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Abstract 44 

 Statistical hypothesis testing is a fixture in clinical trials. However, its continued 45 

application has produced an artificially constrained clinical trial analysis paradigm that is tightly 46 

bound to type I error management. Not only is this difficult to helpfully apply in modern 47 

complex clinical trials, but it is not responsive to the primum movens of the investigators.  48 

A measure theoretic approach is developed here that is based on the principals of health 49 

care research analysis and not those of statistical hypothesis testing theory. This new rubric 50 

permits all data collected by the trial that is responsive to a specific scientific question to 51 

quantitatively contribute to that question’s answer. Thus, estimates for each of the following are 52 

obtainable: 1) the total available evidence in a clinical trial to answer the question, 2) the strength 53 

of that evidence, 3) the strength of evidence that supports benefit and the strength of evidence 54 

supporting harm, and 4) the magnitude of the beneficial effect and the magnitude of harm. The 55 

incorporation of sampling error in these estimates is achieved without formal hypothesis testing, 56 

obviating the need for type I error consideration with its attendant multiplicity corrections.  57 
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Introduction  62 

Ninety-two years have passed since the writings of Ronald Fisher introduced inference testing to 63 

the applied statistical community [1,2]. This theory of statistical hypothesis testing generated the 64 

p-value that subsequently garnered the support of US Food and Drug Administration (FDA) 65 

regulators, National Institutes of Health administrators, and medical journal editors in assessing 66 

clinical research [3]. With the advent of clinical trials, statistical hypothesis testing became a 67 

fixture among medical researchers and, despite the concerns voiced principally by 68 

epidemiologists [4,5,6,7,8], statistical hypothesis testing remains a fixture of clinical 69 

investigation today, including cardiology, the focus of this manuscript. 70 

  These statistical hypothesis testing requirement and its focus on p-values generated a 71 

collection of interpretative conundrums [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] for 72 

the cardiology research community. From this turmoil arose additional design and analysis 73 

requisites that a clinical trial must satisfy [23, 24]. These requirements of 1) differentiating 74 

prospectively declared analyses from post hoc (exploratory) endpoints and 2) conserving the 75 

overall type I error among a small number of prospectively declared endpoints (multiplicity 76 

corrections) instilled important and necessary discipline in conducting and interpreting clinical 77 

trial results. However, an unfortunate consequence of these tenets is that commonly only a 78 

fraction of the data that are collected in a clinical trial are actually used to directly answer the 79 

study question, a restriction that is required to control type I error propagation [25]. Thus, 80 

although many analyses are conducted, only a small subset of them (and commonly only one of 81 

them) is identified as a “primary”. These restrictions are applied not just in academic research 82 

but in clinical trials conducted by the private sector which follows the contemporary guidance of 83 

the federal Food and Drug Administration [26].  84 



 

 

This analysis parsimony ‒ a consequence of type I error control ‒ is emblematic of the 85 

fundamental tension between biostatistics and clinical researchers; the inability of statistical 86 

hypothesis testing to directly address the primary, probing question that motivated investigators 87 

to execute their research.   88 

The principal inquiry of interest to investigators in clinical trials is “Are participants 89 

better or worse off after exposure to the intervention when compared to the control group 90 

experience?” This is a global question that requires a comprehensive review of all analyses that 91 

bear on this query.  However, in cardiology, the combination of 1) the daunting universe of 92 

possible assessments (e.g., heart function, renal function, the ability of the individual to exercise, 93 

how long the individual survives, number of hospitalizations, patient quality of life surveys) and 94 

2) the different types of statistical estimators implemented to asses the exposures effects (e.g., 95 

Bayes procedures, non-parametric U statistics,  regression analyses, imputation evaluations, 96 

survival analyses) have complicated all attempts to provide an answer.  97 

The traditional approach of biostatistics is to require the investigator to select one or a  98 

small number endpoints, and then execute statistical hypothesis testing on each, converting every 99 

one of them into the familiar dichotomous decision framework (rejection or non-rejection of the 100 

null hypothesis); type I error is calculated and accumulated as each of these endpoints is 101 

assessed. Thus,  to the investigator who has accepted the task of interpreting a complex study of 102 

a complicated disease, statisticians deliver 1) the results of a small number of analyses which the 103 

statisticians believe are dispositive, and 2) an accumulated type I error rate.   104 

Although the investigators’ point of view is quantitative, it is also contradistinctive. 105 

Investigators believe that an analysis finding (e.g., the mean difference in the change in exercise 106 

tolerance between the exposed and control group),  because of sampling error and other sources 107 



 

