis
should be 1) confirmatory and pivotal, 2) supportive, or 3) exploratory [5].
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The acceptance of the aforementioned guidance commonly produces important discussions among the investigators
during the design phase of the clinical trial as they labor to identify the primary endpoint analyses of their study. Frequently,
such prospective discussions are fruitful, leading to clear decisions that themselves produce lucid analysis plans and,
ultimately, unambiguous interpretations [6,7]. Unfortunately, this is not always the case. Clinical scientists can find the
endpoint selection process a vexing one, and in the endmay be unable tomake a final choice of a single endpoint and analysis
plan for their study. This is not due to lack of effort on the part of these investigators who wish to reduce any ambiguity in
their trial’s interpretation. They diligently exclude many candidate endpoints and analyses as they reduce the prospectively
declared analysis set to a small number of evaluations. However, at the conclusion of this labor, the investigators may be
unable to make a final choice because there is no persuasive or historical basis on which to make a final selection.

The notion of multiplicity has received considerable discussion in the literature. A comprehensive review has been
provided by Miller [8]. Adjustments that take into account dependency between the different statistical analyses have
been recommended by Tukey et al. [9], and others [10–18]. Sequentially rejective procedures have been reviewed and
advocated [19,20], and recent work [21–24] has refined these tools. However, guidelines for investigators who feel
compelled to chose a single analysis from multiple admissible ones are missing. Sometimes the research group's
collective ambivalence is conveyed in the protocol. The outcome of this circumstance can be unfortunate and
disappointing, as illustrated in the following actual example.

In the afternoon session of the 69th meeting of the Oncologic Drugs Advisory Committee meeting on December 6,
2001, consideration was given to expanding the indications for Gliadel, an adjuvant treatment of malignant glioma
[25]. Malignant glioma is a brain tumor, diagnosed in approximately 16,500 adult patients per year and from which
13,000 patients die annually [25]. The treatment of choice is surgical extirpation of the tumor mass followed by
chemotherapy. Gliadel is a medication combining two antitumor compounds into a wafer that is placed in the tumor
cavity of patients who have just had the tumor surgically extracted.

In response to the FDA's concerns that previously submitted clinical studies on the effect of Gliadel in patients with
newly diagnosed glioma were too small, the sponsor carried out study T-301. T-301 was a randomized, double-blind,
placebo-controlled clinical trial which recruited 240 patients from 42 regional centers in 14 countries, randomly
assigning these patients to each of the treatment and control group. T-301 was stratified by center and, as a result,
indirectly stratified by country.

The FDA had reviewed the protocol and the statistical analysis plan for T-301 before all patients had completed their
follow up and the data were unblinded. The primary, pre-specified efficacy analysis was the comparison of 12 week
survival rates using a standard Kaplan–Meier analysis, implementing a log rank test statistic in accordance with the
intention-to-treat principle.

The results of the trial demonstrated that the median survival for patients taking Gliadel was 13.9 months (95% CI
12.1 to 15.3) as compared to 11.6 months for the placebo group (95% CI 10.2 to 12.6). The relative risk was 0.77 and
the p-value for the log rank test was 0.08, larger than the prospectively set level of 0.05.

Upon the conclusion of the study, an independent statistician was consulted by the sponsor to analyze the T-301
efficacy data. He carried out an alternative evaluation in which the therapy effect was stratified by center, producing a
p-value of 0.07; a third analysis stratified by country produced a p-value of 0.03. The sponsor argued that since 1) the
study was stratified by center, and 2) that this center-level stratification produced stratification at the country level, then the
most appropriate evaluation should be the country-stratified log rank analysis [26]. It was this statistically significant
analysis that the sponsor asked the FDA to accept as the definitive evaluation of the primary endpoint of T-301.

