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ABSTRACT

Moyé, L.A., Kapadia, A.S., Cech, .M. and Hardy, R.J., 1988. The theory of runs with applications
to drought prediction. J. Hydrol., 103: 127-137.

Although statistical run theory is a useful tool, its application to the prediction of drought
likelihood has met with limited success. Beginning from the rudiments of run theory, we have
developed a pertinent probability distribution based on difference equations. This distribution
allows the hydrologist to estimate the expected number of droughts of a prespecified duration, and
the average drought length over the desired time period. The applicability of this new mathemati-
cal approach is demonstrated using precipitation records for different climatic regions of Texas.

INTRODUCTION

There has been interest in approaching the drought prediction problem as
though droughts are entirely random occurrences. Yevjevich (1967) suggested
that some elements of run theory may be applied to the estimation of drought
likelihood, and his was among the first attempts at blending probabilistic
aspects of run theory with the prediction of drought likelihood.

Review of previous work (Yevjevich, 1967; Saldariaga and Yevjevich, 1970)
reveals that the estimation of drought likelihood remains pertinent, but the
definitive mathematical model for its description has not yet been identified.
Run theory holds promise, but the form of the theoretical results for the
prediction of future runs (Cramer and Leadbetter, 1967; Schwager, 1983)
require information that hydrologists are not likely to have. Thus the nature
of its incorporation into drought likelihood models has been restricted, leading
to models of limited usefulness in the prediction of drought likelihood
(Yevjevich, 1972). We believe a further enhancement of statistical run theory
is required to more fully employ its benefits in the context of drought likelihood
assessment. Such an enhancement is presented here, and its applicability to
drought likelihood estimation examined.
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METHODS
Definitions

Bernoulli trials play an important role in statistical theory. Consider a
sequence of experiments in which only one of two possible outcomes (one
considered a success, the other a failure) may occur. The probability that a
success occurs in the experiment is p, and the probability of failure is
g =1 — p. If these probabilities remain the same from experiment to
experiment, and knowledge of the result of a previous experiment gives no
insight into the result of any succeeding experiment, then each experiment 1s
a Bernoulli trial.

In any given year, water resource requirements in a given region are either
met with the probability p or not met with the probability g, wherep + ¢ = 1.
Therefore, if knowledge of a previous year’s result (i.e., whether water require-
ments were met or not) do not aid in determining a succeeding year's resuit,
and the probability of meeting water requirements remains unchanged across
vears. this sequence of vears may be considered a sequence of Bernoulli trials.

In addition. if in k consecutive years. the water requirements are not met,
then it is observed that a drought of length x has occurred. A drought may be
defined as being a run of consecutive years in which water requirements have
not been met, i.e., a drought is a failure run. Furthermore, one may specify a
minimum drought length of interest x,, focusing consideration on only failure
runs of at least a given length x,. Therefore, any advances in run theory, in
particular, any advances in the ability to predict the occurrence of runs of
failures in a sequence of Bernoulli trials yet to be observed, may be applied to
the prediction of drought likelihood.

If k is the a-priori specified run length of interest and n the number of trials,
then R,,(n) = Probability (there are exactly i failure runs of length « in the
next sequence of n trials, and all other run lengths are possible).

If i is the number of failure runs of length « in the next sequence of n trials,
then the range of i is finite, ranging from i = Otoi = [ where I = {(n + 1)/
(x + 1), [ ] denoting the greatest integer function. Thus:

{
Z Rr.x(n) =1

Using this information:

I
& = 9 iR (n) = the expected number of runs of length «
i=0

It follows that:

v.. = variance of the number of runs of length «x in n trials

r.K

1

Y 2R (n) — &,

=0
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Furthermore:

is the expected number of droughts.
Another computation of interest is:

L(n)y =

n
Y Ern
n=1

which is an estimate of the average run length in the sequence.
Recalling that a drought may be defined as a run, we may apply these
theoretical results to drought prediction. Note that:

is the average drought length in the next n years.

From the knowledge of this distribution, the capability now exists to
compute (a) the expected number of droughts in the next n years, and (b) the
expected duration of a drought over the next n years. Thus, by identifying
R;.(n), the hydrologist will have access to quantities of importance in
predicting drought likelihood. The goal of the remainder of this communica-
tion is to develop this distribution and to demonstrate the application of this
development to the problem of drought prediction.

