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Abstract

A new model has been developed here, incorporating prospective run theory to predict events
based on order statistics. The difference equations for such a system are presented and the
closed form solution is obtained in terms of parameters to which the practising hydrologist has
access. Predictions are provided for duration of maximum drought lengths as a function of the
definition of drought, the number of years over which the prediction is made, and the
probability of inadequate water resources.

1. Introduction

Workers in hydrology have long suspected that run theory with a basis in Bernoulli
trials may be an appropriate foundation from which to predict sequences of
hydrologic events. Yevjevich (1967) was among the first at attempting a prediction
of properties of droughts using the geometric probability distribution, defining a
drought of k years as k consecutive years when there are not adequate water
resources. Additional work by Yevjevich (1967), and Saldariaga and Yevjevich
(1970) continued the development of run theory, incorporating concepts of time
series analysis in formulations to predict drought occurrence. Beginning with the
examination of wet and dry periods, Sen (1976) continued this work in applying
run theory to water resource predictions, evaluating run sums of annual flow series
(1977). Moyeé et al. (1988) developed an alternative model, extending the work of
Yevjevich, equating a drought lasting k years in duration with a run of length k. This
lead to the prediction of average drought lengths. The resuits of this model were seen
to correspond closely to the findings of recorded precipitation history.
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In ensuing correspondence, Sen (1989) was critical of these predictions, particularly
with regard to the use of averages (e.g. average drought length). This criticism was
anchored in the view that hydrologists should try to find solutions for critical values
rather than averages of lengths of hydrologic phenomena. An interesting enumerative
approach for maximum drought lengths was identified by Sen (1980) using a
Markovian model. By integrating the notion of sequential occurrences of events
with extreme order statistics (minimums and maximum event lengths), the model
extends the application of formal probability modeling to hydrologic events of
interest. As with earlier work, the solutions are expressed in parameters which are
readily available to workers in the field. Predictions are provided for the relative
frequency of extreme critical events of interest.

2. Methods

In this development, the hallmark of events of hydrologic significance is
consecutive occurrences of the event. We define a drought (failure run) as a sequence
of consecutive years of inadequate water resources. We may also define a bounty
(success run) as a run of consecutive years of adequate water resources. We will also
assume that the year-to-year availability of adequate water resources can be
approximated by a sequence of Bernoulli trials in which only one of two possible
outcomes (success with probability p or failure with probability ¢) may occur. These
probabilities remain the same from year to year, and knowledge of the result of a
previous year provides no information for the water resource availability of any
following year. This model has been employed in modelling hydrologic phenomena
(Moye et al., 1988; Sen, 1989).

Our previous work defined the probability of exactly i runs of length k in » trials. In
this paper, we define Tx /(n) as the probability all failure runs are greater than or
equal to K and less than or equal to L in length where 0 K< Lin a sequence of n
Bernoulli trials. If ¢ is the probability of inadequate water resources, then Tk ;(n) is
the probability that all droughts that occur in # trials are between K and L years in
length. If Tk ; (n) can be formulated in terms of X, L, ¢, and n, quantities to which the

hydrologist has access, the following probabilities for n consecutive years may be
identified.

Tk .(n) = P(all drought lengths are between K and L years long)

1 — T5 . (n) = P(at least one drought greater than L years in length)

Probabilities for the order statistics involving the maximum and minimum drought
length are particularly noteworthy

P(minimum drought length greater than or equal to K years) = Tk ,(n)

P(maximum drought length less than or equal to L years) = Tj;(n)

Access to these probabilities provides useful information for predicting extremes in
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drought lengths. The notion of order statistics can be further developed by observing
that T (n) is the probability that all droughts in »n years are less than or equal to K
years long, i.e. the maximum drought length is less than or equal to K years in length.
T5.k-1(n) is the probability that the maximum drought length is less than or equal to
K — 1 years in length. Thus T x(n) — Tj «_,(n) is the probability that the maximum
drought length is exactly K years in length. The expected maximum drought length
E[Mp(n)] and its variance ¥'[Mp(n)] can be computed as

E[Mp(n)] =Y K[Tgx(n) - To.x-(n)]
K=0

VIMp(n)] =Y K*Tsk(n) - Tgx_i(n)] — EMp(n)]

K=0

It is important to note that £{Mp(n)] is not the average drought length as reported in
the literature (Moyé et al. (1988)), but instead is the expected length of the worst
drought in n years. For example, if in a 20 year span, the droughts which occur are of
length 3 years, 2 years, and 5 years, the worst drought is the 5 year drought.

