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Most medical research is executed on samples selected from large populations. Nevertheless, health
care researchers often blur the difference between interpreting sample-based research and evalu-
ating research that included the entire population of interest. This is an implication-critical distinc-
tion; in population research, every result applies to the population (because the entire population
was included in the analysis), although only a few results from sample-based research can be
extended to the population at large. Treating every result from sample-based research as if that
result applies to the population is misleading. Using nonmathematic terminology, this article de-
velops the reason for the differences in the implications of these two research perspectives. In
sample-based research, the best indicators of which results should be extended from the sample to
the population are the presence of (1) a prospective plan for that experiment; and (2) the execution
of the experiment according to that plan (concordant execution). The absence of these two features
produces execution and analysis decisions based on the incoming data stream—the hallmark of the
random experiment. In this latter paradigm, allowing the data to influence the execution and
analysis decisions renders the usual estimates of effect size, standard errors, confidence intervals,
and P values untrustworthy. Readers of clinical trial results must be vigilant for nonprotocol-driven
research and understand that the results from these programs are at best exploratory and cannot be
used to answer scientific questions.

INTRODUCTION

Many guides are written for clinical scientists concern-
ing the correct design, execution, and analysis of re-
search programs.1,2 An important part of that infor-
mation focuses on settling on an analysis plan pro-
spectively.3 Nevertheless, wise investigators recognize
that the experience of a clinical trial can be unpredict-
able, producing surprising and unexpected results.
In some circumstances, the anticipated finding
never materializes.4 In others, a modest finding that
was expected is overshadowed by a stupendous find-

ing from another analysis.5,6 Sometimes, the analysis
that produced the stupendous finding was planned; at
other times, it was not. The advice from methodolo-
gists is that these ancillary findings do not carry
persuasive weight, primarily because they were not
planned prospectively.7

To many researchers, this concern seems much ado
about nothing. The data are, in the end, the data. Al-
lowing the data to decide the result of the experiment
might seem to be the fairest and least prejudicial
evaluation of the data. This policy also relieves the
investigator from the responsibility of choosing arbi-
trary rules during the planning stage of the experi-
ment, which may subsequently be demonstrated by
the data to be the wrong choices. From the investiga-
tor’s perspective, it may seem far better to preserve
some flexibility in the experiment’s interpretation by
saying little during the design of the experiment about
the end point selection or analysis procedures and let-
ting the data choose the best analysis and end point
selection as long as these selections are consistent with
the goals of the experiment.

This point of view may be bolstered by the obser-
vation that obtaining the research sample correctly for
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clinical research can be an onerous, time-consuming,
and expensive process. Intelligent and well-developed
methodologies are required to choose the optimum
sample size.8–12 Well-tested randomization mecha-
nisms are put in place to avoid systematic biases,
which can produce destabilizing imbalances and con-
found the research interpretation. In fact, the funda-
mental principle of simple random sampling is to pro-
duce a sample that is representative of the population.13

Many investigators believe that after carrying out
these procedures, they have provided the greatest as-
surance that the results from the sample are applicable
to the population at large. If investigators have pa-
tiently carried out this preparatory work, why are they
prohibited from believing the answers their sample
provides to the questions the investigators ask, re-
gardless of whether the questions were prospectively
posed? Why cannot the researcher be allowed to take
advantage of that representation by generalizing re-
sults from this “representative” sample to the popu-
lation it represents? To investigators, withholding be-
lief in a surprise finding’s validity can seem like de-
nying credit to Columbus for discovering the New
World because his discovery was, after all, “not part of
his protocol.”

DIFFERENCE BETWEEN THE

SAMPLE AND THE POPULATION

It is understandable that a scientist chooses to rely on
the findings from his sample, which were obtained at
great logistic and financial cost. Much is invested in
the sample; therefore, much is demanded from it.
However, the presence of a representative sample
does not infer that every factoid in the sample por-
trays a reliable reflection of a population finding. To
understand this requires only a brief review of what a
sample is and how it is obtained. We must first ob-
serve that in health care research, samples, although
obtained at great expense, are often miniscule when
compared in size with populations (Fig. 1).