Theoretical development

As a first step, R;,(n) is derived. It is clear that:
Ry, (n) = 1, forn < «
I%x(k) = 1= qK

The difference equation for R,,(n) can be written as: Prob (there are no runs
of length  in n trials) =

Ry, (n) PRy .(n — 1) + gpRy(n — 2) + ¢’pRy(n — 3) + ¢’pRy,(n — 9)
+ ...+ ¢ 'pRy(n —K) + ¢ 'pRy(n — Kk — 1)

I

+ ...+ ¢"'pR,,(0)

k-1 n-1

Y pgRy(n —i -1+ Y pgRy(n —i-1)

=0 i=n+1
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forx £ n < ®©

The generating function approach (Goldberg, 1958) is then used to solve this
equation resulting in:

Ry (ny = 1, ifn < x
Ry .(n) = 1 -gq°, forn = «

min(n,2x — 1)

Ry,(n) = ¢Din —x) + Y ¢ 1 -g*")Dn - h)

h=x

min{2x + 1.n)

+ Z qm-l(l _ qn—x—l)D(n _ h)

h=min(n,x+2)

+ Y @[ - @YD - h)

h=min(n,2x +2)

min(n~12x—1)
- q{ Y ¢l -¢*"D(n - h -1

h=x

min(2x+1, n-1)
+ Z qu-l(l _ qn—x—l)D(n _ h _ 1)

h=min(n,x +2)

n-1
. T ¢ [l - ¢""* 9] D(n —h - 1)}, forn > «

h=min(n,2x + 2)

where:

(/) (xil-m (x — mxk — m + h\[m
D) = ¥ %
m=0 h=0 m h

x (_1)m+(m—h)(x+l)pmqm(x*l)-hl(x —mk —m + h ; m)

Proceeding analogously, the difference equations and solutions are obtained
for R, .(n), and R, (n).

RESULTS

The derivation of R,,(n) allows, for a given g, x and n the computation of the
exact probabilities of the occurrence of runs of length x. The applicability of
these computations was tested using Texas precipitation records.

Rainfall data were obtained from the climatological records for Texas (Texas
Almanac, 1986-1987). Data were available for the 93 years (1892-1984) for ten
climatological regions of this state (Fig. 1). The Texas Almanac defined a
drought as a period when annual precipitation was less than 75% of the
thirty-year normal (1931-1960 period). Using this definition, the new method
was tested in different regions.

Tables 1a, 1b and Tables 2a, 2b illustrate these tests for two contrasting
climatological regions, Upper Coast (average annual precipitation equal



131

TABLE 1A

Application of model to recorded precipitation history, Upper Coast Climatic Division. Texas,

1892-1984

Year Percent Year Percent Year Percent
of normal of normal of normal
rainfall rainfall rainfall

1892 73 1923 1954 57

1893 64 1924 1955

1894 1925 1956 62

1895 1926 1957

1896 1927 74 1958

1897 1928 1959

1898 1929 1960

1899 1930 1961

1900 1931 1962

1901 70 1932 1963 73

1902 1933 1964

1903 1934 1965

1904 1935 1966

1905 1936 1967

1906 1937 1968

1907 1938 1969

1908 1939 1970

1909 1940 1971

1910 74 1941 1972

1911 1942 1973

1912 1943 1974

1913 1944 1975

1914 1945 1976

1915 1946 1977

1916 1947 1978

1917 1948 67 1979

1918 1949 1980

1919 1950 68 1981

1920 1951 1982

1921 1952 1983

1922 1953 1984

TABLE 1B

Comparison of observed and expected droughts of various lengths

Length of Observed Expected

drought (yr) droughts droughts

1 8 9.13

2 2 1.17

3 0 0.15

4 0 0.02

5 0 0.00
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Fig. 1. Climatologic regions of Texas. / = High Plains: 2 = Low Rolling Plains; 3
Central; 4 = East Texas; 5 = Trans Pecos; 6 = Edwards Plateau; 7 = South Central; §
Coast: 9 = Southern; 10 = Lower Valley.

1173 mm) and Southern (average annual precipitation equal 558 mm). Tables la
and 2a show years during which annual precipitation was less than 75% of the
normal. Since the average precipitation varies from region to region, the
model’s estimate of drought likelihood for a specific region uses information
concerning average precipitation for that region alone.

In order to calculate the expected drought frequencies one must: (1) estimate
q; (2) determine n, x; (3) compute the probabilities for the distribution of
interest; and (4) compute the expected number of runs for each value of x.

For each climatic region, a value for g, the probability of the occurrence of
insufficient rainfall in any given year is required. In the approach suggested by
Yevjevich (1967), this value might be obtained by dividing the total number of
years in the past when precipitation was less than 75% of the normal by the
duration of the period of record. For Upper Coast and Southern regions, these
estimates of ¢ were, respectively, 0.13 and 0.14.

