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The research community has alternatively embraced then repudiated exploratory analyses since the inception of
clinical trials in the middle of the twentieth century. After a series of important but ultimately unreproducible
findings, these non-prospectively declared evaluations were relegated to hypothesis generating. Since the
majority of evaluations conducted in clinical trials with their rich data sets are exploratory, the absence of their
persuasive power adds to the inefficiency of clinical trial analyses in an atmosphere of fiscal frugality.
However, the principle argument against exploratory analyses is not based in statistical theory, but pragmatism
and observation. The absence of any theoretical treatment of exploratory analyses postpones the daywhen their
statistical weaknesses might be repaired.
Here, we introduce examination of the characteristics of exploratory analyses from a probabilistic and statistical
framework. Setting the obvious logistical concerns aside (i.e., the absence of planning produces poor precision),
exploratory analyses do not appear to suffer from estimation theory weaknesses. The problem appears to be a
difficulty in what is actually reported as the p-value. The use of Bayes Theorem provides p-values that are
more in line with confirmatory analyses. This development may inaugurate a body of work that would lead to
the readmission of exploratory analyses to a position of persuasive power in clinical trials.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Clinical trialsmay be too inefficient to survive this era of diminishing
financial investment in health care research.

Such a statementwas unutterable ten years ago. Yet theutility of this
reliable research tool is nowbeing squeezed by the pernicious combina-
tion of two forces — one acute, the other chronic.

The first of these forces is a wave of fiscal conservatism. As National
Institutes of Health funding for research declines [1] and pressure grows
to divert financial support to smaller programs [2,3] nationally funded
multicenter clinical trials require new efficiency and return on
investment to justify their existence. The situation is exacerbated by
the recent debate over whether some sectors of NIH research are
overfunded [4,5].

The second force is internal to the clinical trial itself. Clinical trials
generate many analyses, yet only a small fraction of them are held out
as persuasive and contributory. The research community expects that
clinical trial researchwill be divided into twobroad areas of evaluations;
1) prospectively declared analyses and 2) hypothesis generating or
exploratory analyses. Prospectively declared evaluations are themselves
partitioned into primary analyses (where type I error is conserved)
and secondary analyses that are prospectively declared and in many
circumstances can be interpreted unambiguously [6].

The intensive effort required to prospectively design endpoint analy-
ses, manage type I error, and precisely measure endpoints during the
execution of the study combine to keep the number of prospectively
declared endpoints to a small manageable set. Alternatively, exploratory
evaluations — requiring no prospective planning — are numerous. How-
ever, despite the larger number of exploratory analyses commonly
performed by a single clinical trial, it is the smaller collection of prospec-
tively declared evaluations that currently hold the greatest value to the
research and regulatory communities. Standards require that published
studies report on all prospectively declared endpoints regardless of their
findings [7] and more recently, the federal government has mandated
reporting requirements for these a priori planned evaluations [8]. Howev-
er hypothesis-generating analyses, which represent the majority of
assessments in clinical trials, have little persuasive power and follow no
reporting guidelines. Thus, the reporting custom of clinical trial results
permits most of the analyses the study conducts to remain unreported,
inducing a profound inefficiency. Diminishing financial resources make
this state of affairs less palatable.

Understandable reasons created this state of affairs. This paper will
demonstrate how statistical methodology might begin to reduce the
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barrier between confirmatory (prospectively declared) and exploratory
analyses, allowing in some cases exploratory analyses to have new per-
suasive power and thereby increase the efficiency of the clinical trial.

2. Background

The penetrating contribution of clinical trials to medical and public
health knowledge since their inception in the mid twentieth century
is unquestioned. Implementation of statistics and epidemiology has
not only amplified the incisiveness of this research methodology, but
has fueled advancement in each of these quantitative fields. However,
the acceptability of exploratory analyses in clinical trials is based on
experience — not statistical theory — and has varied.

The interpretative clarity of the first major clinical trial's results
galvanized the public health community to first learn and then wield
this research implement. The study by Sir Bradford Hill on the impact
of streptomycin on tubercular mortality conducted by the Medical
Research Council of Great Britain just afterWorldWar II [9,10] revealed
that the simultaneous presence of 1) a contemporary control group,
2) randomization of treatment assignment, and 3) some degree of
blinding clearly delineated effects attributable to the treatment under
study. This design, although criticized by many of the participating
physicians early in the groundbreaking study [11], was catapulted to
new popularity because of its uncontested results.

Simultaneously, the p-value developed by RA Fisher in 1925–26 [12,
13], despite some initial derision, [14–16] accelerated to prominence in
health research interpretation. This was principally due to the conflu-
ence of needs of journal editors, federal grant reviewers, and FDA
administrators to choose worthy research products from the plethora
of post-war research activity [17]. The combination of the clinical trial
(with its simplicity of interpretation) on the one hand with the p-
value (that combined effect size, variability, sample size, and sampling
error into one number) on the other created a new and unbeatable
investigative combination in health care research. Results from clinical
trials that produced p-values b0.05 were accepted with little question
by the medical community. The concern expressed by epidemiologists
for this uber-distillation of a major research endeavor to one number
[18–22] was dismissed by investigators who believed that the clinical
trial had earned the rare position of dispensing “truth” based on the
“p b 0.05” metric from any of its analyses. Any result generated from a
clinical trial with a small p-value was considered generalizable, and
while eminent clinical trialists offered monitories about clinical trial
mistakes, they expressed no concerns about this reporting tendency
[23,24].