For example, a clinical research program may go to
great effort and expense to identify 300 patients with
type II diabetes, randomly allocating them to either a
new pharmacologic intervention or control therapy.
Despite the great effort involved in this enterprise, it
must be acknowledged that because there are 15 mil-
lion patients with diabetes in the United States,14 the
research sample contains only 0.002% of the total
number of patients with diabetes. Put another way,
99.998% of patients with diabetes are specifically not
included in the sample. Also, it is easily computed that

15,000,000 / 300 or 50,000 different samples of the
same size can be obtained from this same population.
Each of these samples contains a kernel of truth about
the population but not the complete truth. In addition,
the “version” of the truth varies across samples. This
sample-to-sample variability is termed sampling error.
Because these samples contain different patients with
different life experiences and different data, discern-
ing the “truth” about a population by merely evalu-
ating a single sample is problematic. Although it may
be reasonable to conclude that this sample contains a
nugget of truth that can be extended to the population,
it is unreasonable to believe that every finding of in-
formation the one sample contains represents the
truth about the population.

Therefore, extending results from a single sample to
the population is a fragile process. Sampling error can-
not be removed from this process. However, the ex-
tent to which sampling error is responsible for the
results from the sample can be estimated. Recognizing
this, experienced research designers focus on one sub-
component of the information in the sample. That one
component is the study question, representing the
single issue that the sample addresses. Nevertheless,
because the presence of random sample variability can
still present an obstacle to the extension of the sam-
ple’s results to the population, investigators turn to
the quantitative procedures of epidemiology and bio-
statistics. These fields have provided the computa-
tions that convert the data’s information to the best
unbiased estimates of the intervention’s effect size
(e.g., mean effect, odds ratio, or relative risk) and ef-
fect size variability. It is important to note that these
estimators do not remove sampling error; instead,
they incorporate it. If the researcher is also interested

Fig. 1. The difficulty with inferring the sample results to

the population.
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in inference (i.e., hypothesis testing), statistical proce-
dures can also channel sampling error into P values
(the likelihood that there is no effect in the population
but that the population has misled us by producing a
sample in which there is an effect) and power (the
likelihood that there is an important effect of therapy
in the population but that the population has misled
us by producing a sample in which no effect of
therapy is observed). Thus, when used correctly, epi-
demiologic and statistical methodologies appropri-
ately recognize and channel sampling error to famil-
iar quantities that researchers have useful experience
in interpreting.

For this process to be informative to the researcher
and, ultimately, the medical community, the estima-
tors used in interpreting the research must be reliable,
that is, they must accurately measure what they were
designed to measure. This accuracy comes automati-
cally if the experiment is executed according to a well-
designed and detailed protocol; however, this accu-
racy is lost when protocol violations occur. As a case
in point, consider the following example.

THE EXAMPLE

An enthusiastic young researcher, Dr. B, interested in
demonstrating the progressive increase in stroke inci-
dence in patients with untreated atherosclerotic dis-
ease, designs a simple research program to examine
the increase in the incidence of ischemic stroke over
time in patients who are at risk for having a stroke. Dr.
B recruits a sample of patients and follows them for 2
years, measuring the occurrence of stroke at the end of
the 2-year period. Although Dr. B is focused on
strokes, he measures other morbidity (i.e., fatal and
nonfatal myocardial infarction, use of revasculariza-
tion procedures, hospitalization for cardiovascular
disease) as his cohort ages. All measures of morbidity
are measured with the same precision. At the study’s
conclusion, Dr. B discovers, to his surprise and horror,
that there has not been an important increase in the
incidence of stroke but there has been an unmistakable
increase in the incidence of fatal and nonfatal myocar-
dial infarction. He therefore decides to change the end
point for the program from an increase in stroke to an
increase in fatal and nonfatal myocardial infarction
and reports the findings of the latter in the peer-
reviewed literature as the result of the experiment.