 

of imprecision, can support both a degree of benefit and a degree of harm simultaneously. It is 108 

this dualism ‒ not hypothesis testing dichotomy ‒ to which the investigators resonate, and it is 109 

this dualism ‒ not type I error ‒ that should be accumulated so that investigators can assimilate 110 

their research results. Unfortunately, the standard statistical analysis disappoints the investigators 111 

who find themselves left with 1) no quantitative answer to their principal question and 2) an 112 

accumulated type I error rate in which they have no direct interest. This is the disconnect 113 

between these two scientific disciplines. 114 

This paper establishes a rubric which relies on measure theoretic tools to develop 115 

Lebesgue-Stieltjes functions that assess the evidence from all analyses in a clinical trial that are 116 

responsive to a global question, and that provide the degree to which that evidence supports 117 

benefit and harm. This approach provides a direct answer to the investigator’s principal question 118 

with no reliance on statistical hypothesis testing.  119 

 120 

Methods 121 

This development assumes that there is one clinical trial that has been well designed and 122 

concordantly executed (i.e., carried out in accordance with the prospectively written protocol). It 123 

is also assumed that the investigators designed the study to answer one overall question q, e.g., 124 

“Does mesenchymal cell therapy improve the well-being of patients with heart failure?” This 125 

manuscript develops answers to the four following inquiries related to question q: 126 

  127 

1. Within the scope of all of the clinical trial’s analyses, what is the content of evidence 128 

that addresses specific question q?  129 



 

 

2. Within the scope of all of the clinical trial’s analyses, what is the strength of 130 

evidence that actually addresses the specific question ?q   131 

3. What is the strength of evidence supporting an affirmative answer to question q  132 

(i.e., a beneficial effect of cell therapy) and the strength of evidence in the trial 133 

suggesting the reverse (i.e., a harmful effect of cell therapy)? 134 

4. From the evidence of all analyses, what is an estimator of that benefit? What is the 135 

estimate of harm? 136 

 137 

The goal is to create a sample space Ω  of clinical trial analyses, from which a standard σ-138 

algebra Σ  is formulated. With this as a foundation, a formal measure ψ  is developed on which 139 

analysis-measurable functions operate and can be integrated with respect to ( ),Ω Σ . Their 140 

integrals produce answers to queries 1-4.  141 

The full development is available (Appendix). To recapitulate, since a clinical trial’s 142 

product is a collection of analyses, { },iω  a sample space Ω  containing all of the analyses is  143 

generated by the study. Each element iω ⊂Ω  contains the constitutive components of the ith 144 

analysis. One element of iω  is the question that motivated the analysis. Denote this element of 145 

iω  as .iq  Another collection of components of iω  is the group of analysis characteristics 146 

denoted as ( ) , 1, , ,i j jδ =  where j indexed the design and operational features of the analysis. 147 

There are many of these characteristics of the analysis, e.g., planning of the analysis (prospective 148 

versus retrospective), and the type of analysis (e.g., survival analysis, mean different analysis, 149 

etc., subgroup analysis).  The remaining components of iω  are the participants used in the 150 

analysis, the variables used in the analysis (not their values, but their identities), and the analysis’ 151 

estimate of effect size and its standard error.   152 

 From this perspective one can, for example, collect a set of analyses A containing all 153 

subgroup assessments evaluating the role of an antidiabetic medication on changes in micro 154 

albuminuria, or a set of analyses B containing all analyses conducted that examined the 155 

difference in the change over time in systolic blood pressure by therapy group. This 156 



 

 

multicomponent structure of iω  offers a wide latitude in the creation of sets of analyses. These 157 

analysis collections, or “regions of analysis” can then serve as the domain on which Lebesgue-158 

Stieltjes integrals operate.   159 

With this framework, define the content of the analysis iω , as ( )iψ ω , and write  160 

( ) .i i in vψ ω =  161 

This defines the content of an analysis as the product of the number of participants whose data 162 

contribute to the evaluation multiplied by the number of variables that are required for the 163 

analysis. Denote the content of this intersection as ( )i jψ ω ω∩  where iω  and jω  are not disjoint 164 

and define 165 

( ) .i j ij ijn vψ ω ω∩ =  166 

Here, ijn  is the number of participants and ijv  the number of variables common to both analyses. 167 

In general, the content of the intersection of k analyses 1 2 3, , ,... kω ω ω ω  is 168 

... ...
1

k

i i k i k
i

n vψ ω
=

 
= 

 


  169 

It has been demonstrated that ( )iψ ω  meets the formal definition of a measure (Appendix).  170 

 Since the measure of an analysis is simply based on the number of observation and 171 

variables it contains, it is easily anticipated that analyses are in general not pairwise disjoint, 172 

complicating the computation of 
1

.
n

k
k

ψ ω
=

 
 
 