The spectacular findings of the Multiple Risk Factor Intervention
Trial (MRFIT) [25] alerted the cardiology and public health communities
to the dangers inherent in this reductionist approach. Published in 1982,
MRFIT set out to demonstrate that reducing risk factors commonly
associated with atherosclerotic heart disease (e.g., hypertension, diabe-
tes, obesity, and smoking) decreased the incidence of heart attacks and
strokes. At the study's end, the investigators concluded that their inter-
ventions had slightly increased rather than dramatically decreased the
incidence of the clinical cardiovascular disease. However, in reviewing
their entire dataset, they observed that in the subgroup of hypertensive
men with heart abnormalities at rest, larger clinical event rates were
associated with the use of antihypertensive therapy [25]. The applica-
tion of the small p-value to a result from a clinical trial (whether that
result was produced from a prospective analysis or not) convinced
them and their colleagues of the veracity of this findings [26], injecting
new doubt into public health initiatives for the treatment of hyperten-
sion [27]. However, to the consternation ofmany, this subgroup analysis
with its small p-value could not be reproduced in other clinical trials. To
a research community that at the time expected “truth” from clinical
trials, the appearance of this unreproducible finding was disturbing.

There were other surprises. The Vesnarinone in Patients with Heart
Failure Trial [28] identified a sizable mortality benefit in a clinical trial
to assess the effect of vesnarinone in patients with heart failure. This
finding was overturned by a following clinical trial VEST [29] that
demonstrated a small and hazardous effect on mortality attributable
to vesnarinone instead of a benefit. The mortality benefit of losartan in
heart failure patients, discovered in the Evaluation of Losartan in the
Elderly Study (ELITE) clinical trial [30] was reversed by the findings of
ELITE II [31] that identified no such effect. The Prospective Randomized
Amlodipine Survival Evaluation (PRAISE) [32] mortality benefit attrib-
utable to amlodipine in a subset of heart failure patients was reversed
by the findings of PRAISE-2 [33].

The angst produced by well-executed clinical trials reversing the
findings of other small p-value driven, well-executed clinical trials was
palpable throughout the research community. Investigators who were
trained to believe that clinical trial results were the most solid of all
research efforts developed a new permeability to the concept that
perhaps not all promulgated findings from these studies were
equal. A new metric was needed [34] and some workers began to
dissect and separate exploratory analyses from prospectively planned
evaluations [35].

The explosive emotions generated by the 1995–97 US Carvedilol
controversy revealed the potential losses sustained by trial sponsors as
a consequence of changing the clinical trial interpretative paradigm.
Carvedilol, at the time an approved treatment for hypertension,was stud-
ied as a potential therapy for the treatment of heart failure. Stunning
results from the US Carvedilol program [36] suggested that the drug
produced a substantial mortality benefit. However, when this result was
sifted through the metric of prospective versus non-prospectively de-
clared analyses at a public session sponsored by the FDA, different points
of view discounting the overwhelming benefit were aired. This emotive
and vehement debate spilled into the medical literature [37,38] followed
by full length manuscripts addressing the strengths and weaknesses of
the clinical trial methodology [39–42], illuminating the trail of difficulties
forged by reducing emphasis on non-prospectively declared analyses in
clinical trials.

Clearly, not all accepted this new interpretative mantra. In fact,
epidemiologists had long pointed to scientific rationale for conducting
hypothesis generating results. They showed that the internal consisten-
cy of all of a study's analyses should be examined for support of the
study's overall findings. Evaluation of underlying mechanisms of action
required to support biologic plausibility were critical to the causal argu-
ment [43]. Also, many argued that the role of discovery — visualizing a
new and promising scientific relationship for the first time — could
not be ignored just because the analysis or findingwas not prospective-
ly planned. Compound 2254RP, first developed as an antibiotic, had its
more important blood sugar lowering potential recognized only when
it produced unanticipated seizures in test patients [44].These “explor-
atory findings” were later confirmed. Madam Curie discovered radia-
tion, exploratory findings that were also confirmed.

Meanwhile, work proceeded to untangle what was once one of the
easiest tasks in medical research — clinical trial interpretation. This
stream of investigations beat an ever louder rhythm for change. Clinical
trialists offered the notion that the p-value did not require replacing, but
merely needed a new context. The analyses that were prospectively
planned might have a useful p-value assessment. Other, non-
prospectively declared analyses, even though they were derived from
clinical trials would be denigrated to second class status. Labeled as
“exploratory,” their p-values would be deemed uninterpretable.
This commonly included subgroup analyses, the examination of
dose–response relationships, adjusting therapy effects for covariates,
and the evaluation of new “endpoints” that were not prospectively
declared.

A corollary of this approach was that a clinical trial whose primary
endpoints were not statistically significant could not be resuscitated
by a positive finding of any exploratory endpoint regardless of how
clinically compelling the case for the exploratory endpoint might be.
The FDA codified this thought process through a guidance:
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“For each clinical trial contributing to a marketing application, all
important details of its design and conduct and the principal features
of its proposed statistical analysis should be clearly specified in a
protocol written before the trial begins. The extent to which the
procedures in the protocol are followed and the primary analysis is
planned a priori will contribute to the degree of confidence in the
final results and conclusions of the trial.”Guidance for IndustryE9
Statistical Principals for Clinical TrialsFDA September 1998 [45].