An analogous computation can be made for consecutive years of adequate rainfail.
Define a bounty of length K as a sequence of K consecutive years where for each year
there is adequate water resources. Then, for computations of probabilities involving
bounties we define g is the probability of adequate water resources, and Tk (n)is the
probability that in n years all bounties are greater than or equal to K and less than or
equal to L years in length.

We begin the general derivation of the Tk ;(n) model by defining T ;(n) as the
probability all failure runs are either of length 0 or between K and L. The desired
quantity Ty (n) is then just Tg ;(n) — ¢". The boundary conditions for T ;(n) are:
Tko(n)=0forailn <0, Tx (n)=0forK > L; Tg (n) =l forn=0; Ty (n) = p"
for0<n< K.

Using the indicator function, we may write the recursive relationship for T ;(n)
for0 < K< min (L,n) as

Trr(n) =p"Iycnex +pTip(n— D5 +¢5pTe (n— K — 1)) N
+ g pTy (n— K =25 + g Ty (n— K - 3Myxk
+ .. +q"pTy (n— L - Dhyk+q'Ixcnct 0y

where /. 4 is equal to one when x € A, 0 otherwise. The motivation for Eq. (1) lies in
noting the recursive relationship must inciude only those terms which permit failure
run lengths of the required lengths. Since by its definition, Tk 1 (n) only permits failure
runs of between lengths K and L, only terms with powers of g between K and L are
allowed. The index functions for p" is required since a run of length zero is permitted.
In addition, a term q" is required when K < n< L, since for such a small value of n a
failure run length of length n meets the requirement of Tk L(n).

Specific cases of this recursive relationship are provided in the Appendix. Define the
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generating function

G(s) = Z s"Tk 1(n)
n=0

where s is a constant 0 < s < 1. The range of the summand is 0 <7 < oo, and the
coefficient of s” is the desired quantity Tk ;(n). The general solution for Tk ;(n) will
be found by first collapsing the infinite number of equations for Tk ;(n) into one
equation for G(s). This equation will be solved for G(s), which will then be inverted,
identifying the coefficients of s”. Begin by multiplying both sides of Eq. (1) for T ;(n)
by 5"

S Tir(n) = 5" Iycnek +P" T p(n = Vg + ¢ ps" Ty p(n = K = D5«

+ ¢ ps" T p(n— K = Dz +45

ps"Tgp(n— K =35k
+ ..+ qus"TK,L(n —L- WOk +q"s" Ixcncr
Sum over the interval n > 0 to obtain

ZS Tk (n ZSP10<,.<K+PZS Tgp(n— Dl

n=0 n=0 n=0

o0
+45p ' Tra(n =K~ Dlizx
n=0

+q"p Y "Trr(n— K =Dl
n=0

x<
+ qK+2PZS"TK.L(" =K =3,k
n=0

20
+o gD S"Trpln—L— Dk
n=0

+ZS q IK<,.<L—Z(P5 +st Tgp{n—1)

n=0 n=0
L 20 0
+> pqd Y S Trln—r— D+ 5"q Ixcnse 03]
r=K n=K n=0

The first term from the RHS of Eq. (2) may be simplified as

1-(p9)*
Z(p) = 1_

n=0 ps
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and the second term from Eq. (2) is

sz"TK_L(n—l psZs" "Terin=1)= [ Z(ps }
n=K n=K
The rth term (K <r < L) in the finite sum in Eq. (2) from
L >
ZP‘] ZS Tgr(n—r—1)
r=K n=K

can be written as

P I Tenln—r=1) = pgs™ S8 Ty r = 1)

n=K n=K
_pqrsﬂ—l Z § TKL pqrsr+l [Zs TKL j| =pqrsr+lG(s)
n=K—-r-1

The last term from Eq. (2) is easily seen as

x L

n.n nn
E(ISIK@sL‘—‘E‘IS
n=K n=K

Thus, the infinite collection of equations in terms of Tk ;(n) may be written as one
equation in terms of G(s)