In our experience, many knowledgeable scientists
would have no problem with Dr. B’s switch from
stroke to myocardial infarction, arguing that each of
these end points is a measure of the same underlying

physiologic and pathophysiologic criteria. They
would claim that because these end points jointly
measure the progress of the same disease process,
there is no harm in interchanging them as study end
points. They might contend that Dr. B. should not be
held to the impossible standard of having to guess
right about the best measure of atherosclerotic disease
to choose as his end point. Because he had the insight
to measure several different facets of atherosclerotic
morbidity, perhaps he should be commended for his
foresight in measuring the incidence of myocardial in-
farction and his decision to raise the significant result
to a prominent place in his report. Others among us
would be uncomfortable with the end point change,
but we may be unclear as to exactly what the problem
is. These critics might say that the decision to change
the end point was “data driven.” Well, what is so
wrong with that? Are not the results of any study
“data driven”?

RANDOM DATA VERSUS

RANDOM EXPERIMENTS

As pointed out in the previous section, sampling error
must be controlled and channeled in an interpretable
sample-based research effort. Estimators used to ac-
complish this are effective but rely on a critical as-
sumption—only the data can be subject to random
influence; the research protocol must remain fixed. Es-
timators that we commonly use (e.g., mean changes,
odds ratios, relative risks, confidence intervals, P val-
ues) were designed to work well in this environment.
Nevertheless, when these estimators are computed in
a research environment, where the protocol and analy-
sis rules are influenced by the data (i.e., a random
environment), the estimators no longer have the capa-
bility to assess sampling error in the data in which
sampling error has influenced the research protocol.
Our usual estimators can handle one source of vari-
ability, the fact that the data in one sample differ from
those in another in measuring a predetermined end
point, but they cannot handle the fact that a different
sample with different data would lead to a different
end point choice. The estimators therefore function
irregularly, returning aberrant estimates of what they
were designed to measure. Thus, to ensure the re-
search effort’s interpretability, the sampling error con-
tained in the data must be segregated from the re-
search procedures and analysis plans. This separation
ensures that the statistical procedures applied to the
data provide accurate estimates of effect size, standard
errors, confidence intervals, and P values. No longer
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anchored to its protocol, the research has become dis-
cordant and random, and the statistical estimates have
been corrupted.* Drawing conclusions from these es-
timators is like combing one’s hair using a distorted
and blurred mirror. Because the reflection is not a true
one, the result is unsatisfactory, and, ultimately, the
exercise must be repeated. Only the data can be sub-
ject to random variation to comply with the assump-
tions on which the statistical tools rely. All else must
be fixed.

This last point is worthy of elaboration. The diffi-
culty with the computations is not that the random
end point selection produces sloppy calculations. To
the contrary, great effort is expended on these com-
putations, using modern computing facilities and pro-
cedures. Nevertheless, because the research is no
longer anchored to its protocol but has become ran-
dom, the computations for effect sizes, confidence in-
tervals, and type I/II errors can no longer accurately
estimate sampling error. These computations were de-
signed for only one source of variability—the data.
The end point selection randomness has destroyed
this paradigm. We know that the computations are
wrong, and we do not know how to make them right.
Therefore, estimators developed for the first (arbi-
trary, prospective) paradigm are now useless when
the paradigm has shifted to the second (random) one.
Because they are incorrect and uncorrectable, we can-
not integrate them in our fund of knowledge; unfor-
tunately, they must be discarded. The only protection
against this dilemma is the prospective specification of
the end points. This is the central motivation for the
research tenet, “First, say what you will do; then, do
what you said.”