Thus, by the turn of the twenty-first century, clinical trial results
were divided along two lines. The first partition was between prospec-
tively declared or exploratory analyses, the latter being reduced to
“hypothesis generating.” The second partition was between prospec-
tively declared evaluations that had their type I error conserved (prima-
ry) and those that did not. Primary endpoints alone would determine
whether the clinical trial was positive, null, or negative. Essentially, if
the multiplicity issue is addressed, the endpoint is primary. All other
prospectively declared analyses are conducted “nominally” i.e., there
type I error expenditure is capped at 0.05 without a correction for
multiplicity. These analyses are considered supportive if conducted
properly [46]. (Fig. 1).

The advice to exploratory analysts of clinical trials is that their work,
while worth conducting, had no staying power in and of itself. The role
of non-prospectively declared evaluations such as complex general
linearmodeling, time to event analyseswith timedependent covariates,
biomarker assessment, and simulation was to create questions, stimu-
late new thinking and drive future experimental design. Thus, the
state of the art advice for 2015 clinical trial design is that the protocol
should make a clear distinction between the aspects of a trial that will
be used for confirmatory proof and the aspects which will provide
data for exploratory analysis [47]. The result of this well motivated
advice is that while exploratory analyses are voluminous, they are also
commonly seen as valueless since “significant” findings often are not
reproducible. Thus, although they commonly outnumber primary and
secondary analyses and are the most prolific aspect of a clinical trial,
yet remain tightly confined by the lessons of clinical trial history.
2.1. Methodology

There was no underlying statistical theory that drove clinical trial
exploratory analyses down to the lower tiers of evidence. Instead, practi-
cal observations ruled the day as pragmatic inspections by investigators,
regulators, and clinical methodologists demonstrated that these analyses
could not in general be reproduced. Experience does not disavow the
utility of this empirical decision.
Fig. 1. Hierarchy of analyses in clinical trials. The primary endpoints are smallest in num-
ber but the entire weight of the trial depends on them.
However, the absence of a theoretical basis for the relegation of
exploratory analyses paints clinical trialists into an uncomfortable
corner. With no methodologic basis for the weakness of exploratory
analyses, there is no framework onwhich to construct a new theoretical
foundation for their ultimate admissibility into the universe of confir-
matory analyses. In the current environment, we have placed flashing
hazard lights around exploratory analyses, but have not created the
structure that would permit us ultimately to remove the limits from
these sometimes illuminating evaluations.

In an attempt to repair this, two major shortcomings of exploratory
analyses will be provided. One is nonstatistical, but the second involves
a probabilistic decision process that can be parameterized and charac-
terized within the environs of probability theory. The application of
this commonly used theory creates a path that when followed, may
lead exploratory analyses into themainstream of clinical trial investiga-
tions, thereby increasing the efficiency of the clinical trial.

The principal justification given for the unreliability of an explorato-
ry analysis is the effect of the absence of prospective planning on the
precision of the exploratory estimators of effect size. We will call this
the logistical rationale. For example, if investigators wish to conduct a
clinical trial on the effect of an intervention on heart muscle perfusion,
they are obligated to ensure superior quality and high precision images
for the endpointmeasures, e.g., identifying a core laboratory. These trial
design controls reduce endpoint variability and ceteris paribus increase
power. However, should these same investigators observe at the study's
conclusion a treatment attributable benefit for coronary artery disease
death, they will be hard pressed to defend the reliability of this unantic-
ipated finding. The absence of its prospective declaration meant that
there was no opportunity to organize resources for its reliable estima-
tion. Without prior definition of coronary artery disease death, there
could be no a priori structure in place for the formal collection of death
records and no endpoint committee of specialists to adjudicate findings.
In addition, the analysis suffered from an absence of prospective statisti-
cal planning that, had it beenpresentwouldhave producedboth informa-
tive power computations and theminimumnumber of deaths required to
draw a conclusion with statistical regularity.

But, is the logistical rationale the only concern in exploratory analy-
ses? Consider the following thought experiment adapted fromMoyé [48].

An enthusiastic young researcher, Dr. C is interested in demonstrat-
ing the progressive deterioration in heart function observed in
patients with mild heart failure whose medical management is
appropriate. She has designed a research program to examine
the changes in left ventricular function over time, with specific
attention to examining changes in left ventricular end diastolic
volume (LVEDV). As the heart weakens over time, she anticipates
that the left ventricle will enlarge and the volume contained therein
will increase. Her research design includes a standard sample size
computation designed to detect a meaningful increase in LVEDV
over the predetermined two year follow-up period.

Upon approval of her study, Dr. C recruits her sample randomly from
the population of people with heart failure at her institution, and
follows each patient for two years per protocol. Every subject has
their heart function measured when they enter the study and again
in 24 months. No patients are lost to follow-up.

Her colleagues who have contributed their own patients to Dr. C's
investigation are anxious to learn of the conclusions of her study.
At the two year time point, Dr. C. examines her datawith great antic-
ipation. Comparing the baseline to twenty-four month change in
LVEDV for each of her patients, she discovered to her surprise that
the anticipated increase in LVEDV did not materialize. However
although LVEDV has not increased, there has been a substantial
increase in left ventricular end systolic volume (LVESV). She reports



2 We use additional epidemiologic criteria (dose response effect, understanding of the
underlying mechanism of the result, have other investigators seen this effect) to help as-
sure us that our decision is true and not a chance finding, but at its heart, the decision to
declare the study positive is a random one. This may be seen from two perspectives. First,
considering one and only one trial, if the test statistics could be tracked moment by mo-
ment during the follow-up period of the study, then it would meander over time as a ran-
domwalk/quasi Brownianmotion process. At any one point it isfixed, but the test statistic
is random.
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both LVEDV and LVESV, and claims that her study is positive based
on the LVESV finding.