To expedite this  computation, define { }kB  as the 173 

sequence of sets created from the increasing sequence of sets 
1

k

k i
i

C ω
=

=


 where 1.
c

k k kB C C −= ∩  174 

Then while it is true that 
1 1

,
n n

i i
k k

Bω
= =

=
 

 it is also true that  ( )
11

n n

k k
kk

Bψ ω ψ
==

 
= 

 
∑

  since { }kB175 

consists of pairwise disjoint sets. (Figure 1.)  This collection of sets { }kB  represent the analysis 176 

fragments or quanta that make separate contributions to the measure of the union of all analyses 177 

responsive to a question q. Furthermore, the measure of any analysis quanta kB  can be computed 178 

as    179 



 

 

( ) ( ) ( ) ( ) ( )
32 2

1 1 2 1 2 3
1 1 2 1 2 3

11 11 1 1

1 1 2 1 2 3
...

jj jk k k

k k j k j j k j j j k
j j j j j j

B nv nv nv nvψ
−− −− − −

= = = = = =
= − + − +∑ ∑ ∑ ∑∑ ∑  180 

 Where ( ) ...ijnv  is simplifying notation for ... ...ij ijn v   (Appendix).  181 

Thus the measure or content of the collection of non-disjoint analyses, 
1

k

i
i

A ω
=

=


can be 182 

assembled from the sum of measures of mutually disjoint combinations of analysis quanta 183 

{ } , 1, 2,3,...,iB i k=  , thereby permitting the expression of ( ) ( )

1

1k

i
i

k

i
iA

B

A d d Bψ ψ ψ ψ

=

=
= = =∑∫ ∫



 184 

where 
1

.
k

i
i

B A
=

=


 An adaptation of this measure for the circumstance in which the variables both 185 

within and across analyses are correlated is available (Appendix).  186 
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Figure 1. Decomposing the overlapping analyses                    into non-overlapping analysis components { }1 2 3,B B B
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 189 

With this as background, ψ −  measureable functions will now be created to address the four 190 

inquiries.  191 

 192 

Inquiry 1. What is the content of evidence in the trial that addresses question ?q   193 



 

 

A clinical randomized trial designed to address the question “Does mesenchymal cell therapy 194 

delivered intravenously improve the cachexic state of advanced heart failure?” conducts many 195 

analyses to address this inquiry. However, although the analyses are germane, their different 196 

methodologies (imputation analyses, regression analyses, Bayes analyses, etc.) challenge any 197 

attempt to combine them. The ultimate goal is to use Lebesgue-Stieltjes integrals to accumulate 198 

these findings. As a preamble to these steps, from the set of analyses { }|i iq qω ⊂  assemble the 199 

collection of analyses quanta { }iB , and compute the measure of these quanta using ψ −  measure 200 

(Appendix).   201 

Begin with the identification and collection of the subset of all analyses conducted that 202 

address question q. Denote this subset as { }/ .q i iA q qω= =  The content of evidence that 203 

addresses question q is obtained by measuring or accumulating the content of analyses that 204 

contribute to .qA  Thus, if the content of evidence that addresses question q is qΓ  then write 205 

( )
q

q
A

d Aψ ψ= =∫qΓ  where the integral signifies Lebesgue-Stieltjes integration over the collection 206 

of analyses .i qAω ⊂   207 

Since ( )qAψ  involves the measure of overlapping sets i qAω ⊂  the inequality 208 

( ) ( )
1 11

1 1 1
i q i q i q

q

n n

q i A i A i i A
i iiA

d A n vω ω ωψ ψ ψ ω ψ ω⊂ ⊂ ⊂
= ==

 
= = ≤ = 

 
∑ ∑∫ 

 (where there are n member analyses  209 

contained in qA ) is available but not sharp. However the creation of the collection of disjoint 210 

analyses quanta { }iB  of the previous section permits 211 

( ) ( )
11

.1 1
i q i q

q

n n

q i A i A
iiA

d A Bω ωψ ψ ψ ω ψ⊂ ⊂
==

 
= = = 

 
∑∫ 

Thus, the measure of evidence that addresses 212 



 

 

question q is ( ) ( )
1

1
qi

q

n

q i A
iA

d A B ωψ ψ ψ ⊂
=

= = =∑∫qΓ  with analysis iω  is represented by its 213 

quantum .iB  214 

 215 

Inquiry 2. What is the strength of evidence for any analysis in the trial that addresses question 216 

?q   217 

 The measure ψ  is based only on the number of participants and the number of variables 218 

that is contained in an analysis, representing only the data that is incorporated in a body of 219 

analyses { }/ .q i iA q qω= =  Inquiry 2 addresses not just evidence brought to bear to address 220 

question q but the strength of that evidence provided by the set of analyses { }./q i iA q qω= =  221 