Consider the exercise a statistician goes through
when asked to consider the development of a test sta-
tistic for the incidence of stroke. The statistician com-
monly starts with a statement “Let xi, where i = 1,…,
n be a sample of observations from a population in
which xi = 1 if the ‘ith’ patient had a stroke, and xi = 0
if the ‘ith’ patient did not have a stroke. Then,

�
i=1

n

xi

has the following probability distribution…” From
these statements, estimators of effect size, standard

errors, confidence intervals, and P values are available
to effectively convey the strength of evidence the data
contain. The statistician can proceed by saying, “If we
wish to estimate the population incidence rate, it is a
straightforward result from the maximum likelihood
theory, least squares theory, or optimality theory that
the sample mean

�
i=1

n

xi

n
= X

is the best estimator of the population incidence.” This
paradigm falls apart when x is not prospectively and
arbitrarily chosen but is instead selected by the data,
which contain sampling error. In this second (random)
paradigm, there is now a new probability distribution
that governs the selection of the end point variable
itself. This change in assumption leads to a more com-
plicated second situation in which our commonly
used familiar estimators are no longer optimal. In this
new paradigm, our statistician cannot begin with, “Let
x represent the incidence of a stroke.” He/she must
consider something along the following lines, starting
with, “The data will determine the end point that will
be used for this study, so by what random mechanism
will the end point be chosen?” Consider the circum-
stance that there are five possible end points: V, W, X,
Y, and Z. Let vi be the realization of V, wi be the
realization of W, xi be the realization of X, yi be the
realization of Y, and zi be the realization of Z for the
“ith” patient, i = 1,…,n. Because we do not know
which of V, W, X, Y, or Z will be the final end point
(the data determine that), we have to explicitly con-
sider that each may be the end point for the study. For
this, we need a probability distribution for the end
point selection. Let the probability that the random
variable V is chosen be Pv, the probability that the end
point W is chosen be Pw, with analogous assignments
for Px, Py, and Pz such that Pv + Pw + Px + Py + Pz = 1.
In this paradigm, the best estimator for the sample
mean is not X̄. Instead, it is the more complicated es-
timate:

e = pv V + p2 W + px X + py Y + pz Z

Applying this weighted estimate to the experiment
of Dr. B, it is clear that Dr. B should have used a
weighted incidence measure for the possible end
points in this study. This estimator, although best for
the experimental execution, is problematic for two rea-
sons. First, there is no known procedure for choosing
the values of the probabilities Pv, Pw, Px, Py, and Pz
prospectively. Second, this weighted end point is ex-
ceedingly difficult to interpret. If Dr. B’s candidate end

*There are additional problems with changing the end point
from stroke to myocardial infarction. The incidence rates
may be quite different between the two end point measures,
leading to a different sample size requirement. Although
logistically important, this specific implication for the end
point choice is not the focus of this article.
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points were continuous, the interpretability problem
gets much worse. For example, if V reflected change in
low-density lipoprotein cholesterol, W reflected
change in very low-density lipoprotein cholesterol, X
reflected change in high-density lipoprotein choles-
terol, Y reflected a change in triglycerides, and Z was
a change in apolipoprotein B cholesterol, the appro-
priate estimate would be a weighted average of these
changes, a measure that defies interpretation.

The key point here is that it is the choice of the
estimator that is linked to the research execution. The
random research paradigm of Dr. B requires difficult
and obtuse estimators for the correct analysis. The cor-
rect analysis is difficult to interpret, but this is the
analysis he should use. The fact that the estimators are
difficult to use and interpret is merely an expression
that the random research environment is difficult. The
problem is not the estimators but the paradigm. Using
the customary estimators of the fixed paradigm in this
random paradigm is also incorrect, because these es-
timators are not interpretable in this random environ-
ment. Even though Dr. B (now) knows that choosing X̄
was wrong, he does not know precisely how to correct
it, because such a correction requires him to estimate
values of the probabilities Pv, Pw, Px, Py, and Pz. Thus,
his estimate of the effect size for his experiment is
wrong, and his estimates of variability, confidence in-
tervals, and any statistical inference (P values and
power) that he carries out are also wrong. The experi-
ment as designed was interpretable; however, the ran-
dom end point selection process executed during the
research execution has destroyed that interpretability.