For different values of x = 1 to 4, R, (n) was computed. From these prob-
abilities, the expected number of runs of length x were computed using a
computer program written with the Microsoft QuickBasic Compiler 3.0, and
are reported in Table 1b and Table 2b. These tables report the expected and
observed frequencies of droughts of various lengths, from one to five years,
during the period from 1892 to 1984.

It is important to consider alternative drought definitions to investigate the
model’s robustness. In this regard, a drought may be alternatively defined as
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TABLE 2A

Application of model to recorded precipitation history, Southern Climatic Division, Texas, 1892

1984

Year Percent Year Percent Year Percent
of normal of normal of normal
rainfall rainfall rainfall

1892 1923 1954 71

1893 53 1924 1955

1894 1925 1956 53

1895 1926 1957

1896 1927 1958

1897 72 1928 1959

1898 69 1929 1960

1899 1930 1961

1900 1931 1962 67

1901 44 1932 1963

1902 65 1933 1964

1903 1934 1965

1904 1935 1966

1905 1936 1967

1906 1937 1968

1907 1938 1969

1908 1939 1970

1909 1940 1971

1910 59 1941 1972

1911 1942 1973

1912 1943 1974

1913 1944 1975

1914 1945 1976

1915 1946 1977

1916 1947 1978

1917 32 1948 1979

1918 1949 1980

1919 1950 74 1981

1920 1951 1982

1921 1952 56 1983

1922 1953 1984

TABLE 2B

Comparison of observed and expected droughts of various lengths

Length of Observed Expected

drought (yr) droughts droughts

1 8 9.65

2 2 1.34

3 0 0.18

4 0 0.03

5 0 0.00




134

having a minimum length of two years. This application is illustrated using the
entire state of Texas annual average precipitation for the same period 1892-
1984. Each entry in the Table 3a represents the average rainfall in Texas for a
given year. From these data the model’s ability to predict the frequencies of
droughts of various lengths may be examined (Table 3b).

In Table 3¢ we change the period for which g and the mean precipitation was
computed to the first 30 years of the record. The projections of drought
likelihood are then obtained for the remaining 69 years. Thus, the model’s
ability to project forward, making prospective drought likelihood assessments
could be evaluated.

TABLE 3A

Average Texas rainfall. 1892-1984

Year cm Year cm Year cm

1892 26.32 1923 37.24 1954 19.30
1893 18.50 1924 22.32 1955 23.59
1894 25.61 1925 25.37 1956 16.17
1895 29.83 1926 32.97 1957 36.93
1896 25.15 1927 24.32 1958 32.71
1897 24.21 1928 27.56 1959 31.29
1898 24.56 1929 29.47 1960 33.78
1899 27.57 1930 28.44 1961 30.20
1900 36.87 1931 28.37 1962 24.50
1901 20.13 1932 32.76 1963 20.95
1902 28.28 1933 26.15 1964 24.11
1903 29.64 1934 25.59 1965 28.68
1904 26.78 1935 35.80 1966 28.68
1905 35.98 1936 30.32 1967 28.44
1906 29.19 1937 25.89 1968 34.54
1907 28.51 1938 25.25 1969 29.85
1908 29.06 1939 23.52 1970 26.36
1909 21.58 1940 32.70 1971 29.58
1910 19.52 1941 42.62 1972 27.73
1911 26.83 1942 30.68 1973 38.37
1912 24.92 1943 24.28 1974 32.78
1913 33.25 1944 34.80 1975 28.70
1914 35.19 1945 30.60 1976 33.37
1915 28.79 1946 35.16 1977 24.40
1916 23.05 1947 24.75 1978 27.00
1917 14.30 1948 21.79 1979 31.43
1918 26.02 1949 35.80 1980 24.49
1919 42.15 1950 24.48 1981 32.65
1920 29.90 1951 21.99 1982 26.97
1921 25.18 1952 23.27 1983 25.75

1922 29.83 1953 24.76 1984 26.80
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TABLE 3B

Model application to Texas statewide data

Length of Observed Expected
drought (yr) droughts droughts
2 5 4.95
3 2 1.51
4 0 0.50
5 0 0.16
6 0 0.05
7 1 0.02
8 0 0.01
9 0 0.00
10 0 0.00

Drought definition: any year with less than 90% of the 1931-1960 statewide average; ¢ = 0.34.