The sponsor's advocates argued that, since the study design called for blocking and stratification, then the analysis
must be dictated by the intent of the design, even though the prospectively declared analysis plan stated only that a log
rank test statistic would be used. They asserted that “…one would expect the analyses to be stratified, and the analysis
statistic to be stratified in the same way that the randomization was performed” [25]. The sponsor further argued that de
jure stratification by center was de facto stratification by country, and therefore the most appropriate analysis would
call for the use of a log rank test statistic that was stratified by country. The FDA's respondent countered by raising a
question and then answering it:

…should one use a stratified or non-stratified analysis? Which one is more appropriate? Our position is, either one
is acceptable as long as you pre-specify one in the protocol [25, page 293]

The FDA further asserted that, if the analysis that was stratified by country was to be the principal analysis, then the
fact that it was one of three evaluations requires the application of a multiplicity correction.
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In the end, the Advisory Committee voted 7–6 that T-301 was not adequate and well controlled, but did vote that the
medication had been shown to be safe and effective.

The post hoc decision to adjust the log rank analysis received special attention at the meeting, and is not the focus of
this manuscript. Either of the three analyses that were carried out (unadjusted, center-adjusted, or country-adjusted)
was acceptable if prospectively specified; the difficult prospective decision that these investigators faced was which of
the three should be selected. Since the intervention that they were studying had important clinical relevance, then, from
the investigators' perspective, the analysis procedure that measured that intervention's effect should 1) be acceptable to
the research and regulatory communities and 2) generate a powerful test statistic best able to appropriately identify a
clinically and statistically significant effect. However, in this circumstance, each of the three candidates met criterion
(1) and could potentially meet criterion (2). It is the absence of a compelling reason to select one over the other two of
these dependent analyses that makes the a priori selection of an endpoint and its analysis so challenging.

The purpose of this manuscript is to demonstrate how extreme dependence between prospectively determined primary
analyses in a clinical trial can be used to develop decision rules that preclude the need for clinical investigators to choose
one and only one of a small number of closely related, acceptable statistical procedures during the trial's design phase.

2. Methodology

The development follows [5]. Assume that, in a randomized clinical trial, there are K prospectively declare primary
hypothesis tests H1, H2, H3, … HK. Let Hj denote the jth hypothesis test. For each of these K hypothesis tests, specify
the prospectively specified type I error levels α1, α2, α3, … αK. Define Tj for j=1, 2, 3, …, K as a variable that captures
whether a type I error has occurred for the jth hypothesis test, i.e., Tj=0 if there is no type I error on the jth hypothesis
test, and Tj=1 if the jth hypothesis test produces a type 1 error. Thus, we can consider K pairs, (H1, T1), (H2, T2), (H3,
T3),…, (HK, TK), where Hj identifies the statistical hypothesis test and Tj denotes whether a type I error has occurred for
that test, i.e., P[Tj=1]=αj.

Using the customary definition of the familywise error as the event that there is at least one type I error among the K
prospectively defined primary analyses [27,28], define ξ as the familywise error level, and Tξ as the variable that
denotes whether a familywise type I error level has occurred. Then ξ=P[Tξ=1], and P[Tξ=0] is the probability that
there were no type I errors among the K hypothesis tests. Therefore

PðTn ¼ 0Þ ¼ PðfT1 ¼ 0g \ fT2 ¼ 0g \ fT3 ¼ 0g \ ::: \ fTK ¼ 0gÞ ð1Þ
and

PðTn ¼ 1Þ ¼ 1−PðfT1 ¼ 0g \ fT2 ¼ 0g \ fT3 ¼ 0g \ ::: \ fTK ¼ 0gÞ ¼ 1−P \K
j¼1

Tj ¼ 0

� �
: ð2Þ

When the K individual hypotheses are independent of one another, then P \K
j¼1 Tj ¼ 0

� �
¼ jK

j¼1 PðTj ¼ 0Þ ¼ jK
j¼1 ð1−ajÞ.

However, if theK prospectively specified hypothesis tests are dependent, then the evaluation of the expressionPð\K
j¼1Tj ¼

0Þ becomes more complicated.
We will proceed with our evaluation of the Pð\K

j¼1Tj ¼ 0Þ in stages. Starting with the circumstance for K=2, we will

contrast the computation of P \K
j¼1 Tj ¼ 0

� �
in each of the independence and dependence settings. This comparison

will permit the definition of a dependence term D that, when specified, can be used to compute ξ when α1 and α2 are
computed, or, alternatively, to compute α2 when ξ and α1 are specified.