The action that led to the corruption of the research
was allowing the data stream with its sampling error
to affect the analysis procedure. The root of this diffi-
culty is how to handle sampling error. This dilemma is
resolved if the researcher can study every subject in
the population. In this circumstance, there is no sam-
pling error. In fact, there is no estimation, because the
population parameters are directly measured. For ex-
ample, a laboratory researcher is interested in charac-
terizing the measure of abnormal glucose metabolism
in diabetic patients admitted to a community hospital.
There are two possible candidates for the research end
point: glycosylated hemoglobin or fasting blood glu-
cose levels. In this circumstance, there is no require-
ment for choosing only one prospectively. The deci-
sion to measure one or the other or both can be made
at any time, because there is no sampling error. Thus,
choosing one of these prospectively is not necessary if
the investigator has no interest in generalizing the re-
sults of the study to another population (e.g., to the
city hospital or community hospital diabetic patients
to be admitted in the future). There is freedom in

choosing the end point here. The end point selec-
tion liberty gained by studying the entire popula-
tion is counterbalanced by the generalizability restric-
tion, however.

FINAL PERSPECTIVE ON

RANDOM RESEARCH

In the more common paradigm of sample-based re-
search, random data containing sampling error cannot
be allowed to change a fixed research protocol. Like
the fruit from a poisonous tree, the results from the
altered research protocol cannot be understood and
absorbed and must be shunned. Such data-driven pro-
tocol deviations are a klaxon for poor estimators, in-
accurate standard errors, and untrustworthy type I
and type II error calculations. The only protection
against this dilemma is the prospective specification of
the end points in complete detail, leaving nothing to
chance. This is the central motivation for the research
tenet, “First, say what you will do; then, do what you
said.” The following are areas where random research
arises and some techniques to avoid them.

RANDOM RESEARCH AND

MULTIPLE ANALYSES

By an analysis, we mean any statistical procedure that
leads to a hypothesis test. Thus, the analysis of the
effect of therapy among different treatment groups in
a clinical trial with more than two arms, the evaluation
of multiple end points in a single clinical trial, the
study of the effect of the intervention in a collection of
subgroups of the research cohort, or combinations of
these evaluations are examples of multiple analyses.
The consequences of the preceding discussion for the
reliability of the conclusions from these multiple
analyses are direct and immediate. Investigators who
ask the question about the intervention-disease rela-
tion first (prospective design) and then execute the
experiment according to that design are assured that
the measures of (1) the magnitude of the intervention-
disease relation; (2) its standard error; and (3) the type
I and type II errors† are trustworthy.

Even in this circumstance, there can be difficulties.
If too many questions are asked of the research sample

†Type I and type II errors are the estimates of sampling error
that measure whether sampling error produced the findings
the investigator observed in the population.
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(even if these questions are asked prospectively), the
likelihood that the answers to these questions are the
result of sampling error grows. This is reflected in
inflated type I and type II errors. Just like the prob-
ability of at least one “tails” in the successive flips of a
coin increases as the coin is repeatedly tossed, the
probability of at least one false answer increases if the
sample is queried repeatedly for information that is
generalized to the population. In a concordantly ex-
ecuted‡ experiment, the analysis for one end point
may result in a P value of 0.05; when two questions are
asked, the probability that at least one of the answers
is a result solely of sampling error is 1 − (1–0.05)(1–
0.05) = 0.0975. What we observe is that the likelihood
of at least one of those conclusions being wrong (re-
ferred to as the family-wise type I error rate) becomes
too large too quickly. We do not know which of the
end point findings is wrong; we can only say that the
likelihood that at least one of them is wrong has be-
come too large.

The challenges and difficulties of using multiple
analyses in clinical trials and the consequences of
these decisions are easily described (Table 1). The
planning of the analyses has a profound effect on the
interpretation of the analyses. If the analyses are post
hoc evaluations with no a priori planning, the estima-
tors of effect from these analyses are untrustworthy.
Any hypothesis testing based on these estimators is
also unreliable, and the results of analyses are best
viewed as exploratory. In these circumstances, the re-
sults of hypothesis tests might best be reported as z
scores, which are normalized effect sizes rather than P
values. Because exploratory analyses cannot be gener-
alized to the population, type I error for these explor-
atory analyses is irrelevant, and the salient informa-
tion about the scaled effect size is communicated more
clearly by reporting solely the test statistic.