While some of her colleagues applaud her, others voice concern over
the lack of a prospective statement for the LVESV analysis. They
criticize its prominent location in the paper, and say it should be
reduced to exploratory status.

However, Dr. C. replies that she has met her obligation by reporting
the prospectively declared and null LVEDVfinding. Furthermore, she
states that if she had a priori announced that LVESV would be a goal
of her study, the study design would have been no different. The
state of the art measuring tool for heart volumes (magnetic reso-
nance imaging) was utilized for both endpoints. The variability of
the two volumes is the same, and the anticipated change in the effect
size of interest is also close between the two measures. In fact, the
research effort would have been designed no differently if she has
selected LVESV rather than LVEDV. She therefore insists that the
“exploratory” LVESV finding be afforded the same status as the
prospectively declared LVEDV. Was Dr. C. correct?

This example permits us to set logistics aside to see if there is
anything else appreciably different about Dr. C's selection choice for
LVESV then there was about the prospective declaration for LVEDV.

Dr. C. chose LVEDV prospectively. She would have (andwas obligat-
ed to) report on the finding regardless of the size of the test statistic.
However, the circumstances are different for LVESV. This finding came
to her attention because of the size of the test statistic – had the analysis
demonstrated a small value of the test statistic (and a large p-value) she
is likely not to have reported it at all.1 The large test statistic that she
observed essentially drew her to the finding, answering a question
that she did not think to ask prospectively. So, unlike in confirmatory
analyses, here it was the test statistic's size and not a prospective deci-
sion that determined whether Dr. C. would report the LVESV finding.
This is the hallmark of exploratory analyses – and discovery.

Although the magnitude of the LVESV test statistic could have
reflected the true state of nature between LVESV and time, there was
also a sampling error component. Since the data contain sample-to-
sample variability, we know that different samples would provide differ-
ent “positive” findings just through chance alone. For example, in some
datasets, neither LVEDV, nor LVESVwould change significantly, but cardi-
ac output would. The random aggregation of the data creates the random
findings in the data. And if the variable is selected randomly by the data
on which the estimate of effect itself is based then it is fair to ask if this
selection process could have an impact on the statistical estimator of
effect size. Put another way, is the simple sample mean X no longer
optimal if the selection process of the variable X itself was not fixed,
but random?

Statistical estimates (e.g., incidence rates, mean differences, relative
risks) are based on estimation theory, and their accuracy can be traced
to the degree that the assumptions of the statistical estimators remain
intact. The derivation of each of these estimators beginswith one source
of random error that is the selection of the actual data points. But what
of the selection process of X itself? Is the estimation theory altered by
the random selection of X, and what if X is chosen by the same dataset
(and subject to the same effects of random error) as the data points
x1 ,… ,xnwhich are the substrate for the estimator? In order to examine
this, we can conduct a final thought experiment.

Consider a collection of four random variables, W, X, Y, and Z in a
clinical trial. These variables may represent for example blood pressure,
level of education, number of hospitalizations a patient has experienced,
and death from a heart attack. If we select one randomly and then
1 This is setting aside for a moment the notion that journal reviewersmay have insisted
on seeing both volumes because they each measure heart function.
analyze that variable, then does the random selection of the variable
affect its summary estimate?

The answer is (of course) that it depends on the purpose of the anal-
ysis. If one is trying to estimate the long term behavior of the process
(random selection, and then analyze the variable selected), by estimat-
ing the mean and variance of the selected variable, then the answer
is “Yes”. However, if one is simply trying to estimate the mean and
variance of the selected variable, then the answer is “No”. Since it is
the latter that is conducted in clinical research, the random determina-
tion has no effect on the exploratory estimator.

However, this thought experiment is not an exact representation of
the exploratory research process. In exploratory analysis, a variable is
not first selected and then analyzed. Instead, the universe of exploratory
variables in a clinical trial is analyzed, taking each variable one at a time.
The random selection takes place not before, but after all variables have
been analyzed. What is random is not the decision to analyze, but the
choice of which of the exploratory findings to report.

That the decision is random comes as no surprise. Clinical trials com-
monly make random decisions. For example, the determination that a
clinical trial is positive based on a reduction in the prospectively
declared primary endpoint of total mortality with a p-value of 0.035 is
a random determination containing sampling error. It is based on the
likelihood of a (random) event that a population in which no mortality
benefit occurs produces a sample with the positive data in hand. We
compute the probability of this event, determine that this probability
is small, and then announce the positive findings. But the value of the
test statistic is simply and merely one observation of a random event.2

Similarly, the determination to end a trial early for efficacy, harm or
futility, fueled by Brownian motion concepts [49], is a random decision.
So the random decision process is not new to clinical trialists.

What is different in exploratory analyses is that the selection of the
variable to be reported is based on the value of the test statistic. For
confirmatory analyses, the test statistic reported is based on the a priori
selection of a variable. To return to our first example, Dr. C had to report
the test statistic (and p-value) of the prospectively declared endpoint
LVEDV because of its prospective choice, but only reported the explor-
atory variable LVESV because it was significant. The probability that
the investigator reports the exploratory variable depends on the value
of its test statistic. If the test statistic falls in the critical region, she is
more likely to report it. In prospectively declared analyses, the investi-
gator reports the test statistic given the variable. In exploratory analysis
one reports the variable given the test statistic.