K-1 K-2

=S + s 1) - zw] DY ELE W
n=0 n=0

TN ) = (p5) TER5)" + T heklas)”

L —ps— S rkpgs™!
L+1

__ l-gs+(g9)" - (¢8)
(1-qs)(1 = ps — ek pq's™")

To invert G(s), the result of Theorem I from the Appendix provides that if

H(s) = l — = i a,s”
n=k

L—ps— g pq's™!

Then a, is given by

m

m ) qZL KHm(K+1

m=0my=0m=0my=0 my_g,,=0 (momlmz"'mL_K+l

X IZL K+1 m<m ZL KHm(K-H):n
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And, according to the Corollary in the Appendix, if

1 —gs + (g5)" — (g9
(1-gs)(1 —ps— Y g pg's™*')

then the coefficient for the term 57, >0

G(s) =

k L
TK,L(") =Cp — 4y + q Cnokp —q Cpy—

where

n
— n—j
Cyp = E a;q
j=0
H m m m m m
=33y Y. ¥
Momm,.
my=0  my_g,,=0 N0

m=0 mg=0 m, =0 My K4

>pqull:0[(“ m(K+i)

X IZ‘I;—OKH m; smIZ‘L:—oI(H m(K+i)=H

Thus, Tk ;(n) = Tk (n) —¢q", and is an explicit function of n, the total number of
years, g the probability of inadequate water resources in a year, and k, the length of
the drought of interest.

3. Results

This model can be applied to estimating probabilities of drought/bounty lengths
and statements concerning minimum and maximum expected drought/bounty
lengths. The applicability of this stochastic approach in predicting droughts based
on Texas state precipitation data has been established (Moyé et al., 1988). The
implications of Tk ,(n) for the occurrence of future hydrologic phenomena are
provided, and the model allows complete freedom in choosing the drought lengths
of interest. The prediction of drought length in the next 20 years as a function of the
probability of inadequate water resources yield direct assessments of the relationship
between the yearly probability of inadequate water resources and the probability of
drought (Table 1) beginning with short drought lengths (0-5 years) and progressing

Table 1
Predictions of drought length in 20 years as a function of yearly probability of inadequate water resources
(@
Permitted drought lengths  Yearly probability of inadequate water resources
(years)

010 020 030 040 050 060 070 080 090 099
0-5 1 099 099 096 088 071 046 0.19 003 0
6-15 0 0 0 0 0 000 0.01 005 0.15 007

1620 0 0 0 0 0 0 000 002 015 084
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Fig. 1. Drought length as a function of q. y-axis label — probability; x-axis label — g: solid line, 0-5 years;
dotted line, 615 years; dashed-dotted line, more than 15 years.

to medium drought lengths (6-10 years) and long drought lengths (16-20 years). For
exampie, the probability that in the next 20 years, all drought lengths will be less than
or equal to 5 years in duration is 0.99 if the probability of inadequate water resources
is 0.20. Although the probability that drought lengths will be restricted to between 6
and 15 years increases as the probability of inadequate water resources increases,
rising to a maximum of 0.15 for ¢ = 0.90, it is notable that this probability then
decreases as g increases further, falling to 0.07 for the maximum value of g examined
(0.99). This somewhat paradoxical behavior is explained by the fact that 15 years is
not the maximum possible drought length in 20 years (Fig. 1). As g increases from
0.10 to 0.99, the probability that the only droughts which occur are long droughts
(16-20 years in length) increases slowly at first for small values of g, then increasingly
dramatically as g increases to 0.99.