If the analysis is planned prospectively and the ex-
periment is executed concordantly (i.e., executed ac-

cording to the protocol), the estimators derived from
the analysis are trustworthy. The inflation of type I
error from the multiple analyses decreases the persua-
sive force of the findings from these evaluations, how-
ever. The most direct interpretable evaluation from
multiple analyses is produced from well-designed,
prospectively planned, and concordantly executed
analyses with adequate type I error allocation to each
of the confirmatory analyses.

APPLICATION OF THE PRINCIPLE

The following are areas of multiple analyses in clinical
trials with which the previous discussion has a di-
rect connection.

End point selection

Two commonly occurring problems in health care re-
search directly involve the choice of the trial’s end
points. The first is that the end points may not have
been determined before the experiment began. This
identification of end points post hoc makes the analy-
sis uninterpretable, because the end point was deter-
mined based on the data, which, of course, contain an
important random component. The difficulties in in-
terpretation of programs with this deficiency have
been elaborated in the previous discussion. Second,
even when chosen a priori, if too many end points are
evaluated, type I error accumulates rapidly as the
number of conclusions drawn from a sample in-
creases. Therefore, multiple end point selection
must be prospective, and there must be adequate
type I error protection in a clinical trial. It may be
useful to think of type I error occurrence as an issue of
population protection. Every intervention has side
effects. The justification for their use is that the
intervention also has a beneficial effect. The occur-
rence of a type I error denotes that the efficacy of the
intervention in the population is like a placebo. There-
fore, commission of a type I error is tantamount to
exposing the community to an intervention that pro-

‡Concordant execution simply means that the experiment
was executed according to its protocol.

Table 1. Consequences of alternative strategies for selection of multiple analyses.

Strategy Difficulty

Analysis plan is based on the incoming data Untrustworthy estimates of effect size, standard errors,

confidence intervals, and P value

Prospective choice of analyses, no a priori alpha

allocation

Trustworthy estimates available, but type I error

inflation occurs

Prospective choice of analyses with a priori alpha

allocation

Trustworthy estimates are available with good type I

error control
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duces no efficacy but does produce real adverse
effects. Thus, controlling type I error rate is a
way to provide community protection from
a potentially harmful intervention that has no
efficacy.

Because type I error rate control is an important
community protection device, it must be kept to an
acceptably low level in health care research that stud-
ies an intervention. This responsibility requires both a
clear understanding of and a tight rein on type I error
rates. The Bonferroni approach (i.e., dividing the total
type I error by the number of hypothesis tests to
be executed)15 and its adaptations,16 commonly
used for secondary end points, does not work well as
generally applied (although successfully used in
some research), because the type I error threshold for
each test can decrease to an unusable low level
quickly for each additional test. In addition, the cur-
rent use of type I error requires that research efforts
with null findings for the primary end point but
with positive findings on secondary end points be
considered null trials, which is a matter of great frus-
tration to investigators who resist being compelled
to place all their “alpha eggs” in one primary end
point “basket.”

This difficulty has elicited discussion recently.17–23

The major recommendations from this body of work
are to require that (1) each primary and secondary
endpoint be prospectively chosen and (2) each of these
end points have type I error attached in a prospective
and reasoned fashion. This collection of procedures
increases the rigor for the prospective statements con-
cerning secondary end points, although permitting the
straightforward interpretation of a research effort that
is positive for secondary end points but in which the
primary end point is not statistically significant. Most
recently, the Clopidogrel in Unstable Angina to Pre-
vent Recurrent Events Trial demonstrated the advan-
tage of not just choosing end points prospectively but
of making an a priori alpha assignment to each.24 This
study prospectively considered two coprimary end
points. The first was the composite of death from car-
diovascular causes, nonfatal myocardial infarction, or
stroke. The second primary outcome was the compos-
ite of the first primary outcome or the occurrence of
refractory ischemia. The investigators allocated 0.045
to the primary outcome and 0.01 for the second copri-
mary end point.§