Begin by asserting that the strength of evidence contained in each analysis is determined by the 222 

research community and transmitted to { }/q i iA q qω= = through the decisions of the 223 

investigators. For example, in a clinical trial, prospectively declared analyses are commonly held 224 

to be of greater value than post hoc or exploratory analyses. As another example, measures of 225 

organism function (e.g., survival, amputation free survival, walking distance, quality of life), can 226 

be of greater value than changes in measures of organ function (e.g. left ventricular ejection 227 

fraction (LVEF)), which are themselves of greater value than isolated findings for biomarkers. 228 

Thus the strength of evidence contained in an analysis is determined a priori by the investigators. 229 

This in turn determines the importance of the contribution that the analysis makes to answering 230 

the scientific question q. The nomenclature commonly used to communicate this concept is the 231 

use of adjectives such as “prospective”,  “primary”, “secondary”, etc.  232 

Thus, the formal evaluation process in a clinical trial involves a priority ordering of the 233 

analyses’ contributions from the most influential and important to the least contributory. This 234 



 

 

clinical trial methodology is incorporated here [Appendix].  The choice of a well defended 235 

analysis priority a priori is equivalent to creating a function T that oversees the reordering of the 236 

set of analyses { }iω  from essentially a random sequence of analyses to a specifically ordered set, 237 

i.e., ( )1 2 3 [1] [2] [3] [ ], , ,..., , , ,...,n nT ω ω ω ω ω ω ω ω=  where the subscript [ ]i  denotes the ith analysis in 238 

the priority order from highest to lowest priority. Note that the function T also converts the 239 

sequence { } , 1, 2,3,...iB i = to { }[ ] , 1, 2,3,...iB i =  the sequence of disjoint analyses quanta 240 

corresponding to the sequence of analyses ordered by priority.  The reordering of { }iB is critical, 241 

because an implication of the collection of quanta { }iB  being pairwise disjoint is that their 242 

contribution to 
1

n

i
i

ψ ω
=

 
 
 
U  depends on their location in the priority sequence. Thus the ordered 243 

sets { }[ ] , 1, 2,3,...iB i =  manifests the a priori sense of the importance of the evidence (as reflected 244 

by the magnitude of  [ ]( )iBψ  to be provided by the analysis.  245 

Therefore, the strength of evidence offered by any analysis iω  = [ ]( )iBψ  and the relative 246 

strength of evidence provided by the th
iω  analysis to address question q is RSE where 247 

[ ] [ ]( ) [ ]( )
.

1 1
i q i q

q

A Ai i
i

A

B B

d
ω ωψ ψ

ω
ψ

⊂ ⊂
= =

∫ q

RSE
Γ

  248 

 249 

 Inquiry 3. What is the strength of evidence in the trial supporting an affirmative answer to 250 

question q ? What is the strength of evidence in the trial suggesting a negative answer? 251 

 252 



 

 

The two parts of inquiry 3 will be addressed in turn.  Assume that question q concerns the benefit 253 

or harm of an intervention in a clinical trial, e.g., “Does the provision of mesenchymal cells to 254 

patients with heart failure ameliorate their signs and symptoms when compared to the experience 255 

of controls?”  The process to be followed to address this question is to first identify the statistical 256 

estimate of effect from each analysis { }/i q i iA q qω ω⊂ = =  and then for each estimator, 1) 257 

consider the distorting role of sampling error and imprecision on this estimate, 2) parse the 258 

resulting region into a region supporting benefit, 3) quantify this region, 4) norm this by the 259 

measure of its quanta,  and 5) accumulate this evidence over all i qAω ⊂ .  260 

 One of the components of each iω  is the effect size produced by the analysis, identified 261 

now as .ie  This quantity ie  can be the difference between therapy groups of the mean blood 262 

pressure change over time, or the relative risk of death associated with an intervention.  263 

However, due to sampling variability and the measurement’s relative imprecision, this estimate 264 

of benefit cannot be relied upon in and of itself. The impact of these two distorting effects is to 265 

blur the exact position of the population measure of effect that could be deduced from the value 266 

of the statistical estimator from the sample; variability and imprecision each suggest that both 267 

larger values and smaller values of the estimator are admissible for consideration.  This range of 268 

values will be termed the estimator’s region of plausible effects. It is not just the estimator that 269 

provides a sense of the effect of the intervention; it is the estimator’s region of plausible values 270 

that is most informative about the possible effect size that would be seen in the population.  271 

The region of plausible effect will always provide values of the effect size that are larger 272 

than the statistical estimator, and others that are smaller. In many cases, the distorting effects of 273 

imprecision and sampling error can actually reverse the direction of effect, signifying that not 274 

benefit, but harm might be produced in the population at large.  275 



 

 