In the independence setting for K=2, write

P½T1 ¼ 0 \ T2 ¼ 0� ¼ P½T2 ¼ 0jT1 ¼ 0�P½T1 ¼ 0�: ð3Þ

This will be a useful equation for us as we develop the notion of dependency in hypothesis testing, since the key to
computing the probability of a familywise error P [Tξ=0] is the computation of the joint probability P [T1=0∩T2=0].
This calculation is straightforward in the independence scenario.

P½T2 ¼ 0jT1 ¼ 0� ¼ P½T1 ¼ 0 \ T2 ¼ 0�
P½T1 ¼ 0� ¼ ð1−a1Þð1−a2Þ

ð1−a1Þ ¼ 1−a2 ð4Þ
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The opposite circumstance, one of extreme dependence, will be defined as “perfect dependence”. Perfect
dependence denotes that state between two statistical hypothesis tests in which the occurrence of a type I error for H1

automatically produces a type I error for statistical hypothesis test H2. In this situation, the two tests are so intertwined
that knowledge that a type I error occurred for the first hypothesis test guarantees that a type I error will occur for the
second hypothesis test. Perfect dependence dictates that the conditional probability from Eq. (3) is one, i.e.,

P½T2 ¼ 0jT1 ¼ 0� ¼ 1: ð5Þ
Recalling that ξ=1−P[T1=0∩T2=0], compute that

n ¼ 1−P½T1 ¼ 0 \ T2 ¼ 0� ¼ 1−P½T2 ¼ 0jT1 ¼ 0�P½T1 ¼ 0� ¼ 1−ð1Þð1−a1Þ ¼ a1: ð6Þ

Since the occurrence of a type I error on the first statistical hypothesis test implies that a type I error has occurred on
the second hypothesis test, the joint occurrence of type I errors is determined by what occurs on H1. We can, without
any loss of generality, order these two hypothesis tests prospectively such α1≥α2. In the setting of perfect dependence,
one can execute two hypothesis tests and maintain ξ at its desired level by simply allowing α2 to take any value such
that α2≤α1=ξ. As an example, consider the hypothetical case of a clinical trial in which there are two prospectively
defined primary hypothesis tests H1 and H2 with associated test-specific α error levels α1 and α2. Choose
α1=α2=0.05. In the familiar case of independence, it is clear that ξ=1− (0.95)(0.95)=0.0975. However, under the
assumption of perfect dependence ξ remains at 0.05.

In clinical trials, rarely does one have either a collection of prospectively declared primary analyses that are
completely independent of one another, or a set of a priori analyses that are perfectly dependent. Our goal is to examine
the range of dependency between these two extremes, and then compute ξ and α2 as needed. Since these two extremes
reflect the full range of dependence, write

1−a2 V P½T2 ¼ 0jT1 ¼ 0�V1: ð7Þ

We can develop a measure D, which will reflect this level of dependence contained on [0, 1]. The instance when D
is zero should correspond to the condition of independence between the statistical hypothesis tests, and identify the
situation in which P[T2=0|T1=0]=1−α2. Analogously, D=1 will denote perfect dependence, i.e., the case in which
the conditional probability of interest P[T2=0|T1=0] attains its maximum value of one. This can be written as

1−a2 V P½T2 ¼ 0jT1 ¼ 0� V 1; 0 V D2 V1: ð8Þ

If we are to choose a value of D that will have the aforementioned properties, then we can write D in terms of the
conditional probability

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ð1−P½T2 ¼ 0jT1 ¼ 0�Þ
a2

s
: ð9Þ

In general, we will not use Eq. (9) to compute D. Our ultimate goal is to supply the value of D, and then write the
familywise error level in terms of D2.