Random influences in modeling

A commonly used analysis tool in clinical research is
regression analysis. Its use has allowed health care
researchers to carefully examine the relation between
an explanatory variable of interest and the end point
measure while simultaneously identifying, isolating,
and removing the effect of intermediary and related
variables. Regression analysis is of particular interest
to researchers who are not in the position of being able
to assign the risk factor (e.g., as intervention) ran-
domly. This is a common issue in postmarketing stud-
ies in which the patients and not the investigators
choose the medication they are taking. Consider, for
example, the difficulty posed by the investigation of
the relation between antihistamine use and the occur-
rence of sudden death. In such a study, one follows
patients who have been exposed to antihistamine 1,
antihistamine 2, or antihistamine 3 over time, � collect-
ing information on the occurrence of sudden death
subsequent to exposure.

Because the investigator did not choose the antihis-
tamine for these patients, the factors that led the pa-
tient or the patient’s physician to choose the antihis-
tamine (e.g., comorbidity or concomitant medications)
may be more closely related to the true risk factor for
sudden death. Regression analysis (e.g., logistic re-
gression analysis or Cox proportional hazard analysis)
is a commonly used tool to address this problem. Al-
though not as effective as the random allocation of
exposure, these procedures permit the removal of the
influence of these additional variables. How should
the investigator choose the adjusting variables? A
commonly followed procedure is to collect informa-
tion on the comorbid events and other patient charac-
teristics that may or may not be related to both anti-
histamine use and sudden death and to let the regres-
sion model choose which adjusting variables are
important. This broad database search for significant
confounders represents a thorough use of the data set;
in fact, this procedure maximizes the data set’s ability
to explain important variability in the occurrence of
sudden death. Nevertheless, this maximum use of da-
tabase information comes at the price of confusing the
view of the relation between antihistamine use and
sudden death in the population.

This confusion has at its heart the realization that
the random aggregation of data in the sample pro-
duces variable interrelations that are the result of

§Dependence between these two end points led to a family-
wide type I error level of 0.05, less than the 1 − (1–0.045)
(1–0.01) = 0.055 from the standard Bonferroni computation.

�We ignore in this discussion the difficulty caused by the
sequential (or concomitant) use of different antihistamines.
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chance alone, reflecting nothing about the relations
between these variables in the population. Thus, vari-
ables may seem to be noteworthy adjusters because
they have a relation with either antihistamine use or
sudden death in the sample, when no such relation
exists in the population. For example, consider two
different researchers drawing different samples from
the same population to answer this question. Each of
them uses the data to determine the variables for
which they wish to adjust the antihistamine–sudden
death relation. Because the data sets are random, how-
ever, and the data sets choose the covariates, the co-
variate selection procedure is also random. These in-
vestigators are likely to produce two different sets of
adjusting covariates. Which is correct? The difficulty
becomes all the more pernicious if the investigators
produce two different conclusions about the risk that
antihistamines pose for the occurrence of sudden
death based on the covariates for which the analysis
was adjusted.

The best solution to this problem is to remove the
random covariate selection procedure. Investigators
should deliberately choose the adjusting variables
based on information collected before the inception of
the experiment. This requires taking the time to iden-
tify previous regression models built on other data
sets that have identified adjusters. Although requiring
additional work during the design feature of the re-
search, this has the advantage of providing a model
that is interpretable and directly extendable to the
population at large.

Random subgroup analyses

Subgroup analysis is the examination of a treatment
effect within a fraction of the entire cohort. In clinical
trials, subgroup analysis is produced when the focus
on the effect of therapy in the entire cohort is nar-
rowed further to the effect of therapy in only a fraction
of the cohort. The number of subgroup analyses ex-
ecuted in a clinical trial can quickly mushroom, be-
cause there are so many subgroups available to be
analyzed. In its worst form, subgroup analysis can
degenerate to data dredging, in which the data set is
examined for statistical significance in every possible
subgroup.25 This can lead to untrustworthy estimators
as well as to profligate type I errors.