Table 2

Probability of maximum drought length in 20 years as a function of probability of inadequate water
resources (q)

Maximum drought lengths Yearly probability of inadequate water resources (q)

0.10 0.20 0.30 0.40 0.50 0.60 0.70

>2 years 0.016 0.112 0.310 0.562 0.787 0.928 0.986
>4 years 0 0.004 0.028 0.100 0.250 0.478 0.731
> 6 years 0 0 0.002 0.014 0.058 0.170 0.382
> 8 years 0 0 0 0.002 0.013 0.054 0.172
> 10 years 0 0 0 0 0.003 0.017 0.073
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Table 2 examines the expected lengths of maximum drought lengths as a function
of ¢. Probabilities for longer maximum drought lengths increase as g increases. For
example, in a 20 year period, the probability the maximum drought length is greater
than 4 years increases from 0.004 for ¢ = 0.20 to 0.731 for ¢ = 0.70. However, even
for large values of g, the probability of having a maximum drought length of greater
than 10 years is only 0.073.

Behavior of the expected maximum drought length as a function of g provides
important new information for droughts over the next 20 years. For each yearly
probability of inadequate water resources, Table 3 provides the expected duration
of the worst drought (maximum drought length), and its standard deviation. In
addition, the probability mass function is provided for the distribution of the
maximum drought length. This table demonstrates that the expected maximum
drought length increases as the yearly probability of inadequate water resources
increases (Fig. 2). In addition, the standard deviation increases, making prediction
of the length of the worst drought increasingly hazardous.

This same approach can be applied to bounty length (consecutive years of adequate
water) probabilities. For fixed probability of adequate water resources, the prob-
ability the minimum bounty length exceeds K decreases as K increases (Fig. 3). In
addition, as the probability of adequate water resources increases, the probability that

Table 3
Moments and probability distribution of maximum drought length M as a function of g
Parameters q

0.10 0.20 0.30 0.40 0.50 0.60 0.70
E(M) 1.18 1.63 2.21 2.90 372 4.80 6.28
SD(M) 043 0.76 1.00 1.26 1.59 2.03 2.65
P(M =1) 0.839 0.512 0.232 0.076 0.017 0.002 0
PM =2) 0.145 0.375 0.458 0.632 0.196 0.070 0.014
P(M =3) 0.014 0.090 0.214 0.311 0.309 0.209 0.088
P(M =4) 0.002 0.020 0.068 0.151 0.228 0.241 0.167
P(M =5) 0 0.003 0.020 0.062 0.128 0.186 0.187
P(M =6) 0 0.001 0.006 0.024 0.064 0.121 0.162
PM=T1) 0 0 0.002 0.009 0.031 0.073 0.123
P(M =38) 0 0 0 0.003 0.015 0.042 0.087
P(M=9) 0 0 0 0.001 0.007 0.024 0.059
P(M = 10) 0 0 0 0 0.003 0.014 0.040
P(M = 11) 0 0 0 0 0.001 0.008 0.026
P(M = 12) 0 0 0 0 0.001 0.004 0.017
P(M =13) 0 0 0 0 0 0.002 0.011
P(M = 14) 0 0 0 0 0 0.001 0.007
P(M = 15) 0 0 0 0 0 0.001 0.005
P(M = 16) 0 0 0 0 0 0 0.003
P(M =17) 0 0 0 0 0 0 0.002
P(M = 18) 0 0 0 0 0 0 0.001
P(M = 19) 0 0 0 0 0 0 0.001
P(M = 20) 0 0 0 0 0 0 0.001
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Fig. 2. Probability mass function of maximum drought length. y-axis label — probability; x-axis label —
duration of maximum drought length (years).
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Fig. 3. Minimum bounty length probabilities. y-axis label — probability minimum bounty length exceeds X
years. x-axis label — probability of adequate water resources. From top to bottom: thin line, K = 1; dotted
line, X = 3; dashed-dotted line, K = 5; dashed line, K = 7; dashed-dot-dotted line, K = 9.
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a bounty length is the minimum bounty length increases as longer bounty lengths
become more likely.