P½T2 ¼ 0jT1 ¼ 0� ¼ ð1−a2Þ þ D2½1−ð1−a2Þ� ¼ 1−a2ð1−D2Þ: ð10Þ

The familywise error level for the two statistical hypothesis tests H1 and H2 may be written as

n ¼ 1−P½T2 ¼ 0 \ T1 ¼ 0�
n ¼ 1−P½T2 ¼ 0jT1 ¼ 0�P½T1 ¼ 0� ¼ 1−½1−a2ð1−D2Þ�ð1−a1Þ: ð11Þ

Therefore, the familywise error is formulated in terms involving the test-specific α error rates α1, α2 where α1≥α2,
and the dependency parameter D.
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During the design phase of the trial, as investigators work to select the appropriate levels of the test-specific α error
levels for the study, they can first fix ξ, and then choose α1 and D, moving on to compute the acceptable range of α2.
This is easily accomplished, recalling the assumption that the hypothesis tests are ordered so that α1≥α2.

a2ðmaxÞ ¼ min a1;
n−a1

ð1−a1Þð1−D2Þ
� �

: ð12Þ

Eq. (12) provides the maximum value of α2 that will preserve the familywise error. Denote this maximum value as
α2(max).

The case for K=3 is a straightforward generalization of the consideration for two endpoints and we can carry
forward the same nomenclature developed above. We will also assume that α1≥α2≥α3. We may write the familywise
type I error as

n ¼ 1−P½T1 ¼ 0 \ T2 ¼ 0 \ T3 ¼ 0�: ð13Þ
where

P½T1 ¼ 0 \ T2 ¼ 0 \ T3 ¼ 0� ¼ P½T3 ¼ 0 \ T1 ¼ 0 \ T2 ¼ 0�P½T1 ¼ 0 \ T2 ¼ 0�: ð14Þ
Following the development for the case where K=2, write

D3j1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ð1−P½T3 ¼ 0jT1 ¼ 0 \ T2 ¼ 0�Þ
a3

s
: ð15Þ

D3|1,2 measures the degree of dependence between H3 given knowledge of H1 and H2. Solve Eq. (15) for the
conditional probability

P½T3 ¼ 0jT1 ¼ 0 \ T2 ¼ 0� ¼ ð1−a3Þ þ D2
3j1;2½1−ð1−a3Þ� ¼ 1−a3ð1−D2

3j1;2Þ: ð16Þ

Now insert the relationship expressed in Eq. (16) into Eq. (14) to find

n ¼ 1−P½T1 ¼ 0 \ T2 ¼ 0 \ T3 ¼ 0� ¼ 1−P½T3 ¼ 0jT1 ¼ 0 \ T2 ¼ 0�P½T1 ¼ 0 \ T2 ¼ 0�
¼ 1−½1−a3ð1−D2

3j1;2Þ�P½T1 ¼ 0 \ T2 ¼ 0�: ð17Þ
and

n ¼ 1−½1−a3ð1−D2
3j1;2Þ�½1−a2ð1−D2

2j1Þ�½1−a1�: ð18Þ

Solving Eq. (18) for α3 reveals

a3ðmaxÞ ¼ min a2;
1− 1−n

½1−a1�½1−a2ð1−D2
2j1Þ�

1−D2
3j1;2

2
4

3
5: ð19Þ

Results for the circumstance for K>3 are available [5].

3. Results

This methodology was motivated by consideration of the dilemma of investigators who are commonly unable to
choose one from several admissible statistical procedures for the primary analysis of the study. Consideration of the
similarity of p-values produced from these analyses suggested an important type I error rate linkage between them
leading to the development of the dependence parameter. Discussions concerning the selection of the dependency
parameter D are available [5].

Eq. (12) demonstrates that when K=2 and α1 is fixed, the maximum value of α2 increases as D increases. A
particularly relevant issue from the development of the preceding section is the range of maximum values of α2 that are
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permitted when the level of D is high (Fig. 1). As an example, for α1=0.047, the maximum value of α2 rapidly grows
as D increases beyond 0.90. For each value of α1 one can identify a range of high values of D above which the growth
of the maximum value of α2 accelerates. This range ofDwill be denoted as the zone of hyper-dependence, in which the
relationship between the occurrence of type I errors for H1 and H2 are so great that type I error is essentially conserved
even when the values of both α1 and α2 are large.