Thus, “reversing the condition” is one of the concepts that separates
exploratory analyses from confirmatory analyses, suggesting that with
the right information, we can convert the critical probability in the ex-
ploratory realm to a probability closer to the relevant confirmatory p-
value.
2.2. Parameterization

An attempt will be made here to provide a new estimate of statistical
significance within the exploratory paradigm. We will only address the
one–tailed testing circumstance, although our results readily generalize
In addition, stepping back for a second, if we consider the universe of trials conducted un-
der this protocol, each trial would collect data from different subjects and therefore differ-
ent life experiences. Thus, the test statistic that is obtained at the end of each of these trials
is a random realization of the test statistic that would be produced by the population.
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to the two-tailed testing paradigm. This difference will be parameterized
as follows.

A major interpretative difficulty introduced by exploratory analysis
is that the decision to report an exploratory result is based on the mag-
nitude of that result's p-value. Denote S as the selected variable to be
reported, and v as one of the candidate exploratory variables that
could be reported. Then P[S = v] is the probability that the variable v
will be reported. Let w be the test statistic produced from the analysis
of variable v.

The p-value is simply the probability that the test statistic is at least as
large as its observed valuew. In the exploratory setting, a relatively large
number of variables is examined and the decision to report each of them
is based on the value of their individual test statistics. Since the value
of the test statistic informs us of whether S=ν, the exploratory sci-
entist is most interested P[S=vi |Z ≥ wi], where Z is a standard nor-
mal random variable.

The situation is different in confirmatory analyses. In that environ-
ment, the p-value does not drive the selection of the variable to be report-
ed. Instead, the variable's analysis is conducted, its p-value computed, and
the result P[Z ≥w|S=v] reported. Since, the result is reported regardless
of the magnitude of the test statistic, the investigator simply provide the
p-value as P[Z ≥wi|S=vi]=P[Z ≥wi] with the conditional statement of
the event implied. Thus, a difficulty in exploratory analysis is that while
we commonly assume that what one is reporting for the exploratory var-
iable is the classic p-value P[Z ≥wi|S=vi]=P[Z ≥wi], what is actually re-
ported is a quantity that confounds 1) the probability that the test
statistic falls in the critical regionwith 2) the likelihood that the report
will be made, P[S=vi |Z≥wi]. Our goal here is provide a simple statisti-
cal framework that permits one to convert P[S=vi |Z ≥ wi] to
P[Z ≥wi |S=vi] the latter of which we will call the exploratory p-value
or pe. However, this is only a partial step, since we cannot make the
leap to P[Z ≥wi |S=vi]=P[Z ≥wi]. This independence property of con-
firmatory analyses is outside the exploratory paradigm. However, the
conversion that we will carry out will bring the p-value closer to the
realm of that produced by confirmatory analyses. In order to conduct
the inversion, we require only simple conditional probability and the in-
vocation of Bayes Theorem.

2.3. Application of Bayes Theorem

We wish to find the probability density function of the test statistic
in exploratory analysis. That is from the k pairs of exploratory analyses
and endpoints, and their associated test statistics we choose the ith
one arbitrarily. If we had in hand fw(w |S=vi) the probability density
function of the test statisticwi given the exploratory analysis νi was se-
lected, we could compute the exploratory p-value pe as

pe ¼
Z

CR wið Þ

f w wijS ¼ við Þ dwi

where CR(wi) is the critical region for the test statistic wi. We invoke
Bayes Theorem to compute the density function fw(wi |S=vi)

f W wijS ¼ við Þ ¼ f νi
νijwið Þ f W wið ÞZ

ΩW

f vi νijwið Þ f W wið Þ dwi

where fνi
(νi |w) is the probability density function governing the

likelihood that the investigator will report the exploratory analysis
νi given the test statistic value w, and fW(wi) is the probability density
of the test statistic (wewill assume throughout thatwi follows a standard
normal distribution under the null hypothesis).
2.4. The identity of fνi
(νi |wi)

This probability density function reflects the inclination of the inves-
tigator to report an exploratory result based on the value of its test
statistic. It is easy to defend the assumption that the larger the test
statistic, the greater the likelihood of reporting and exploratory evalua-
tions whose analyses do not fall into the clinical region have a very low
probability of being reported. We begin with modeling this event as.

f vi vijwið Þ ¼ λieλiwi

eλib−eλia
� �1a ≤ wi ≤ b:

This is an exponential density function normed on (a,b) for
0≤abbb ∞ . We will assume the value a is the lower bound of the
critical region (typically 1.96), and the value b its upper bound (a limiting
approach will allow us to dispense with b shortly). For example, assume
that an investigator has conducted an exploratory analysis on a variable
v1 that produced a test statisticw1. Then using this model, the probabil-

ity that an investigator will report that analysis is P½S ¼ v1jW ¼ w1� ¼

∫
b

w1

λieλiw

ðeλib−eλiaÞdw ¼ ðeλib−ew1λi Þ
ðeλi b−eaλi Þ : Large values of P[S=v1|W=w1] increase

the likelihood that the result will be published.
The value λi is included to scale this probability to be either conser-

vative (i.e., requiring larger test statistics for the investigator to report
the result for the exploratory variable νi) or liberal (investigators are
likely to report exploratory results even if they are only slightly above
the lower bound of the critical region.