The observation that the statistical estimator produces a plausible region of effect that 276 

together and simultaneously supports both larger benefit values and smaller ones (that sometimes 277 

includes harm) is here termed duality.  Estimators refract the data on which they are based into 278 

both larger and smaller effect sizes including effect sizes that are indicative of harm. It is this 279 

duality that the functions developed in this section will first segregate and capture (a process 280 

termed analysis parsing) and then accumulate using ψ −  measure.  281 

 Define the upper ie+  and lower ie−  bounds of an interval of plausible effect for the 282 

analysis as iω , computing  283 

i i i

i i i

e e a
e e b

+

−

= +

= −
 284 

where ia  and ib  are constants based on variability and imprecision. Note that this interval need 285 

not be symmetric around the actual estimator .ie  The region of plausible effect is signified as 286 

, .i ie e− +     287 

This plausible effect interval can be parsed into two subintervals, one a region of benefit, 288 

the other of harm. In order to locate these sub-regions, knowledge of the value of the statistical 289 

estimator’s effect that is neutral (i.e., denotes neither benefit nor harm) is required. Define this 290 

value of neutral effect as ( )0 .ie  Similarly, let ( )ie b   and ( )ie h  be the values of the greatest 291 

possible benefit and the greatest possible harm permitted by the estimator respectively. The 292 

introduction of ( )ie b  and ( )ie h  is necessary since values of harm need not always be less than 293 

values of benefit. For example, if the ith analysis is a total mortality hazard function analysis, 294 

then 1ie =  indicates no effect on the time to death , ( ) ,ie h = ∞  and ( ) 0.ie b =  Alternatively, if 295 

iω  is an evaluation of changes in mean differences where the greater differences are salubrious, 296 



 

 

then the value of 0ie =  reflects no mean effect, ( ) ,ie h = −∞  and ( ) .ie b = ∞  Using this notation, 297 

then the interval ( ) ( )( ) ( ) ( )( )min , ,max ,i i i ie h e b e h e b    is the range of possible values of the 298 

estimate.  299 

Consider the case where ( ) ( )i ie b e h> . We now define the plausible benefit interval ( )b
iχ  300 

as;  301 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ))0 ,, ,
, , min 0 , ,max 0 , 1 1 1

i ii i i i

b
i i i i i i i i i e e be e b b

b b e e e e b e e bχ − + − +
− + − +

       
    = = = =       302 

This is the portion of the plausible effect size region that supports benefit. For example, larger 303 

values of left ventricular ejection fraction are considered beneficial ceteris paribus; its increases 304 

are beneficial and its decreases are harmful. Thus, if the plausible effect region for a change in 305 

left ventricular ejection fraction is [ ]1,7−  and the region of these changes that are beneficial is 306 

( ) ( )( ) ( )0 , 0, ,i ie e b = ∞  then ( ) [ ] ( ) ( ]1,7 0, 0,7b
kχ = − ∩ ∞ =  is the plausible benefit region. The 307 

plausible region for harm is based on   ( ) ( )( ) ( ) ( )( )( ) ( )min , 0 , max , 0 ,0 ,i i i ie h e e h e = −∞ and is  308 

( ) ( ) ( ) ( ) ( )), 0, ,
, , , 0 1 1 1

i ii i i i

h
i i i i i i i e h ee e h h

h h e e e h eχ − + − +
− + − +

       
   = = = =        309 

which in this example is ( ) [ ] ( ) ( ]1,7 ,0 1,0 .h
kχ = − ∩ −∞ = −   310 

Now define the contribution function  311 

( )( ) ( ) ( ),

1
2

1
i i

b i i
i ib b

i i

b b b
b b

χ − +

+ −
−

  + − 

 +
= = + 

−  
Y Y  312 

as the unit-less benefit function that maps the interval of plausible benefit to an assessment of the 313 

level of that benefit. ( )( )b
iχY penalizes the benefit estimate derived from iω  for a wide interval,  314 



 

 

while amplifying benefit if the minimum value of the plausible region is different than ( )0ie  315 

(Figure 2).   316 

  317 

0                                                  4                                                            8            12

Figure 2. Operation of the benefit function for different levels of analyses effects. 