A similar evaluation reveals that, in the case for K=3 prospectively declared analyses, large values of D produce
relatively large values of α1, α2, and α3 (Fig. 2).

Fig. 2 demonstrates the relationship between the maximum value of the test specific alpha level for H3, α3, as a
function of the dependency parameter D3|1,2 for different values of α2. For each of the five curves in this figure, the
familywise error rate is 0.05 and D2|1=0.95. This hyper-dependent condition between H1 and H2 permits a maximum
value of α2 of 0.045. Fig. 2 reveals that the maximum value of α3 increases as a function of D3|1,2. Also, just as there
was a zone of hyper-dependence in Fig. 1 for α2, Fig. 2 reveals that there is a similar zone of hyper-dependence for
the maximum value of α3. However, the value of α2 is not very critical in ascertaining the hyper-dependence zone
for D3|1,2 and α2≥0.040.

Fig. 1. Relationship between α2 (max) and the dependency parameter D as a function of α1 when the familywise error rate is 0.05. The region to the
right of line Hz is the zone of hyper-dependence.

Fig. 2. Relationship between α3 (max) and D3|1,2 as a function of α2 when the familywise error rate is 0.05 and α1=0.045. The region to the right of
the line Hz is the zone of hyper-dependence.
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As an illustration of the use of the methodology presented in this manuscript, consider the circumstance of
investigators who have prospectively identified three analyses during the design phase of their randomized, controlled
clinical study. The purpose of the trial is to examine the effect of therapy on the total mortality rate of the entire
randomized cohort. One of these analyses is to adjust the mortality effect for the recruiting center. A second is a center-
adjusted analysis that is also adjusted for a small number of predetermined covariates. The third is an unadjusted
analysis. While each of these evaluations will partition random and systematic variability differently, these three
evaluations are clearly related to each other. They both evaluate the same endpoint, in the same sample. Even though
these analyses are not identical, one would expect (as in the Gliadel example), that the type I error rates that they
generate would not be widely separated. The dilemma that faces the investigators is, given that they have declared a
maximum type I error level, how can they choose the most appropriate analysis for the situation.

A possible implementation of the methodology proposed in this paper is presented (Table 1).
Table 1 reveals three different schemes for alpha allocation when there are three candidate endpoints. Each scenario

conserves the familywise error rate. In Scenario A, the dependency parameters are at moderate levels (D2|1=0.40,
D3|1,2=0.60). In this case, when α1 is set by the investigators as 0.030, Eq. (12) reveals that a type I error event
rate of 0.025 remains for testing analyses 2 and 3. If α2 is set by the investigators as α2=0.024, then use of Eq. (19)
reveals that only 0.001 of the total alpha error rate of 0.05 remains for the third hypothesis test.

Scenarios B and C, operating at hyper-dependency levels of D21 and D3|1,2, reveal that substantially more
conservation of type I error levels can occur. Specifically, scenario C demonstrates that hypothesis testing can
effectively occur at the 0.045 level for each of the three hyper-dependent analyses.

4. Discussion

This manuscript addresses the multiple testing issue in clinical trials when evaluations that are being considered for
the primary analysis of the study are closely related to each other. The advocated methodology provides a procedure
that permits the a priori type I error level for each of these analyses to be relatively large, while still conserving the
overall type I error rate. Its implementation in the Glidel example would have removed an ambiguity in the
interpretation of the statistical results because it would have allowed each analysis to be interpreted at a type I error of
between 0.04 and 0.05, removing the investigators to have to prospectively select one analysis from several tightly
related ones, each of which would produce similar p-values.