We may proceed with the application of Bayes Theorem.

f W wijS ¼ νið Þ ¼ f υi νijwið Þ f W wið ÞZ

ΩW

f υi νijwið Þ f W wið Þdwi

¼
λi eλiwi

eλb−eλa
� � 1ffiffiffiffiffiffi

2π
p e−

wi
2

2 1a≤wi ≤b

Zb

a

λi eλiwi

eλib−eλia
� � 1ffiffiffiffiffiffi

2π
p e−

w2
i
2 dwi

¼
eλw

1ffiffiffiffiffiffi
2π

p e−
w2
2 1a≤w≤b

Zb

a

eλiwi
1ffiffiffiffiffiffi
2π

p e−
w2
i
2 dwi

:

By completing the square in the exponent of the integrand, the
denominator simplifies to

Zb

a

eλiwi
1ffiffiffiffiffiffi
2π

p e−
w2
i
2 dwi ¼ 1ffiffiffiffiffiffi

2π
p

Z∞

0

e−
1
2 w2

i −2λiwiþλ2
i −λ2

ið Þdwi

¼ e
λ2
i
2

Zb

a

1ffiffiffiffiffiffi
2π

p e−
1
2 wi−λið Þ2dwi

which may be written as

e
λ2
i
2 P a ≤ N λi;1ð Þ ≤ b½ � ¼ e

λ2
i
2 ΦZ b−λið Þ−ΦZ a−λið Þ½ �:

WhereΦZ(z) is the cumulative distribution function of the standard
normal distribution. Thus

f wðwijS ¼ viÞ ¼
eλiwi 1ffiffiffi

2π
p e−

w2
i
2 1a ≤wi ≤ b

e
λ2
i
2 ½ΦZ ðb−λiÞ−ΦZ ða−λiÞ�

:
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Since

pe z; bð Þ ¼
Z

CRW

f w wijS ¼ við Þdwi ¼

Zb

z

eλiwi
1ffiffiffiffiffiffi
2π

p e−
w2
i
2 1a≤wi ≤bdwi

e
λ2
i
2 ΦZ b−λið Þ−ΦZ a−λið Þ½ �

we have peðz; bÞ ¼ ½ΦZ ðb−λiÞ−ΦZ ðz−λiÞ�
½ΦZ ðb−λiÞ−ΦZ ða−λiÞ�. Recognizing that ΦZ is a continu-

ous function we can write

pe zð Þ ¼ lim
b→∞

pe z; bð Þ ¼ lim
b→∞

ΦZ b−λið Þ−ΦZ z−λið Þ½ �
ΦZ b−λið Þ−ΦZ a−λið Þ½ � ¼

1−ΦZ z−λið Þ
1−ΦZ a−λið Þ :

Confidence intervals.
For a two-sided confidence interval for the exploratory estimate

θ estimating a parameter θwith a standard error τθ we can compute the

value z*, the lower boundof the test statistic that produced pe, as peðz�Þ ¼
1−ΦZ ðz�−λiÞ
1−ΦZ ða−λiÞ : We find that z� ¼ Φ−1

z ð1− pe
2 ½1−ΦZðZ1−α=2

−λÞ�Þ þ λ:, and

we can compute the 1− pe
2 size confidence interval for θ; as

ðθ−z�τθ; θþ z�τθÞ:

3. Results

The preceding short derivation provides a straightforward proce-
dure to convert the standard p-value produced from exploratory
research to a p-value that is more reflective of what would be obtained
from a confirmatory evaluation. For the following computations, we
assume the lower bound of the critical region is a=1.96, and assume
λi=1 for all λ. We then compute the exploratory p-value pe using

pe ¼ 1−ΦZ z−1ð Þ
1−ΦZ a−1ð Þ

where z is the value of the test statistic from the exploratory analysis,
and plot it against the z-statistic. The standard p-value is also plotted
for a one tailed test (Fig. 2).

Fig. 2 reveals that for all test statistics in the critical region, the explor-
atory p-value is substantially larger than the standard p-value. In fact, at
the lower boundary of the critical region for z= 1.96, while the standard
p-value is 0.025, pe = 1. As the test statistic z increases, the test statistic
Fig. 2. Exploratory p-value as a function of the test statistic. The exploratory p-va
becomes more persuasive, and the pe-value falls. In this circumstance, it
does not reach 0.05 until approximately z=3.38, demonstrating the
substantial signal strength thatmust be generated by exploratory evalua-
tions for the exploratory finding to be comparable to standard statistical
criteria. Fig. 3 demonstrates this relationship as a function ofλ, the param-
eter from the probability density function of the exploratory value given
the test statistic. Here, as in Fig. 2, the exploratory test statistic pe remains
high. However, we also see that this relationship can be modified by the
choice of λ. For large values of λ, the inflection changes, with even larger
values of the exploratory test statistic required before pe falls below falls
into the traditional critical region.

We can also use the methods to compute a confidence interval.
Consider a clinical trial which has the exploratory analysis producing
an effect size of 9.4 with a standard error of 4. The confidence interval
locations and widths for the standard computation and the exploratory
assessments for increasing values of λ, are available (Table 1).

In this table, the standard confidence interval is produced simply
based on Z = 1.96. Subsequent rows provide the lower and upper
bounds of the confidence interval for different values of λ. Note that
already for λ=0, there is a dramatic increase in the confidence interval
width that is produced under the exploratory paradigm. The confidence
interval based on the exploratory analysis produces ever larger confi-
dence intervals with larger values of λ.