4. Discussion

Despite the advances in stochastic hydrology, an important hurdle for its applica-
tion remained the incomplete examination of ‘critical drought length’, or extreme
order statistics, as mentioned by Sen (1989). The emphasis on maximum values
would provide a firm basis for decisions concerning the performance of engineering
structures at there most extreme risk. Initial work by David and Barton (1962) and
Feller (1968) established the probability mass function for the distribution of the
longest run length. Both Yevjevich (1967), and Sen, (1989) have worked in this
area. We agree with this insightful perspective, and have developed a model based
in prospective run theory which permits this examination of critical drought length
through the use of order statistics. The model allows prediction of droughts of
arbitrary length, and is easily converted to allow the computation of the probabilities
of different bounty lengths. However, more importantly, we compute the extreme
order statistics of drought and bounty length. Also the standard deviation of this
drought length is provided, allowing for the computation of the degree of variability
for the maximum drought length. Since this computation comes directly from the
derived model, this computation is again a function of parameters that the
hydrologist has access to, specifically ¢ and » the number of years over which the
prediction is estimated.

The work of Stern and Coe (1984) is also relevant here. There work is a conceived
executed analysis of rainfall data to accurately predicting rainfall. This work begins
with a Markov chain to compute the probability of rain occurring on a given day. It
models the distribution of rainfall on a given day (assuming it rains on this day) as a
Gamma distribution. The parameters of this distribution are assumed to vary
seasonably and Fourier series are used to determine the best estimate of this seasonal
variation. What is relevant for this discussion is that one of the products of this work
is the probability of dry periods (i.e. consecutive days without rain), and predictions
are provided for the lengths of these periods. But with this work, predictions are not
provided for the extreme order statistics (minimum and maximum lengths ) of the dry
periods. They do not fully report the probability distribution of dry periods of
10 days, 15 days, and 20 days, the lengths their manuscript reviews. The present
manuscript does not develop an estimator for daily rainfall amounts. It begins with
run theory, providing not just the distribution of run lengths, but the probability
distribution of the extreme order statistics.

The generating function approach is not the only possible mode of computation
available to stochastic hydrologists. Direct enumeration (Sen, 1988) has been
employed in the past. However, this is most easily executed if the sample sizes are
small. We prefer the generating function approach since it provides a direct solution
for any value of n > 0. In this setting, 1 — Ty (n) is the probability of an extremely
short (< K) or extremely long (> L) drought if q is the probability of inadequate
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water resources. There are two ways to solve for Tx . (n). A first approach is to use the
heavily nested Eq. (1), building up the sequence T (1), Tkr(2), Txr(3)--.
Tgo(n— 1). The second way is to use the closed form solution, which does not
require knowledge of Tk (m) for m < n. In addition. the recursive relationship
developed here allows freedom in considering the run lengths of interest through
the choice of K and L such that 0 < K<L. Thus, one can choose to focus on
minimum run lengths, and easily obtain the distribution for the minimum run length
from the solution provided in the methods. Alternatively, one might focus on the
probability that the run lengths are neither extremely smail nor extremely large.

The users of run theory in the past have not translated their run theory computa-
tions from the probability arena to the hydrology arena successfully. This is a diffi-
culty of the parameterization of the problem. This translation is essential if the
develops from run theory are to be applied to hydrology. The work provided here
offers the direct translation from run theory to probabilities for drought length order
statistics, the expected length of the worst drought and the expected length of the
smallest bounty.

The developed model here is extremely flexible. For example, one may consider the
definition of a drought as a consecutive, uninterrupted string of successes as too
confining. A drought could occur when there is one year of adequate water
resources, preceded and followed by consecutive years of inadequate water
resources. The model should be generalized in this direction. although this general-
ization would not include the important case where surface or underground storage
or carry over of any kind exists. A first step would be allowing as a drought a success
followed by consecutive years of failure ¢ "'pq™. The implications of a model
defining a drought as such have yet to be explored.

A criticism of this model is the use of Bernoulli trials. However. a prospective run
theory model based on independent Bernouili trials has been demonstrated to work
sufficiently well in predicting rainfall in Texas (Moye et al.. 1988). Thus, although
there is correlation from year to year in rainfall amounts, the correlation is sufficiently
small to allow the independence assumption as a reasonable approximation.
Nevertheless. the theoretical underpinnings of this model would be substantially
strengthened if the model could be developed allowing correlation between events
on different trials. Although work continues in this area, the present development of

stochastic hydrology continue to provide useful estimates of recurrent hydrologic
phenomena.