The need for investigators to declare their analyses prospectively have been clearly delineated [1,2]. Correction of type I
errors for multiple testing is commonly required when there is more than one primary statistical hypothesis. Since this
correction typically requires a reduced test-specific type I error threshold, investigators in the design phase of their trial
commonly work to identify one and only one primary endpoint for their study. It has been appropriately argued that the
type of post hoc discussions that occurred in the example provided here can be obviated by a clear a priori selection [29].
However, in their attempts to follow this advice, the clinical investigators frequently struggle to collapse a small number of
analyses that are admissible as primary analyses down to a single primary evaluation. Their required preliminary
discussions for the prospective choice of a single primary analysis are complicated by 1) dependence between endpoint
measures, and 2) the lack of a clear clinical rationale to choose one over the other candidate analyses. In the provided
example, the standard Kaplan–Meier survival analysis procedure [30], a center stratified log rank test statistic [31], a
country-stratified log rank test, and a covariate adjusted analysis [32] were all admissible procedures. Investigators and

Table 1
Alpha allocation in hyper-dependent hypothesis testing example

Primary analyses Alpha allocation
Scenario A

Alpha allocation
Scenario B

Alpha allocation
Scenario C

Familywise error rate = 0.05 0.05 0.05
Dependent analysis 1 α1 = 0.030 0.040 0.045

D2|1 = 0.40 0.95 0.98
Alpha error available for α2 = 0.025 0.040 0.045

Dependent analysis 2 α2 = 0.024 0.039 0.044
Dependent analysis 3 D3|1,2 = 0.60 0.95 0.99

Alpha error available for α3 = 0.001 0.039 0.044
α3 = 0.001 0.039 0.044
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even statisticians debate the primacy of one over the other four analyses in a randomized clinical trial, and commonly
struggle to reach a consensus. The example provided in the Introduction reveals the confusion that can attend this vexing
decision process.While there is commonly useful literature available that can aid investigators in determiningwhen center-
adjusted versus unadjusted analyses may be helpful, an issue that has been elaborated in the methodology development of
cross over designs e.g., [33–35].

The answer to the question motivating this manuscript, i.e., whether a clinical trial, carried out under the prospective
plan of balancing randomization within each of its clinical centers, should execute a stratified analysis on the
prospectively declared endpoint, may seems unnecessary to some. They persuasively argue that it is axiomatic in
statistics that the efficiency of a research effort is improved when the analysis plan matches the research design. In
general, modern health care research designs embed specific features into a research effort, (e.g., the selection of
subjects, allocation of therapy, duration of patient follow-up, and choice of the endpoint) with the foreknowledge that
the analysis to be executed in the end will be one that incorporates these specific design features into the evaluation.
Matching the research design and the subsequent analysis efficiently uses the data to produce the most precise estimate
of treatment effects, and among the most powerful hypothesis tests.

This compelling line of reasoning suggests that the best analysis plan in a clinical trial that has chosen to stratify
randomization within centers (or within countries) would be a stratified analysis plan. Such a plan successfully and
correctly incorporates the within center treatment effect, i.e., the specific effect that the stratified randomization so
carefully embedded in the research execution. Applying a stratified analysis to the stratified randomization design
produces 1) precise measures of within center treatment effects, 2) a measure of center-adjusted treatment effect, and 3)
removal of the center-to-center treatment effect variability from the unexplained variability of the endpoint, producing,
ceteris paribus, a larger test statistic and a more powerful hypothesis test. In fact, the logic of this approach can appear
inescapable. It is this point of view argued by the advocates of Gliadel before the Advisory Committee. Even in the
post-hoc light of T-301, this contention did not lose all of its luster.

Advocates of using a non-stratified analysis in the face of a stratified randomization base their argument more on
reality than theory. While conceding that the stratified randomization offers a theoretical advantage, they assert that, in
order to achieve this advantage in reality, the recruiting centers must randomize sufficient numbers of patients,
permitting the within center randomization process to successfully balance therapy allocation within center.

While this is the goal of clinical trials, the experience of many workers suggests that reality is different. Many
clinical centers, after promising to recruit a mutually agreed upon minimum number of patients, are simply unable to
meet this commitment. Sometimes, these centers can recruit so few patients that stratified randomization is grossly
unsuccessful in balancing therapy effect within the study, producing a proportion of clinical centers with unbalanced
therapy allocations. Additionally, with lagging recruitment, the trial administration may be compelled to increase the
number of centers. This can lead to the inclusion of clinical centers into the research effort that were first excluded
either because of inadequate research experience or questions about product quality. Unfortunately, this strategy can
exacerbate the problem if these second-tier centers also fail to meet their research quota.