( ) [ ] ( ) ( )( )0, 8 : 0 , 0.5b b
i i ieχ χ= ∞ =   : Y

( ) [ ] ( ) ( )( )0, 4 : 0 , 0.5b b
i i ieχ χ= ∞ =   : Y

( ) [ ] ( ) ( )( )0,12 : 0 , 0.5b b
i i ieχ χ= ∞ =   : Y

( ) [ ] ( ) ( )( )3, 6 : 0 , 1.5b b
i i ieχ χ= ∞ =   : Y

( ) [ ] ( ) ( )( )4,10 : 0 , 1.8b b
i i ieχ χ= ∞ =   : Y

( ) [ ] ( ) ( )( )8, 9 : 0 , 16.5b b
i i ieχ χ= ∞ =   : Y

318 
From Figure 2, the circumstance where ( ) , [0,8]b

i i ib bχ − + = =  , ( ) , [0, 4]b
i i ib bχ − + = =   and 319 

( ) , [0,12]b
i i ib bχ − + = =   each generate a contribution function value of only 320 

( )( ) ( ),
0.5,1

i i

b
i b b

χ − + 
 

= =Y Y reflecting some addition of benefit from this region,  but penalizing it 321 

because their lower bound includes ( )0 ,ie  the value of no effect. The contribution’s function 322 

value is greater when 0 ,i ib e− >  as is the case of the remaining two examples in Figure 2. 323 

Analogous contribution computations manage the harm concern.  324 

With the benefit interval and contribution function in hand, it remains to compute the 325 

benefit over all of the analysis .i qAω ⊂ The integral ( )( )
q

b
i

A

dχ ψ∫ Y  is the assessment of the benefit 326 



 

 

function on each set i qAω ⊂ with respect to ψ –measure.  A normed version over the measure of 327 

qA  can be written as ( ) ( )( )1
.

q

b
q q i

A

A dψ χ ψ
−

 =   ∫B Y Thus qB  is the normed measure of benefit 328 

derived from all of the analyses responsive to question q. 329 

 A similar quantity can be computed to assess harm. With the plausible harm interval   330 

( )h
kχ  defined as above where ( ) ( ) ( ), 0, ,

, , , 0 .1 1 1
ii i i i

h
i i i i i i ee e h h

h h e e eχ − + − +
− + − +

−∞         
   = = −∞ = =        331 

define ( )( ) ( )
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quantities, write the benefit to harm ratio as  333 
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 335 

Inquiry 4. If there is a benefit, what is an estimator of that benefit? If there is harm, what is the 336 

estimate of that harm? 337 

For a query ,q  quantitative assessments of the evidence for benefit qB  and harm qH338 

were produced. Here an actual estimate of the level of benefit (and of harm) will be developed. 339 

 Recall that the plausible benefit interval ( )b
iχ  is defined as 

,
.1

i ib b− + 
 

 There are several 340 

functions that provide service in assessing the effect of therapy based on that interval. Let I  be 341 

the condition where an increase in ie  reflects benefit and D  reflect the circumstance where a 342 

decrease reflects benefit. Then one such function is ( )( ) ( )( ) ( )( )max inf sup .1 1b b b
k k kχ χ χ+D IL = L L This 343 

represents the assessment of greatest benefit from the plausible interval. Alternative, one could 344 



 

 

conservatively estimate benefit as ( )( ) ( )( ) ( )( )min sup inf .1 1b b b
k k kχ χ χ+D IL = L L  This represents the 345 

least effect value for benefit. Choosing the latter for this development, define the estimate of 346 

benefit from all of the analyses addressing question q as qΛ B   347 

( ) ( )
1
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q q

b
q id dψ χ ψ

−
 
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A A

L  348 

This is the accumulation of unit less benefit with respect to the content of each analysis, normed 349 

by the accumulated content of all analyses.  350 

A similar result is obtained for an estimator of harm produced by all analyses 351 

{ }| .i i qAω ω ⊂   352 

( ) ( )
1
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q q

h
q id dψ χ ψ

−
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Where ( )( ) ( )( ) ( )( )max sup inf1 1h h h
k k kχ χ χ+D IL = L L is the worst case estimate of harm 354 

obtained from ( )h
kχ obtained from the plausible regions of harm. As with the benefit function, 355 

alternative views of harm are also available.  356 

 357 

Discussion  358 

This manuscript provides an alternative approach to clinical trial analysis that is based on both 359 

the principles of measure theory and clinical trial methodology. Its solutions provide answers to 360 

four inquiries of critical interest to clinical trialists using statistical estimation theory that are 361 

commonly not quantitatively addressed, while not relying on statistical hypothesis testing.   362 



 

 

The current clinical trial analysis procedure requires the discrimination of prospective 363 

from exploratory analyses, and control of the familywise type I error among the former. This 364 

commonly restricts the study’s conclusive analyses to a small number of evaluations addressing 365 

precise “primary endpoints” that are pre-designated to represent the principal findings of the 366 

well-designed, concordantly executed clinical trial.  367 

Unfortunately, this standard approach is a symptom of the detachment of the goals of the 368 

clinical trial investigators from the work product of contemporary biostatistics. A clinical trial’s 369 

primary analyses address important questions, but their answers are only contributory to the 370 

more global question of “Has the health, well-being, and sense of well-being of participants 371 

improved after exposure to the new therapy when compared to the experience of the control 372 

group?”  This is the question that is of greatest interest to research investigators, participants, 373 

health care providers, formulary committees, and the regulatory community. The answer to this 374 

larger question requires a broad and integral appraisal of all responsive analyses.   375 