4. Discussion

The dim view taken by clinical trialists of exploratory analysis is
understood and well justified. Beginning at a point in the early history
of clinical trials when these types of analyses were considered of the
highest value simply because they were generated from a clinical trial,
their status plummeted from the 1980's forward as the inability to re-
produce their findings eroded faith in their generalizability. It was un-
derstandably recognized that exploratory analyses could raise
questions but could not be used to answer them.

However, the reason to exclude themwas empirical, not theoretical.
Since it had been shown repeatedly that exploratory analyses were not
generalizable they were deemphasized. No a priori theory demonstrat-
ed that they were inferior — pragmatism did.

Herewe begin a discussion of the specific weaknesses of exploratory
analyses from a theoretical basis inaugurating conversations of how
their theoretical weaknesses can be repaired. To that end, two
lue is much larger than the p-value then under the traditional computation.



Fig. 3. Exploratory p-value as a function of λ. The exploratory p-value is much larger than the p-value then under the traditional computation.
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weaknesses of these analyses have been identified, one practical, and
the other — the random selection of the analysis variable — theoretical.

The author could find little prior work on the effect of the random
selection of the dependent variable. Random effects models are well
developed and widely used [50]. However, what is random in the ran-
dom effects model is not the variable of analysis, but the levels of
explainer variables. Meta analyses use random effects models depicting
the random selection of the studies to be incorporated in the evaluation;
however, the endpoint variable that has been selected for summariza-
tion was not randomly selected. In the standard general linear model,
there has been expansion away from the assumption that the explainer
variables are fixed [51] but the dependent variable is never selected to
be random. Stepwise regression selects explainer variables randomly,
but the dependent variable remains fixed, and while authoritative con-
cerns for the stepwise approach have appeared [52] there has been little
to no discussion about random selections of the dependent variable.
Bayes procedures, while they accept variability in the parameter(s) of
the prior distribution, assumes the variable to be analyzed has already
been selected [53].

The perspective taken here was to view the theoretical weakness
of exploratory analyses through the prism of probability, suggesting
that the p-value used in exploratory analyses is different from the
classic p-value used in confirmatory analyses. Both are conditional
probabilities — however, the exploratory analysis while it “reverses
the given”, is interpreted as though the conditionwas not reversed. The
thesis here is that if this conditional probability can be transformed into
the conditional probability utilized in confirmatory analyses, the
Table 1
Effect of λ on 95% confidence interval width effect size of 9.4 with a standard error of 4.

Standard conf.
interval

14.2 20.3

λ 0.1 −3.6 22.4
0.5 −4.2 23.0
1 −5.1 23.9
1.5 −6.2 25.0
2 −7.5 26.3
2.5 −9.0 27.8
3 −10.7 29.5
3.5 −12.5 31.3
4 −14.5 33.3
4.5 −16.4 35.2
5 −18.4 37.2
interpretation of exploratory analyses can more closely align with that
of confirmatory analyses. The Results section demonstrates that the
mathematics required for this transformation is uncomplicated, and
the conclusion is that the post-transformation exploratory p-value for
the same magnitude of the test statistic is substantially larger than the
traditional p-value. This observation justifies the intuition that findings
from exploratory analyses must be overwhelming to be worthy of our
attention and it demonstrates how awe-producing such exploratory
results must be. In fact one can compute the specific lower bound
for the critical region pe. Confidence intervals are substantially wider
reinforcing the notion that the non-prospective nature of exploratory
analyses leads to less precise estimators. For many, confidence interval
reporting in the hypothesis generating paradigm may be sufficient to
convey the results.

The effect of the value of λ on the value of the lower bound of this
test statistic is quite clear (Fig. 4). Recalling that λ is the parameter of
the exponential density relating the likelihood to report an exploratory
result to the size of the test statistic. The value is in the hands of the
investigators, and should be chosen prospectively. From Fig. 3, we ob-
serve that for each value of λi, pe is close to one for findings that are them-
selves close to the lower boundary of the critical region. In circumstances
where the field is new, and the exploratoryworkmust be corroborated in
any event, the procedures developed are unlikely to be of assistance, and
exploratory finding will need to be corroborated by a prospectively
declared assessment in a future trial. However, if the investigators
wish the exploratory analyses to have elevated standing, then they
might follow the development outlined here and choose a value of λi

that is small, on the order of 0.1. However, in a field that is well
researched, and the exploratory analyses have been conducted in various
formats by other researchers, the recommendation is to choose a larger
value of λi such as one. For investigators who are likely to report explor-
atory values even though they are only slightly significant in the standard
analysis, λ should perhaps be larger, generating a greater lower bound of
the critical region.

As with all theoretical undertakings, the assumptions of the argu-
ments made in this manuscript must be carefully considered. It is
assumed that one can place a probability density function on the likeli-
hood that a test statistic will be reported by the investigator given the
value of that exploratory analysis' test statistic. This assumption is tena-
ble given the well-recognized tendency of many investigators to report
all findings that are significant. However, the choice of the density func-
tion itself is an open question. The only way to really be sure of the
choice of the density function is to carry out an examination of all of



Fig. 4. Lower bound of the five percent critical region as a function of λ. As the propensity to report marginal values of the exploratory finding increases, so does the lower bound of its
critical region.
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the studies that report exploratory analyses, and then examine the
probability distribution of the studieswhose exploratory analysis is pos-
itive. However, to begin, an educated guesswould informus that a prob-
ability density function that increases the likelihood of publishing a
result with increasing value of the test statistic such as the one chosen
in this manuscript is a reasonable starting point.