Inadequate planning for this unfortunate eventuality leaves the investigators in the unenviable position of attempting a
stratified analysis plan in an unbalanced and unstratified environment, a circumstance that can produce an underpowered
analysis [36]. The requirement for a prospective declaration of the endpoint analysis plan precludes the investigators from
an a priori declaration of a stratified analysis plan, followed by an unstratified analysis if their recruitment plans go awry.
Being influenced by such experiences, these workers argue that the research effort is better off by planning for an
unstratified analysis. Debates between these two points of view can be vehement, and unsatisfactorily resolved.

The implications of the implementation of the methodology must be clearly elucidated. Carrying out hypothesis
testing in the zone of hyper-dependence essentially changes a clinical trial paradigm. Commonly, the persuasive power
of a well designed, well executed clinical trial is bolstered when its positive findings for the effect of therapy on a single
prospectively declared endpoint are supported by positive findings on other related but secondary endpoints. That
persuasive power is vacated when testing occurs among a collection of prospectively declared, hyper-dependent
analyses. For example, it is unlikely that the regulatory community would provide three different indications for an
intervention that had each of its three prospectively declared analyses on different endpoints identified as statistically
significant in the hyper-dependent environment.

Additionally, the value of the dependency parameter has to be determined. While this problem has been discussed in
general [5], estimation of the dependency in the setting of multiple analyses of the same endpoint in the same data must be
elucidated.
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The dependency parameter D, along with the endpoint analysis plans, type I error rates and power must be
determined prospectively; its selection is governed by the homogeneity of the treatment effect across centers. The more
closely the conditions of the center stratified analysis correspond to those of the non-stratified evaluation, the more
informative the one analysis is for the other. This informative condition is produced when the effect of the therapy at
each of the centers are close to one another. The measure of the degree to which these are close is the homogeneity of

treatment effect. This can be estimated by D ¼ vW
vw þ vB

where vW is the within center variability of the treatment effect,

and vB is the between center treatment effect variability. In this setting, large values of D are produced when the
between center treatment effect is small relative to the within center treatment effect. What determines the value of D is
not endpoint correlation, but the differences between the effect of therapy attained between the unadjusted and center-
adjusted effects. Since D must be chosen prospectively, estimates must be available from other research efforts of vW
and vB. In general, circumstances where the difference in the p-values results in a well conducted, well executed
clinical trial is the type of analysis, and the types of analyses are standard and prospectively declared, produce a hyper-
dependent environment (i.e., D>0.90).

Specifically, this methodology may also be applied to circumstances where several analysis tools are available, but
no analysis tool is particularly preferable. For example, when the investigators are uncertain during the design phase of
the research effort whether an analysis adjusted for covariates or unadjusted covariates should be carried out. A
protocol may be designed so that three evaluations are prospectively described; 1) an analysis unadjusted for covariates
2) an analysis adjusting for a small number of covariates, and 3) and analysis adjusting for a larger collection of
covariates. When all covariates are identified during the design phase, these evaluations are dependent, and the
methodology utilized in this manuscript can be applied.

While the usual gatekeeper and fallback procedures e.g., [37] does not explicitly build in dependence, the procedure that
we have developed resides within the fallback procedure described in the above paper since it ensures that all hypotheses
are carried out while controlling the test specific and overall type I error rate. In addition, the entire development of the use
of the dependency parameter occurred within the two-tailed hypothesis testing framework, the one most used in the design
of clinical trials, and all hypothesis tests would be carried out using two-tailed p-values. In the one tailed evaluation, the
derivation of D and the test specific type I error rates are straightforward in the one-tail testing scenario.