This is not how biostatistics is applied. Its standard approach is to evaluate a small 376 

number of the many components (e.g., survival, or peak walking time, or improvement in 377 

LVEF)of this omnibus question  one at a time, converting the question of, for example “What is 378 

the effect of the intervention on survival time?” into a dichotomous question  “Is survival 379 

changed by therapy or not?” This bifurcation is modulated by consideration of the confidence 380 

interval, but in the end, it is then assessed using statistical hypothesis testing, whose product is a 381 

“yes-no” answer and a type I error measurement. Thus, in the end, the classic statistical analysis 382 

procedures proffer the combination of 1) a small collection of dichotomous responses to the 383 

primary endpoints and 2) an overall type I error expenditure as dispositive.  384 



 

 

However, clinical investigators have an abiding interest in neither. Physicians and 385 

researchers understand that due to the role of measurement imprecision and sampling error, an 386 

effect size that is provided by an endpoint in fact stands for not just one value but for a range of 387 

effect sizes. Some of these effect sizes are supportive of benefit, while others – in a different part 388 

of the range – are less supportive and may even be consistent with harm. Thus, an effect size 389 

range can simultaneously contribute to an argument supporting benefit and also a contention for 390 

harm. It is this analysis-generated dualism that researchers require be drawn together into an 391 

ensemble of effects from different analyses that would be responsive to the global question. 392 

From the investigator’s perspective, it is not type I error but the benefit/harm assessment that 393 

requires accumulation across analyses. Biostatisticians provide the former and investigators need 394 

the latter. This is the disconnect that the measure theoretic approach attempts to repair.   395 

 In this manuscript, the broad concepts of set and measure theory have been contoured to 396 

address clinical trial evaluations. Specifically a measure, and a collection of measureable 397 

functions have been developed with the single goal of incorporating salient features of clinical 398 

trial methodology into the realm of formal mathematical analysis and measure theory.  The result 399 

is a system that is mathematically rigorous, flexible, and can be practically applied.   400 

The computations involved in this system are straightforward. The steps are as follows:  401 

1. Identify the set of analyses { }/i i qAω ω ⊂  that address the question q.  402 

2. Pre-specify all of the analyses to be conducted and their priority of importance in 403 

addressing question q.   404 

3. For the set { }/i i qAω ω ⊂ using  compute ( ).iψ ω   405 

4. Compute the set of quanta [ ]{ }iB  and for each member, compute [ ]( ).iBψ   406 



 

 

5. Compute the measure of the body of evidence that addresses question q as by using 407 

the quanta as ( ) ( )
1

1
i q

q

n

q q i A
iA

d A B ωψ ψ ψ ⊂
=
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proffered for each analysis as [ ]( )1
i qAiB ωψ ⊂

qΓ
 409 

6. Compute  the evidence for benefit and the evidence for harm 410 
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b
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A
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ratio q

q

B
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 412 

7. Compute the estimates of benefit ( )minqΛ B and harm ( )max .qΛ H  413 

  414 

-              The research community can choose the functional form for assessing the intervals of 415 

benefit and harm. ( )( )b
iχY  was specifically chosen here in order to reduce the impact of the 416 

plausible region of benefit by its length, and increase its impact if its lower boundary was 417 

different from that value delineating no effect. There are other choices available though. Triangle 418 

functions and scaled beta functions require attention. However, it is best to keep in mind that this 419 

system is designed to be relatively easy to use; more complicated forms of ( )( )b
iχY increase the 420 

complexity of the evaluations.  421 

-  One challenge in the application of this measure theoretic approach is the interpretation 422 

of the measure of benefit ( )minqΛ B and measure of harm ( )maxqΛ H . These are derived as unit-423 

less quantities, but the research community has no experience with their interpretation. It is 424 

therefore proposed that for the immediate future both the traditional analysis and this measure 425 



 

 

theoretic approach be conducted in the evaluation of clinical trials. This would provide 426 

calibration for the research community as it works to interpret these new values ( )minqΛ B and 427 

( )max .qΛ H   428 

-            Flexibility of analyses is an advantage of this approach. There is no need to focus on a 429 

particular type of estimator. Standardly used estimators, e.g., mean differences, relative risks, 430 

Bayes procedures, regression estimates, imputation generated effects, can each be incorporated.  431 

 No prior example of the assignment of a formal measure to a clinical analysis (separate 432 

and apart from the equivalence of the Lebesgue and Riemann integral when the Riemann integral 433 

exists)  has been identified. While it seems clear that the “amount” of data on which an analysis 434 

relies is an appropriate contributor to the measure of that analysis, defining the measure of 435 