Subgroup analyses have been covered in the clinical
research literature. Yusuf et al26 have clearly presented
the specific methodologic difficulties with subgroup
analyses as executed in health care research. One of
the common problems with subgroups is the absence
of a prospectively stated analysis plan, making the
estimators of subgroup effect untrustworthy. Another
difficulty with subgroup analysis is that the criteria for

determining subgroup membership may be based not
on baseline information but on information that only
becomes available after randomization. The problem
here is that factors that influence the effectiveness of
therapy may have influenced subgroup membership
criteria. In this setting, the effect of therapy cannot be
disentangled from the subgroup entry criteria, confus-
ing the interpretation of the result.

Finally, there should be appropriate protection for
type I and type II error. Multiplicity of type I error in
concert with small sample sizes leads to type I error
inflation. The commonly used tool to control this
difficulty (i.e., increasing the sample size of the sub-
group) can only be applied rarely. When so much
work is invested in obtaining a research cohort large
enough to answer the scientific question with some
statistical certainty, it is almost too much to ask inves-
tigators also to ensure that the subgroup is large
enough to answer the same question. Nevertheless,
some recent work has identified conditions under
which prospectively designed subgroup analyses with
adequate power may be designed with resultant con-
firmatory analyses.27,28

Data dredging is random research in extremis. This
search for significant findings in the research may be
well motivated, and the dredgers are driven by the
notion that if they look hard enough and long enough
and dig deep enough, they will turn up something
“significant.” Although it is possible to discover a
jewel in this strip-mining operation, it is also more
likely that for every rare jewel identified, there will be
many false alarms, fakes, and shams. It takes tremen-
dous effort to sort out all these findings. In his book,
Experimental Agriculture (1849), James Johnson29 states
that a badly conceived experiment is not only wasted
time and money but also leads to the adoption of in-
correct results in standard books, the loss of money in
practice, and the neglect of further research along
more appropriate lines. This is the legacy of random
research. It is not enough to design the research well.
Believing that well-designed research can overcome
protocol violations is like believing that a well-stocked
kitchen can turn out a good meal despite the skills of
the chef. Both a well-prepared kitchen and a skilled
chef are necessary.

CONCLUSIONS

The fact that a sample was obtained with great care
using state-of-the-art sampling procedures does not
ensure that every finding the sample produces can be
applied to the population from which the sample was
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derived. Extension of the sample results to the popu-
lation is a delicate process, quickly disrupted by al-
lowing the incoming data to determine the analysis.
Random research, generated from allowing the ran-
dom data stream to change the analysis plans of a
clinical investigation, has important implications. The
commonly used estimators of effect size, standard er-
rors, confidence intervals, and P values are no longer
trustworthy and therefore not worthy of further con-
sideration in the random research paradigm.

Even though they are not confirmatory, exploratory
research efforts can shed first light on new directions
for future research. An exploratory analysis can be of
great value if it is announced before it is carried out,
exerts discipline through the early choice of an analy-
sis plan, and limits itself to examinations that are plau-
sible based on the understanding of the mechanism of
the disease. P values should be avoided, and the re-
ported effect sizes should be used to ask the question
rather than to answer one.

Finally, the readership must develop a new skill of
discrimination. Keeping in mind that the role of the
investigator is not as a “searcher” who stumbles on an
unexpected finding but as a “researcher” who con-
firms an a priori hypothesis with scientific rigor, read-
ers of the peer-reviewed medical research literature
must separate confirmatory from exploratory analy-
ses. Confirmatory analyses are those for which there is
a prospective specification of an analysis plan in com-
plete detail, including type I error allocations, leaving
nothing in the analysis plan to be determined later by
the data. This is the best way to ensure that the esti-
mators the investigators have provided are trustwor-
thy. Data-driven protocol deviations, which are the
hallmarks of random research, are alarm bells for type
I and type II error aberrations and can serve only to
produce preliminary exploratory evaluations.
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