It also must be pointed out that the methodology advocated in this manuscript does not release the investigators from
their obligation to declare their evaluations prospectively. The hazards of the alternative philosophy have been clearly
delineated [38]. The investigators have the same obligation to choose and defend the value of D as they do for all
statistical analysis parameters (e.g., type I and type II error rates, the control group event rate, and the level of efficacy
that the clinical trial is designed to detect.). In a regulatory setting, the value of D (and the other aforementioned
statistical parameters) would be presented to the regulatory body for discussion during the design phase of the study,
giving the sponsor the opportunity to embed the regulators' responses and concerns into their final determination.

Resampling procedures developed by Westfall [39–41] and by Reitmeir and Wassmer [42] have a prominent place in
the methodologic literature evaluating the multiple analysis issue. However neither the sequential rejective procedures nor
the resampling evaluations allow the investigators to select the type I error rate for each of the small number of primary
statistical evaluations. Alternative procedures that permit investigators to carry out multiple analyses on primary endpoints
and allow the scientists to retain control of the alpha level threshold have been discussed in the literature [5,43,44] and
clinical trials are beginning to develop experience with these procedures currently use related procedures [45]. In fact,
clinical trials can carry this out by inducingmodest measures of dependency [46]. The work of Benyamini and colleagues
[47,48] focusing on the false discovery rate allows workers to control the proportion of hypothesis tests that are false
positive. This perspective, which has gained support in the neurosciences, does not lead to tight control of the
familywise error rate, and is less applicable in the setting where the primary concern is the control of the overall type I
error rate. The evaluations provided in the manuscript do not provide for the type I error rate adjustment that must take
place during prospectively planned interim monitoring procedures. However, the a priori alpha levels selected would
be used as the familywise alpha error rate in computing the boundary values for considering early stopping
consideration, using either a Lan and DeMets [49–51] or a conditional power argument [52].

The standard approach of using correlations between the three log-rank tests and adjusting the error rates
accordingly is problematic since it requires the correlation structure under the null hypothesis, and that this correlation
structure be used to compute a relatively complicated probability, i.e., P[L3≥1.96 | L1≥1.96∩L2≥1.96] where Li,
i=1, 2, 3 be the three log rank statistics. Given the value of D, it is easy to adjust the type I error rates.
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There are potential regulatory implications for the interpretation of a positive trial in the hyper-dependence
environment. It is the indication section of the label that describes the benefits of the drug that the FDA and the sponsor
reasonably believed would occur in those patients who use the drug as directed. Many times the sponsors of a new
intervention express great interest in gaining as many approved indications for its use as possible. This is, in fact, one
motivation for implementing a prospectively planned multiple primary analysis mechanism in the design of clinical
trials. However, the relevant Code of Federal Regulations (CFR) requires that each indication “shall be supported by
substantial evidence of effectiveness”. Hyper-dependence among primary analyses would undermine any claim that
each of the primary analyses provides substantial evidence of effectiveness. It is therefore difficult to envision that the
FDAwould provide an indication for each of the positive findings among each of prospectively defined primary, but
hyper-dependent analyses produced from a clinical trial. In the case examined in this manuscript, the sponsor could only
hope for one indication for the use of therapy.

An important weakness of this approach is the requirement of an accurate selection ofD. Overestimation of its value
can produced inappropriately high type I error thresholds. To some extent, however, this is offset by the use ofD2 in the
type I error computations. In addition, one cannot help but wonder whether the FDA and its advisory committee wasn't
“hyper-dependent” on p-values. Clearly the interpretation of a clinical research effort does not turn on the p-value alone,
but on the joint consideration of the research effort's design and execution, effect size and effect size variability. In
the end, this may have been one the Advisory Committee ultimately considered when they voted that, although T-301
did not reach statistical significance on the per protocol analysis, they voted to approve the compound anyway.

This methodology offered in this manuscript permits the use of multiple, hyper-dependent endpoints in clinical trials
in a way that is consistent with the identification of confirmatory results in sample-based clinical research. Additionally,
its prospective use in clinical research may permit the standardization of dependent hypothesis testing in the clinical trial
community, permitting different levels of dependence for different classes of hypothesis tests. The implications of such a
standardization require further investigation.
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