Appendix

Specific cases

We provide here two examples of the evaluation of Tk . (n). First consider the
circumstances for the case where n = k, Tk 1(n) = Tk (k). By simple enumeration,
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the probability of having a sequence of trials where there are no failures or, wher
failures occur, they occur in run lengths between length K and L is pk + q". Using Eq
(1), the result is identified as

Tk L(K) = pTy 1 (K = 1) + ¢*pTx [ [K(K + 1)]

K+1

+ 4T pTr oK — (K +2)] + ¢ pTy L [K — (K + 3)]

+o g PTh (K= L~ 1) + ¢ lg g r = pK + 8

As a second example, consider Tk (K + 1) = P (there are no failures, or, when

failure runs occur, they are between length Kand L in K + 1 trials). By enumeratior,

this is plainly = P ((no failures in K + 1 trials) or (a failure run of length Kin K + 1

trials) or (a failure run of length K + 1 in K + | trials)) = PR+ 2pgt +
Using Eq. (1), this result may also be found as

Tea(K+1) =pT(K+ 1= 1)+ ¢*pTe [[K+1 = (K +1)]

K+1

4 T [K+ 1~ (K+2)]+ ¢ pTy K+ 1 — (K + 3)]

Fo g T LK+ 1= L= 1) + ¢ Ig .k o = p(p¥ + ¢%)

K+1

+qkp+q =pK+l +_2qkp+ql(+l

and the result is verified.
Theorem:

Assertion:
If the generating function H(s), such that, for constants k. g and p
Hg,(s) i a,s" 1 !
K.L = ror = r
= ==Yk aps 1 ps(1+ 3L, q'9)

a, = i i Zm: ( m )pmqu;""m,mn

m=0my=0m;=0 my;_,, =0 Mo my...my g4
X x &
Izleolu-l m, S"IZ‘L:UAH m,-(K+i)=n

Proof:
An examination of the generating function and the inversion process for selected

values of L provides guidance for the proofiin the general case. Begin with L = K + 1,
HK,L (S) 1s

1 1
H = =
K.&+1(5) 1 = ps — pgRsKrT _ pgkrigke = — ps(1 + qKsK + gRr k=T

As a first step, the term 3720 a,5" = 322 p"(1 + g5 + 1KY n order to
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collect like terms of s”. use the multinomial theorem to write

(1+(]KSK+£]K+1 K+1 ZZ( > qKSK)nO(qK+lSK+l)"|1n0+nlgn

ng=0n =0

where

n n!
Ry M no!nl!(n-—no—nl)!

Now this preliminary examination of a,s" can be written as

n Kn0+ K+l)n11 n+Kng+(K+1)n,
ny+ny <ns
oy

ng=0n,=0

n n
— § : z :C(mn07’11)sn+an+(K+l)nl

ny=0n, =0

The coefficients of common powers of s must now be identified by examining the
powers of s generated for each n, ny and n; such that 0 < ny, 0< ny and ny + ny <n.
For n =0, only ¢(0,0,0) is a coefficient of sy; and for n =1 only ¢(1,0,0) is the
coefficient of s. In general the coefficient of 5" is

n m m
ay = E § E C(mva»’nl)1m+Km0+(l\'+l)m|=n

m=0 mp=0 n; =0

n
Z § m Km0+(l\+l m g I
- mom; my+my; < mim+Kmy+(K+1)my=n

m=0 my=0 m; =0

When 7, is the indicator function for the condition x. This completes the examination

of L =K+ 1. We proceed in exactly the same fashion for L = K + 2. Begin by
writing the generating function as

1 1
Hy gio(s) = =

1 —ps( :(—+K2q § ) 1 —ps(l +qKsK +qK+lSK+I +qK+23K+2)

As before, we first write the coefficient a,s" = p"(1 + ¢%s* + ¢ s+
qK 2K +2)”s". In order to collect like terms of 5", use the multinomial theorem to write