However, alternative parameterizations of this density function are
certainly admissible and must be examined. For example, one could
choose a probability density function related to the logistic function,
e.g.,

gvi vijwið Þ ¼ λi

ln 1þ eλib
� �

− ln 1þ eλiað Þ� � 1
1þ e−λix

1a ≤ wi ≤ b:

The schema used in this manuscript could be applied to gνi
(νi |wi)

although the solutionwould be somewhatmore complicated. However,
both f (as chosen in the results section) and g have the property of in-
creasing measure assigned to larger values of the test statistic wi

which is consistent with the practice of reporting exploratory findings
that are generated by the investigators. Thus, as is the case of the density
developed in the body of this manuscript, incorporating a density func-
tion thatmonotonically increaseswith the test statisticwill produce a pe
value that is also large.

Another alternative would be f vi ðνijwiÞ ¼ 1
b−a1a≤wi ≤b which

assumes that the exploratory analysis will be reported for any value of
the test statistic w greater than the lower bound of the critical region.

Following the computations elaborated in the results section, we findpe

¼ 1−ΦZ ðzÞ
1−ΦZ ða−1Þ : The figure relating the relationship of this p-value with

the value of the test statistic in the critical region for a = 1.96, equiva-
lent to λ=0. (Fig. 3), If a =1.96, then pe=40[1−ΦZ(z)], or forty
times the standard p-value assuming the standard p-value is from a
test statistic that is at least 1.96. We can also compute the lower
bound of the 0.05 critical region as z=3.024. This would be a useful
starting point for working in a new field in which very little work has
been conducted. The selections of other density functions would pro-
duce different results.

In addition, the ubiquity of the normal distribution as the distribu-
tion of the test statistic justifies the assumption here, however other
distributions are worthy of consideration (such as binomial, Poisson
and chi-square distributions).

One other difficulty offered by exploratory analyses is the multiple
testing issue. Left unchecked, the large number of hypothesis tests
conducted under the standard exploratory paradigm inflates type I
error to unacceptable levels. Alternatively, the simple application of
the Bonferroni procedure would exclude many exploratory analyses
that might otherwise be worthy of consideration.

An alternative would be to prospectively set aside type I error for
exploratory analyses. For example, consider the case of a single clinical
trial where there is a simple prospectively declared primary analysis
with a familywise alpha level of 0.05, and the expectation that there
will be many exploratory evaluations. Permit the investigator to allocate,
for example 0.0495 for the primary endpoint that was prospectively
declared, leaving 0.005 for the exploratory analyses. The impact on the
prospectively declared endpoint analysis would be small, and the effect
on the sample size computation would be negligible. An, although the
residual 0.005 exploratory alpha is quite low, this in concert with the pe
threshold that the paper develops that already would discard multiple
exploratory findings.

The use of Bayes Theorem does not earn the results presented here
the appellation “Bayes procedure”. There is no prior distribution here,
and no loss function is invoked. It is simply the application of condition-
al probability.

There is likely no quantitative adjustment that will transform or
imbue the unplanned, underpowered exploratory analysis with the
same features of a well designed and well executed prospective
analysis. Just as, in a clinical trial, a small p-value does not adumbrate
sloppy execution, here a small critical region does not convert the explor-
atory analysis into a prospective one. The manuscript proposes that
exploratory analyses be identified as early as possible, have adequate
resources for data collection, include as much data as possible to increase
their power and then apply the pe value or the exploratory confidence
interval. However, for the exploratory analysis which has adequate
power and is skillfully executed, the manuscript's methodology can be a
useful metric to assess the contribution of the exploratory analysis.

The p-value has been the focus of this discussion, but if history has
taught us anything, it is that we cannot rely on them to the exclusion of
everything else. Effect sizes, confidence intervalsmust also be considered.
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This realization suggests that an alternative approach to this problem
might lie in estimation theory. While the second thought experiment
provided earlier seems to suggest that no change in estimation theory is
required, alternative views would provide new estimators that function
more optimally in the exploratory paradigm, generating new standard
errors, and confidence intervals. This is an area worthy of investigation.

Also, this development presumes that we are not required to assess
the impact of the random selection of the analysis variable on the
estimator's formula. The properties of unbiasedness and minimum var-
iance are essential features of estimators when experiments are repeat-
ed. However our familiar estimators lose these features when one is
attempting to reproduce the experiment of first randomly choose a var-
iable then randomly choose a sample. If this is determined to be a wor-
thy goal as well, then additional work in estimation theory is required.

Finally, we must return to the first articulated weakness of explor-
atory analyses — the logistical consideration. It is difficult to imagine
that any theoretical elaboration, no matter its elegance will overcome
poor data collection procedures. This recognition permits advice to the
investigators expecting that exploratory analyses to be conducted at
the trial's end.

Investigators must first commit to the collection of precise data in
their study. Even if data (e.g., laboratory data, quality of life data, biomark-
er data) is not prospectively declared, the investigators can and should
commit themselves to high precision in data collection. Since data is
collected with the presumption it will be analyzed, its future analysis
requires present and explicit quality control. The ethics of imprecise
measures of human data in clinical trials requires this.

Much additional work is still required to attain a solid solution to the
exploratory analyses dilemma.Once the precision of the data is ensured,
and λ is chosen prospectively, the simple analysis tool for p-value inter-
pretation generated here can be applied. The implication is that many
exploratory evaluations that reach nominal significance will not fall into
the critical regions provided here. However, the few that do perhaps
should have the constraining moniker “exploratory” if not removed,
then relaxed.
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