TABLE 3C

Prospective drought predictions

Length of Observed Expected
drought (yr) droughts droughts
2 4 4.03
3 2 2.14
4 1 1.14
5 0 0.61
6 0 0.32
7 1 0.17
8 0 0.09
9 0 0.05
10 0 0.03

Drought definition: at least two consecutive years with less than normal (1892-1922) state average;
q = 0.525.

DISCUSSION

Modern societies are less inclined to accept the conventional risks of
drought, making the best possible estimate of their likelihood imperative. The
estimation of drought likelihood will continue to occupy the attention of
hydrologists and statisticians (Yevjevich, 1967). With this in mind, we studied
the options that statistical run theory has to offer the practicing hydrologist.
A review of run theory revealed that there have been many examinations of the
issue of the future occurrence of runs in a sequence of Bernoulli trials. Mood
(1940) and Schwager (1983) have developed expressions which theoretically
predict future run behavior. However these results are not left in the form most
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suitable to hydrologists, i.e., the offered solutions are functions of parameters
to which hydrologists have no access. The same is true of the major contri-
butions to crossing theory made by Cramer and Leadbetter (1967). Although
these results on “exceedence measures” and “‘length of upward excursions” are
precise, they offer only a theoretical solution to the problem of run prediction.
Therefore, hydrologists formulate the problem of drought likelihood in
manners similar to Mood or Cramer (Yevjevich, 1967), but are unable to use the
advanced mathematical solutions offered by these theorists because of the
difficulty in translating the abstract terms in which these solutions are
formulated to a specific hydrologic context. A hydrologist attempting to
implement these findings must estimate parameters such as "the probability of
no upcrossings in the time interval 0 to infinity”, clearly an endeavor full of
risk and inaccuracy.

It therefore comes as no surprise that a review of the drought literature
revealed that the application of run theory to drought prediction is restricted.
Run theory has been identified as useful to hydrologists in the assessment of
drought likelihood (Yevjevich, 1967. 1972). However, results of importance to
hydrologists based on the established theory of runs rest of either simplistic
probability models or require familiarity with asymptotic behavior of run
length (Yevjevich, 1967).

The hydrologist has access to g (the probability of inadequate annual
rainfall in the past), n (the number of years for which the predictions are to be
made), and « (the defined drought length). It is our contention that this in-
formation is sufficient to obtain accurate estimates of drought likelihood. The
approach offered here permits this and is therefore of interest from a number
of perspectives. First, it offers an exact solution for the prediction of the future
occurrence of runs of an arbitrary length in a sequence of Bernoulli trials, with
no approximations required. Second, the solution is in terms of parameters
with which the hydrologist is familiar and has direct access. Third, the
outcome measures of this model (expected number of droughts of an arbitrary
length and average drought duration) are measures of hydrologic importance.
Thus, starting from estimates of familiar parameters and using the presented
model, the practicing hydrologist will gain a pertinent, accurate asessment of
the likelihood of droughts in the region of interest.

The Bernoulli model represented by R;,(n) works in predicting droughts.
Using alternative drought definitions, we observed that the model performed
reasonably well in various climatologic regions of Texas.

These results are encouraging, but it must be emphasized that more theoreti-
cal development is required along the following lines. First, a rigorous
goodness of fit test must be developed. Such a test is not presently available.
The traditional chi-square test (Bickel, 1977) will not be entirely appropriate
since it assumes that all expectations are derived from the same probability
distribution. In fact, the expected frequency of each drought length has its own
distribution.

Secondly, it was assumed that the value of g is region-specific and remains
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constant over time. Initial observations suggest that the model is not overly
sensitive to variations in g. Nevertheless, additional estimation techniques for
q might need to be developed.

In addition, the underlying assumption of the Bernoulli model must be
examined. The Bernoulli model assumes independence of rainfall over consec-
utive years. This assumption may (Friedman, 1957) or may not (Tannehill, 1947)
be valid. The ability of this model to accurately assess drought likelihood
prospectively (using the first thirty years of Texas data to assess drought
likelihood for the remaining sixty-nine years) assumes no variability in q.
There is no significant evidence of serial correlation in the data set (p, = 0.03).
However, it is appropriate to develop a general model which would allow for
such persistence. Efforts to develop this option suggest that this more sophis-
ticated alternative would use as the probability of a run of length xq, ¢, g,
g4 - - - g and not ¢*. The ultimate model would incorporate these second or
higher order Markovian dependencies into the statistical run theory.

The development presented in this paper is a first step to extend a potentially
useful theory to a concept fitted for hydrological needs. We continue to work
on the development of this model along the above outlined avenues. The
limitations notwithstanding, the present developments offer an encouraging
picture for the prospect of drought prediction.
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