(l _+_qKSK+qK+1sK+l +qK+ZSK+2)n

= Z Z Z (nonlnz) (qKSK)no(qK+lsK+l)n1 (qK+2sK+2)n2 notmy <1

ne=0 ny =0 ny=0
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Now a,s” can be written as

: ol K+i) n+ fz n{ K-+i)
1 ans’ = Z Z Z (mmmz) Z ' IZZ 0""S"S oo

1 =0 n;=0 n,=0 =

n n n 3 .
Z Z Z c(n, no, "h"z)sﬁz‘:" niked

I
|
A ny=0 ny=0 n,=0
|
i

As before, the coefficients of common powers of s must now be identified by examin-
ing the powers of s generated for each n, ny and n,, and n, such that 0 < ng, 0 < ny,
0<nyand ng+n; +nm<n.

In general the coefficient of 5" is

c(m, mg, my, m2)1m+22,0 m(K+i)=n
i

- - - m m y m(K+i)
= Z Z Z <m0 )P quo IZ?_om;<m12f=omi(K+i)=n

my My i=
This completes the examination of L = K + 2.
For the general case of L > K, begin by writing the generating function as
! B 1
L—ps—Trxpgs™ 1 —ps(l+ ik pq's)

Proceeding as before, we first write the coefficient a, = "(1 + qKsK +
gKHV K L K2k 4 ¢Esh)"s". In order to collect like terms of 5", use the

multinomial theorem to write

<1+§q’5'> ZZZ 2 (nonlnv Ny K+l>

ng=0m=0ny=0 n;_x, =0

HKL( )

(qK K)no(qK+l K+l) ‘(qK+2SK+2)---(qLSL)nL_KHIZ’-‘K”n_<n

i=0 i

Now a,s" can be written as

_ L-K+1 )
n s" Z Z Z Z (nonln’) Ay K+l)p qz e

ng=0n;=0ny=0 ng_ g =0

Lokl
"+Z * (K+1)

[2:)“‘":’
= Z Z Z Z n s Npy Ny, A2,y e wHr_K41) Sn Z

ng=0n;=0n=0 ny_g. =0

LKl (K i)

The coefficients of common powers of s must now be identified by examining the
powers of s generated for each n, ny and n; such that 0<ng, O<ny,
0<ny,...0<n, gy and ng+n +ny+...+n g, <n Thus, in general the
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coefficient of s" is

n m m m m m
L5k miksi=n = )IPIPIPILAPD (moml'"z---mL—KH)

m=0my=0 m=0m,=0 my_g, =0

L-K+i
m - m( K+i)
p qz 0 IZ:-;OK“ mis'nlzll.:—ol(u my(K+i)=n

Corollary

Assertion:
If

Gls) = L8 (g5)* — (gs)"*"

T (l—gs)(1 —ps— Shxpast")

then the coefficient for the term s”, n >0

k L
TK,L(") =Cp —qCp_y + q Chnk —q Cpn-p-1
where

i i i ( m )pqu,boh""i(lﬂ-i)
_o \IMgin >

MKy

Proof:
Begin by writing G(s) as

L+1

(S) — 1 - qs + (qS)K - (qs)
(1-gs)(1 —ps — Lk pq's™")
The sum of generating functions are inverted to the sum of coefficients of power
series.

Begin by noting the inversion of the denominator is a convolution, the nth term
begin

n
n—j
Z %49
j=0
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with a; defined from the previous theorem as

m=0 my=0 m, =0 m,=0 my_g=0 Mom ;..M _k 4

IZ‘L:—OKH m smIZ‘L:—OKH mi(K+[)="

The inversion of G(s) is completed by examining each of the four terms of the
numerator, using the power of s in that term to choose the coefficient of the power

expansion of s” for from the denominator. Thus, we identify the coefficient for the
term s”, n >0

k L
Tgp(n)=c, - 9ny + G Chj —qCh_y
where

n

- § n—j
Cp = ajq

Jj=0

H ~K+ .

m=0 my=0 m, =0 my g =0 \RoM My _ e

[Z,:,M m; < ml}::o"" m{K+i)=H
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