( )i i in vψ ω =  is not the only definition available, and there are clearly alternative measures that 436 

one could apply to the ( ),Ω Σ  collection of analyses. However, the framework developed here is 437 

simple, reasonable, and produces tractable computations.  438 

A requirement of the approach of this manuscript is to ensure that the structure of the 439 

measure theoretic framework be permeable to clinical trial design requirements. The importance 440 

of priority of analysis is critical in research methodology and therefore is incorporated in the 441 

proposed analysis rubric; the size of the independent contribution of analysis iω  depends on 442 

where it lies in the sequence of evaluations. In fact, this measure theoretic approach provides a 443 

mathematical justification for the long established practice of selecting high priority analyses in 444 

clinical trials; these are the analyses which makes the greatest contribution to the 
1

.
n

i
i

ψ ω
=

 
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 


By 445 

matching the sequence of quanta  [ ]iB to the priority of evaluations chosen by the investigators, 446 



 

 

emphases on analyses results ( ), , min ,q q qBB H Λ and ( )maxqHΛ  are placed precisely where the 447 

investigators have a priori stipulated. It is recommended to investigators that this sequence be 448 

chosen based on the importance of the analysis in contributing to the understanding of the effect 449 

of the exposure.  450 

The investigator determination of analysis priority viewed from a measure theoretic 451 

perspective  provides new approaches to challenging problems in trial design. For example, it is 452 

beyond question that safety evaluations in clinical trials are paramount. However, safety 453 

evaluations are not typically part of the type I error control structure in traditionally analyzed 454 

clinical trials; for example, type I error is commonly not first accrued for safety, with the 455 

remainder being distributed across primary endpoints. The safety analysis lies awkwardly outside 456 

the alpha accumulation structure in the traditional paradigm. However, the measure theoretic 457 

structure presented in this manuscript permits the safety evaluation to be prioritized first, 458 

followed by efficacy evaluations. The impact of the efficacy endpoints would be reduced, but 459 

this is wholly consistent with a primum non nocere philosophy. In addition any reduced measure 460 

that is seen in the primary efficacy evaluations because of the first consideration of safety is 461 

partially offset by the accumulation of benefit using ( )
( )( )i

b
t ωχY for the safety evaluation. This 462 

approach avoids  the analytic disconnect; the safety evaluations are incorporated mathematically 463 

and smoothly into the scope of the analyses. 464 

In addition, when viewed from a measure theoretic perspective, the door is open for the 465 

investigators to examine different scenarios to optimize the size of ( )i
Bωψ  for the analyses of 466 

most interest. This optimization requires not just concern for sequencing, but for maximizing or 467 

minimizing the measure of the intersections between the analyses.  468 



 

 

  This paper is not an argument for the abandonment of rigor. The discipline that 469 

epidemiologists and biostatisticians have helped to instill in investigators is laudable; it is not 470 

argued that the stringent execution of a protocol be dismissed. All analyses to be incorporated 471 

should be identified prospectively and thoroughly vetted before the research endeavor 472 

commences. Endpoint measures should be obtained from state of the art equipment known for 473 

their satisfactory precision. If possible, evaluations that would support or refute the purported 474 

mechanism of action should be incorporated. While the need for statistical hypothesis testing 475 

may be removed when one implements these procedures, the rules of epidemiology and the need 476 

for discipline still apply.  477 

An advantage of developing a foundation based on clinical trial methodology for the 478 

mathematical interpretation of the trial’s results has the advantage of extensibility. The role of 479 

exploratory analyses has been problematic for the traditional analysis rubric, in which 480 

exploratory analyses are not incorporated into the trial’s endpoint analysis. In this measure-481 

theoretic structure, the exploratory analysis iω  can be incorporated into the final result, but its 482 

role in affecting the final result depends on where in the sequence [ ]i  lies. In addition, the 483 

integration of analyses that appear from the same trial in separate manuscripts can be 484 

accomplished as well, providing an overall picture of the benefit and harm risks posed by the 485 

exposure being studied. Nonrandomized, observational studies in health care are amenable to the 486 

application of this measure theoretic approach as well, although at this stage of development, 487 

neither ψ −  measure nor the integrals ( ), , min ,q q qBB H Λ and ( )maxqHΛ explicitly take into 488 

account the universe of biases that can vitiate the results of the observational study. Finally, there 489 

may be meta-analytic implications of this work.  490 



 

 

Statistical hypothesis testing has played an important role in clinical trials. However, the 491 

connection between its standard application and the goal of clinical trials is broken. The rubric 492 

described here provides a measure theoretic mathematical structure developed specifically for 493 

clinical trials, allowing the investigator access to the global result they require and for which they 494 

designed the study.  495 

 496 

 497 
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